Blame view

hw/sun4m.c 53 KB
1
/*
2
 * QEMU Sun4m & Sun4d & Sun4c System Emulator
3
 *
4
 * Copyright (c) 2003-2005 Fabrice Bellard
5
 *
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
pbrook authored
24
25
26
27
28
29
30
31
32
#include "hw.h"
#include "qemu-timer.h"
#include "sun4m.h"
#include "nvram.h"
#include "sparc32_dma.h"
#include "fdc.h"
#include "sysemu.h"
#include "net.h"
#include "boards.h"
33
#include "firmware_abi.h"
34
#include "scsi.h"
blueswir1 authored
35
36
#include "pc.h"
#include "isa.h"
37
#include "fw_cfg.h"
38
#include "escc.h"
39
40
//#define DEBUG_IRQ
41
42
43
44
45
/*
 * Sun4m architecture was used in the following machines:
 *
 * SPARCserver 6xxMP/xx
blueswir1 authored
46
47
 * SPARCclassic (SPARCclassic Server)(SPARCstation LC) (4/15),
 * SPARCclassic X (4/10)
48
49
50
51
52
53
54
 * SPARCstation LX/ZX (4/30)
 * SPARCstation Voyager
 * SPARCstation 10/xx, SPARCserver 10/xx
 * SPARCstation 5, SPARCserver 5
 * SPARCstation 20/xx, SPARCserver 20
 * SPARCstation 4
 *
55
56
57
58
59
 * Sun4d architecture was used in the following machines:
 *
 * SPARCcenter 2000
 * SPARCserver 1000
 *
60
61
62
63
64
65
66
 * Sun4c architecture was used in the following machines:
 * SPARCstation 1/1+, SPARCserver 1/1+
 * SPARCstation SLC
 * SPARCstation IPC
 * SPARCstation ELC
 * SPARCstation IPX
 *
67
68
69
 * See for example: http://www.sunhelp.org/faq/sunref1.html
 */
70
71
72
73
74
75
76
#ifdef DEBUG_IRQ
#define DPRINTF(fmt, args...)                           \
    do { printf("CPUIRQ: " fmt , ##args); } while (0)
#else
#define DPRINTF(fmt, args...)
#endif
77
#define KERNEL_LOAD_ADDR     0x00004000
bellard authored
78
#define CMDLINE_ADDR         0x007ff000
bellard authored
79
#define INITRD_LOAD_ADDR     0x00800000
80
#define PROM_SIZE_MAX        (1024 * 1024)
blueswir1 authored
81
#define PROM_VADDR           0xffd00000
blueswir1 authored
82
#define PROM_FILENAME        "openbios-sparc32"
83
#define CFG_ADDR             0xd00000510ULL
84
#define FW_CFG_SUN4M_DEPTH   (FW_CFG_ARCH_LOCAL + 0x00)
85
86
87
88
// Control plane, 8-bit and 24-bit planes
#define TCX_SIZE             (9 * 1024 * 1024)
89
#define MAX_CPUS 16
90
#define MAX_PILS 16
91
92
93
#define ESCC_CLOCK 4915200
94
struct sun4m_hwdef {
95
96
97
    target_phys_addr_t iommu_base, slavio_base;
    target_phys_addr_t intctl_base, counter_base, nvram_base, ms_kb_base;
    target_phys_addr_t serial_base, fd_base;
blueswir1 authored
98
    target_phys_addr_t idreg_base, dma_base, esp_base, le_base;
99
    target_phys_addr_t tcx_base, cs_base, apc_base, aux1_base, aux2_base;
100
101
    target_phys_addr_t ecc_base;
    uint32_t ecc_version;
102
    long vram_size, nvram_size;
blueswir1 authored
103
    // IRQ numbers are not PIL ones, but master interrupt controller
104
    // register bit numbers
105
    int esp_irq, le_irq, clock_irq, clock1_irq;
106
    int ser_irq, ms_kb_irq, fd_irq, me_irq, cs_irq, ecc_irq;
107
108
    uint8_t nvram_machine_id;
    uint16_t machine_id;
109
    uint32_t iommu_version;
110
    uint32_t intbit_to_level[32];
111
112
    uint64_t max_mem;
    const char * const default_cpu_model;
113
114
};
115
116
117
118
119
120
121
122
123
124
125
126
127
128
#define MAX_IOUNITS 5

struct sun4d_hwdef {
    target_phys_addr_t iounit_bases[MAX_IOUNITS], slavio_base;
    target_phys_addr_t counter_base, nvram_base, ms_kb_base;
    target_phys_addr_t serial_base;
    target_phys_addr_t espdma_base, esp_base;
    target_phys_addr_t ledma_base, le_base;
    target_phys_addr_t tcx_base;
    target_phys_addr_t sbi_base;
    unsigned long vram_size, nvram_size;
    // IRQ numbers are not PIL ones, but SBI register bit numbers
    int esp_irq, le_irq, clock_irq, clock1_irq;
    int ser_irq, ms_kb_irq, me_irq;
129
130
    uint8_t nvram_machine_id;
    uint16_t machine_id;
131
132
133
134
135
    uint32_t iounit_version;
    uint64_t max_mem;
    const char * const default_cpu_model;
};
136
137
138
139
140
struct sun4c_hwdef {
    target_phys_addr_t iommu_base, slavio_base;
    target_phys_addr_t intctl_base, counter_base, nvram_base, ms_kb_base;
    target_phys_addr_t serial_base, fd_base;
    target_phys_addr_t idreg_base, dma_base, esp_base, le_base;
141
    target_phys_addr_t tcx_base, aux1_base;
142
143
144
    long vram_size, nvram_size;
    // IRQ numbers are not PIL ones, but master interrupt controller
    // register bit numbers
145
146
    int esp_irq, le_irq, clock_irq, clock1_irq;
    int ser_irq, ms_kb_irq, fd_irq, me_irq;
147
148
149
150
151
152
153
154
    uint8_t nvram_machine_id;
    uint16_t machine_id;
    uint32_t iommu_version;
    uint32_t intbit_to_level[32];
    uint64_t max_mem;
    const char * const default_cpu_model;
};
bellard authored
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
int DMA_get_channel_mode (int nchan)
{
    return 0;
}
int DMA_read_memory (int nchan, void *buf, int pos, int size)
{
    return 0;
}
int DMA_write_memory (int nchan, void *buf, int pos, int size)
{
    return 0;
}
void DMA_hold_DREQ (int nchan) {}
void DMA_release_DREQ (int nchan) {}
void DMA_schedule(int nchan) {}
void DMA_init (int high_page_enable) {}
void DMA_register_channel (int nchan,
                           DMA_transfer_handler transfer_handler,
                           void *opaque)
{
}
177
static int fw_cfg_boot_set(void *opaque, const char *boot_device)
178
{
179
    fw_cfg_add_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]);
180
181
182
    return 0;
}
183
static void nvram_init(m48t59_t *nvram, uint8_t *macaddr, const char *cmdline,
184
                       const char *boot_devices, ram_addr_t RAM_size,
blueswir1 authored
185
186
                       uint32_t kernel_size,
                       int width, int height, int depth,
187
                       int nvram_machine_id, const char *arch)
bellard authored
188
{
189
    unsigned int i;
190
    uint32_t start, end;
191
192
193
194
    uint8_t image[0x1ff0];
    struct OpenBIOS_nvpart_v1 *part_header;

    memset(image, '\0', sizeof(image));
bellard authored
195
196
    start = 0;
bellard authored
197
198
199
    // OpenBIOS nvram variables
    // Variable partition
200
201
    part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
    part_header->signature = OPENBIOS_PART_SYSTEM;
202
    pstrcpy(part_header->name, sizeof(part_header->name), "system");
203
204
    end = start + sizeof(struct OpenBIOS_nvpart_v1);
205
    for (i = 0; i < nb_prom_envs; i++)
206
207
208
209
        end = OpenBIOS_set_var(image, end, prom_envs[i]);

    // End marker
    image[end++] = '\0';
210
211

    end = start + ((end - start + 15) & ~15);
212
    OpenBIOS_finish_partition(part_header, end - start);
213
214
215

    // free partition
    start = end;
216
217
    part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
    part_header->signature = OPENBIOS_PART_FREE;
218
    pstrcpy(part_header->name, sizeof(part_header->name), "free");
219
220

    end = 0x1fd0;
221
222
    OpenBIOS_finish_partition(part_header, end - start);
223
224
    Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr,
                    nvram_machine_id);
225
226
227

    for (i = 0; i < sizeof(image); i++)
        m48t59_write(nvram, i, image[i]);
bellard authored
228
229
230
231
}

static void *slavio_intctl;
232
void pic_info(Monitor *mon)
bellard authored
233
{
234
    if (slavio_intctl)
235
        slavio_pic_info(mon, slavio_intctl);
bellard authored
236
237
}
238
void irq_info(Monitor *mon)
bellard authored
239
{
240
    if (slavio_intctl)
241
        slavio_irq_info(mon, slavio_intctl);
bellard authored
242
243
}
244
245
246
247
248
249
250
251
252
253
254
void cpu_check_irqs(CPUState *env)
{
    if (env->pil_in && (env->interrupt_index == 0 ||
                        (env->interrupt_index & ~15) == TT_EXTINT)) {
        unsigned int i;

        for (i = 15; i > 0; i--) {
            if (env->pil_in & (1 << i)) {
                int old_interrupt = env->interrupt_index;

                env->interrupt_index = TT_EXTINT | i;
255
256
                if (old_interrupt != env->interrupt_index) {
                    DPRINTF("Set CPU IRQ %d\n", i);
257
                    cpu_interrupt(env, CPU_INTERRUPT_HARD);
258
                }
259
260
261
262
                break;
            }
        }
    } else if (!env->pil_in && (env->interrupt_index & ~15) == TT_EXTINT) {
263
        DPRINTF("Reset CPU IRQ %d\n", env->interrupt_index & 15);
264
265
266
267
268
        env->interrupt_index = 0;
        cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
    }
}
269
270
271
272
273
274
275
static void cpu_set_irq(void *opaque, int irq, int level)
{
    CPUState *env = opaque;

    if (level) {
        DPRINTF("Raise CPU IRQ %d\n", irq);
        env->halted = 0;
276
277
        env->pil_in |= 1 << irq;
        cpu_check_irqs(env);
278
279
    } else {
        DPRINTF("Lower CPU IRQ %d\n", irq);
280
281
        env->pil_in &= ~(1 << irq);
        cpu_check_irqs(env);
282
283
284
285
286
287
288
    }
}

static void dummy_cpu_set_irq(void *opaque, int irq, int level)
{
}
bellard authored
289
290
291
292
293
294
295
static void *slavio_misc;

void qemu_system_powerdown(void)
{
    slavio_set_power_fail(slavio_misc, 1);
}
bellard authored
296
297
298
static void main_cpu_reset(void *opaque)
{
    CPUState *env = opaque;
299
300
301
302
303
304
305
306
307

    cpu_reset(env);
    env->halted = 0;
}

static void secondary_cpu_reset(void *opaque)
{
    CPUState *env = opaque;
bellard authored
308
    cpu_reset(env);
309
    env->halted = 1;
bellard authored
310
311
}
312
313
314
315
316
317
static void cpu_halt_signal(void *opaque, int irq, int level)
{
    if (level && cpu_single_env)
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HALT);
}
318
static unsigned long sun4m_load_kernel(const char *kernel_filename,
319
320
                                       const char *initrd_filename,
                                       ram_addr_t RAM_size)
321
322
323
324
325
326
327
328
329
330
331
332
{
    int linux_boot;
    unsigned int i;
    long initrd_size, kernel_size;

    linux_boot = (kernel_filename != NULL);

    kernel_size = 0;
    if (linux_boot) {
        kernel_size = load_elf(kernel_filename, -0xf0000000ULL, NULL, NULL,
                               NULL);
        if (kernel_size < 0)
333
334
            kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR,
                                    RAM_size - KERNEL_LOAD_ADDR);
335
        if (kernel_size < 0)
336
337
338
            kernel_size = load_image_targphys(kernel_filename,
                                              KERNEL_LOAD_ADDR,
                                              RAM_size - KERNEL_LOAD_ADDR);
339
340
341
342
343
344
345
346
347
        if (kernel_size < 0) {
            fprintf(stderr, "qemu: could not load kernel '%s'\n",
                    kernel_filename);
            exit(1);
        }

        /* load initrd */
        initrd_size = 0;
        if (initrd_filename) {
348
349
350
            initrd_size = load_image_targphys(initrd_filename,
                                              INITRD_LOAD_ADDR,
                                              RAM_size - INITRD_LOAD_ADDR);
351
352
353
354
355
356
357
358
            if (initrd_size < 0) {
                fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
                        initrd_filename);
                exit(1);
            }
        }
        if (initrd_size > 0) {
            for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
359
360
361
                if (ldl_phys(KERNEL_LOAD_ADDR + i) == 0x48647253) { // HdrS
                    stl_phys(KERNEL_LOAD_ADDR + i + 16, INITRD_LOAD_ADDR);
                    stl_phys(KERNEL_LOAD_ADDR + i + 20, initrd_size);
362
363
364
365
366
367
368
369
                    break;
                }
            }
        }
    }
    return kernel_size;
}
370
static void sun4m_hw_init(const struct sun4m_hwdef *hwdef, ram_addr_t RAM_size,
371
                          const char *boot_device,
372
                          const char *kernel_filename,
373
374
                          const char *kernel_cmdline,
                          const char *initrd_filename, const char *cpu_model)
375
376
{
377
    CPUState *env, *envs[MAX_CPUS];
bellard authored
378
    unsigned int i;
379
    void *iommu, *espdma, *ledma, *main_esp, *nvram;
380
    qemu_irq *cpu_irqs[MAX_CPUS], *slavio_irq, *slavio_cpu_irq,
381
        *espdma_irq, *ledma_irq;
382
    qemu_irq *esp_reset, *le_reset;
383
    qemu_irq *fdc_tc;
384
    qemu_irq *cpu_halt;
blueswir1 authored
385
386
    ram_addr_t ram_offset, prom_offset, tcx_offset, idreg_offset;
    unsigned long kernel_size;
387
388
    int ret;
    char buf[1024];
389
    BlockDriverState *fd[MAX_FD];
blueswir1 authored
390
    int drive_index;
391
    void *fw_cfg;
392
393
    /* init CPUs */
394
395
    if (!cpu_model)
        cpu_model = hwdef->default_cpu_model;
396
397
    for(i = 0; i < smp_cpus; i++) {
398
399
        env = cpu_init(cpu_model);
        if (!env) {
400
            fprintf(stderr, "qemu: Unable to find Sparc CPU definition\n");
401
402
403
            exit(1);
        }
        cpu_sparc_set_id(env, i);
404
        envs[i] = env;
405
406
407
408
        if (i == 0) {
            qemu_register_reset(main_cpu_reset, env);
        } else {
            qemu_register_reset(secondary_cpu_reset, env);
409
            env->halted = 1;
410
        }
411
        cpu_irqs[i] = qemu_allocate_irqs(cpu_set_irq, envs[i], MAX_PILS);
412
        env->prom_addr = hwdef->slavio_base;
413
    }
414
415
416
417

    for (i = smp_cpus; i < MAX_CPUS; i++)
        cpu_irqs[i] = qemu_allocate_irqs(dummy_cpu_set_irq, NULL, MAX_PILS);
418
419
    /* allocate RAM */
420
    if ((uint64_t)RAM_size > hwdef->max_mem) {
blueswir1 authored
421
422
        fprintf(stderr,
                "qemu: Too much memory for this machine: %d, maximum %d\n",
423
                (unsigned int)(RAM_size / (1024 * 1024)),
424
425
426
                (unsigned int)(hwdef->max_mem / (1024 * 1024)));
        exit(1);
    }
blueswir1 authored
427
428
    ram_offset = qemu_ram_alloc(RAM_size);
    cpu_register_physical_memory(0, RAM_size, ram_offset);
429
430
    /* load boot prom */
blueswir1 authored
431
    prom_offset = qemu_ram_alloc(PROM_SIZE_MAX);
432
433
434
435
436
437
438
439
440
441
    cpu_register_physical_memory(hwdef->slavio_base,
                                 (PROM_SIZE_MAX + TARGET_PAGE_SIZE - 1) &
                                 TARGET_PAGE_MASK,
                                 prom_offset | IO_MEM_ROM);

    if (bios_name == NULL)
        bios_name = PROM_FILENAME;
    snprintf(buf, sizeof(buf), "%s/%s", bios_dir, bios_name);
    ret = load_elf(buf, hwdef->slavio_base - PROM_VADDR, NULL, NULL, NULL);
    if (ret < 0 || ret > PROM_SIZE_MAX)
blueswir1 authored
442
        ret = load_image_targphys(buf, hwdef->slavio_base, PROM_SIZE_MAX);
443
444
445
446
447
448
449
    if (ret < 0 || ret > PROM_SIZE_MAX) {
        fprintf(stderr, "qemu: could not load prom '%s'\n",
                buf);
        exit(1);
    }

    /* set up devices */
450
    slavio_intctl = slavio_intctl_init(hwdef->intctl_base,
451
                                       hwdef->intctl_base + 0x10000ULL,
pbrook authored
452
                                       &hwdef->intbit_to_level[0],
453
                                       &slavio_irq, &slavio_cpu_irq,
454
                                       cpu_irqs,
455
                                       hwdef->clock_irq);
456
457
    if (hwdef->idreg_base) {
458
        static const uint8_t idreg_data[] = { 0xfe, 0x81, 0x01, 0x03 };
blueswir1 authored
459
blueswir1 authored
460
        idreg_offset = qemu_ram_alloc(sizeof(idreg_data));
461
        cpu_register_physical_memory(hwdef->idreg_base, sizeof(idreg_data),
blueswir1 authored
462
                                     idreg_offset | IO_MEM_ROM);
463
464
        cpu_physical_memory_write_rom(hwdef->idreg_base, idreg_data,
                                      sizeof(idreg_data));
blueswir1 authored
465
466
    }
467
468
469
    iommu = iommu_init(hwdef->iommu_base, hwdef->iommu_version,
                       slavio_irq[hwdef->me_irq]);
470
    espdma = sparc32_dma_init(hwdef->dma_base, slavio_irq[hwdef->esp_irq],
471
472
                              iommu, &espdma_irq, &esp_reset);
473
    ledma = sparc32_dma_init(hwdef->dma_base + 16ULL,
474
475
                             slavio_irq[hwdef->le_irq], iommu, &ledma_irq,
                             &le_reset);
476
blueswir1 authored
477
478
479
480
    if (graphic_depth != 8 && graphic_depth != 24) {
        fprintf(stderr, "qemu: Unsupported depth: %d\n", graphic_depth);
        exit (1);
    }
blueswir1 authored
481
    tcx_offset = qemu_ram_alloc(hwdef->vram_size);
482
    tcx_init(hwdef->tcx_base, phys_ram_base + tcx_offset, tcx_offset,
blueswir1 authored
483
             hwdef->vram_size, graphic_width, graphic_height, graphic_depth);
484
485
    lance_init(&nd_table[0], hwdef->le_base, ledma, *ledma_irq, le_reset);
486
pbrook authored
487
488
    nvram = m48t59_init(slavio_irq[0], hwdef->nvram_base, 0,
                        hwdef->nvram_size, 8);
489
490

    slavio_timer_init_all(hwdef->counter_base, slavio_irq[hwdef->clock1_irq],
491
                          slavio_cpu_irq, smp_cpus);
492
493
    slavio_serial_ms_kbd_init(hwdef->ms_kb_base, slavio_irq[hwdef->ms_kb_irq],
494
                              nographic, ESCC_CLOCK, 1);
495
496
    // Slavio TTYA (base+4, Linux ttyS0) is the first Qemu serial device
    // Slavio TTYB (base+0, Linux ttyS1) is the second Qemu serial device
497
498
    escc_init(hwdef->serial_base, slavio_irq[hwdef->ser_irq], slavio_irq[hwdef->ser_irq],
              serial_hds[0], serial_hds[1], ESCC_CLOCK, 1);
499
500
    cpu_halt = qemu_allocate_irqs(cpu_halt_signal, NULL, 1);
501
502
    slavio_misc = slavio_misc_init(hwdef->slavio_base, hwdef->apc_base,
                                   hwdef->aux1_base, hwdef->aux2_base,
503
                                   slavio_irq[hwdef->me_irq], cpu_halt[0],
504
505
                                   &fdc_tc);
506
    if (hwdef->fd_base) {
507
        /* there is zero or one floppy drive */
508
        memset(fd, 0, sizeof(fd));
blueswir1 authored
509
510
511
        drive_index = drive_get_index(IF_FLOPPY, 0, 0);
        if (drive_index != -1)
            fd[0] = drives_table[drive_index].bdrv;
512
513
514
        sun4m_fdctrl_init(slavio_irq[hwdef->fd_irq], hwdef->fd_base, fd,
                          fdc_tc);
515
516
517
518
519
520
521
    }

    if (drive_get_max_bus(IF_SCSI) > 0) {
        fprintf(stderr, "qemu: too many SCSI bus\n");
        exit(1);
    }
522
    main_esp = esp_init(hwdef->esp_base, 2,
523
524
                        espdma_memory_read, espdma_memory_write,
                        espdma, *espdma_irq, esp_reset);
525
526
    for (i = 0; i < ESP_MAX_DEVS; i++) {
blueswir1 authored
527
528
        drive_index = drive_get_index(IF_SCSI, 0, i);
        if (drive_index == -1)
529
            continue;
blueswir1 authored
530
        esp_scsi_attach(main_esp, drives_table[drive_index].bdrv, i);
531
532
    }
533
    if (hwdef->cs_base)
534
        cs_init(hwdef->cs_base, hwdef->cs_irq, slavio_intctl);
535
536
537
    kernel_size = sun4m_load_kernel(kernel_filename, initrd_filename,
                                    RAM_size);
538
539

    nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, kernel_cmdline,
540
               boot_device, RAM_size, kernel_size, graphic_width,
541
542
               graphic_height, graphic_depth, hwdef->nvram_machine_id,
               "Sun4m");
543
544
    if (hwdef->ecc_base)
545
546
        ecc_init(hwdef->ecc_base, slavio_irq[hwdef->ecc_irq],
                 hwdef->ecc_version);
547
548
549

    fw_cfg = fw_cfg_init(0, 0, CFG_ADDR, CFG_ADDR + 2);
    fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
550
551
    fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
    fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id);
552
    fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_DEPTH, graphic_depth);
553
554
555
556
557
558
559
560
561
562
563
564
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, KERNEL_LOAD_ADDR);
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
    if (kernel_cmdline) {
        fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, CMDLINE_ADDR);
        pstrcpy_targphys(CMDLINE_ADDR, TARGET_PAGE_SIZE, kernel_cmdline);
    } else {
        fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0);
    }
    fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, INITRD_LOAD_ADDR);
    fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, 0); // not used
    fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, boot_device[0]);
    qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
565
566
}
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
enum {
    ss2_id = 0,
    ss5_id = 32,
    vger_id,
    lx_id,
    ss4_id,
    scls_id,
    sbook_id,
    ss10_id = 64,
    ss20_id,
    ss600mp_id,
    ss1000_id = 96,
    ss2000_id,
};
582
static const struct sun4m_hwdef sun4m_hwdefs[] = {
583
584
585
586
587
    /* SS-5 */
    {
        .iommu_base   = 0x10000000,
        .tcx_base     = 0x50000000,
        .cs_base      = 0x6c000000,
blueswir1 authored
588
        .slavio_base  = 0x70000000,
589
590
591
592
593
594
        .ms_kb_base   = 0x71000000,
        .serial_base  = 0x71100000,
        .nvram_base   = 0x71200000,
        .fd_base      = 0x71400000,
        .counter_base = 0x71d00000,
        .intctl_base  = 0x71e00000,
blueswir1 authored
595
        .idreg_base   = 0x78000000,
596
597
598
        .dma_base     = 0x78400000,
        .esp_base     = 0x78800000,
        .le_base      = 0x78c00000,
599
        .apc_base     = 0x6a000000,
600
601
        .aux1_base    = 0x71900000,
        .aux2_base    = 0x71910000,
602
603
604
605
        .vram_size    = 0x00100000,
        .nvram_size   = 0x2000,
        .esp_irq = 18,
        .le_irq = 16,
606
        .clock_irq = 7,
607
608
609
610
611
612
        .clock1_irq = 19,
        .ms_kb_irq = 14,
        .ser_irq = 15,
        .fd_irq = 22,
        .me_irq = 30,
        .cs_irq = 5,
613
614
        .nvram_machine_id = 0x80,
        .machine_id = ss5_id,
615
        .iommu_version = 0x05000000,
616
        .intbit_to_level = {
blueswir1 authored
617
618
            2, 3, 5, 7, 9, 11, 0, 14,   3, 5, 7, 9, 11, 13, 12, 12,
            6, 0, 4, 10, 8, 0, 11, 0,   0, 0, 0, 0, 15, 0, 15, 0,
619
        },
620
621
        .max_mem = 0x10000000,
        .default_cpu_model = "Fujitsu MB86904",
622
623
624
    },
    /* SS-10 */
    {
625
626
627
628
629
630
631
632
633
        .iommu_base   = 0xfe0000000ULL,
        .tcx_base     = 0xe20000000ULL,
        .slavio_base  = 0xff0000000ULL,
        .ms_kb_base   = 0xff1000000ULL,
        .serial_base  = 0xff1100000ULL,
        .nvram_base   = 0xff1200000ULL,
        .fd_base      = 0xff1700000ULL,
        .counter_base = 0xff1300000ULL,
        .intctl_base  = 0xff1400000ULL,
blueswir1 authored
634
        .idreg_base   = 0xef0000000ULL,
635
636
637
        .dma_base     = 0xef0400000ULL,
        .esp_base     = 0xef0800000ULL,
        .le_base      = 0xef0c00000ULL,
638
        .apc_base     = 0xefa000000ULL, // XXX should not exist
639
640
        .aux1_base    = 0xff1800000ULL,
        .aux2_base    = 0xff1a01000ULL,
641
642
        .ecc_base     = 0xf00000000ULL,
        .ecc_version  = 0x10000000, // version 0, implementation 1
643
644
645
646
        .vram_size    = 0x00100000,
        .nvram_size   = 0x2000,
        .esp_irq = 18,
        .le_irq = 16,
647
        .clock_irq = 7,
648
649
650
651
652
        .clock1_irq = 19,
        .ms_kb_irq = 14,
        .ser_irq = 15,
        .fd_irq = 22,
        .me_irq = 30,
653
        .ecc_irq = 28,
654
655
        .nvram_machine_id = 0x72,
        .machine_id = ss10_id,
656
        .iommu_version = 0x03000000,
657
        .intbit_to_level = {
blueswir1 authored
658
659
            2, 3, 5, 7, 9, 11, 0, 14,   3, 5, 7, 9, 11, 13, 12, 12,
            6, 0, 4, 10, 8, 0, 11, 0,   0, 0, 0, 0, 15, 0, 15, 0,
660
        },
661
        .max_mem = 0xf00000000ULL,
662
        .default_cpu_model = "TI SuperSparc II",
663
    },
664
665
666
667
668
669
670
671
672
673
674
675
676
    /* SS-600MP */
    {
        .iommu_base   = 0xfe0000000ULL,
        .tcx_base     = 0xe20000000ULL,
        .slavio_base  = 0xff0000000ULL,
        .ms_kb_base   = 0xff1000000ULL,
        .serial_base  = 0xff1100000ULL,
        .nvram_base   = 0xff1200000ULL,
        .counter_base = 0xff1300000ULL,
        .intctl_base  = 0xff1400000ULL,
        .dma_base     = 0xef0081000ULL,
        .esp_base     = 0xef0080000ULL,
        .le_base      = 0xef0060000ULL,
677
        .apc_base     = 0xefa000000ULL, // XXX should not exist
678
679
        .aux1_base    = 0xff1800000ULL,
        .aux2_base    = 0xff1a01000ULL, // XXX should not exist
680
681
        .ecc_base     = 0xf00000000ULL,
        .ecc_version  = 0x00000000, // version 0, implementation 0
682
683
684
685
        .vram_size    = 0x00100000,
        .nvram_size   = 0x2000,
        .esp_irq = 18,
        .le_irq = 16,
686
        .clock_irq = 7,
687
688
689
690
691
        .clock1_irq = 19,
        .ms_kb_irq = 14,
        .ser_irq = 15,
        .fd_irq = 22,
        .me_irq = 30,
692
        .ecc_irq = 28,
693
694
        .nvram_machine_id = 0x71,
        .machine_id = ss600mp_id,
695
        .iommu_version = 0x01000000,
696
697
698
699
        .intbit_to_level = {
            2, 3, 5, 7, 9, 11, 0, 14,   3, 5, 7, 9, 11, 13, 12, 12,
            6, 0, 4, 10, 8, 0, 11, 0,   0, 0, 0, 0, 15, 0, 15, 0,
        },
700
        .max_mem = 0xf00000000ULL,
701
        .default_cpu_model = "TI SuperSparc II",
702
    },
703
704
705
706
707
708
709
710
711
712
713
    /* SS-20 */
    {
        .iommu_base   = 0xfe0000000ULL,
        .tcx_base     = 0xe20000000ULL,
        .slavio_base  = 0xff0000000ULL,
        .ms_kb_base   = 0xff1000000ULL,
        .serial_base  = 0xff1100000ULL,
        .nvram_base   = 0xff1200000ULL,
        .fd_base      = 0xff1700000ULL,
        .counter_base = 0xff1300000ULL,
        .intctl_base  = 0xff1400000ULL,
blueswir1 authored
714
        .idreg_base   = 0xef0000000ULL,
715
716
717
        .dma_base     = 0xef0400000ULL,
        .esp_base     = 0xef0800000ULL,
        .le_base      = 0xef0c00000ULL,
718
        .apc_base     = 0xefa000000ULL, // XXX should not exist
719
720
        .aux1_base    = 0xff1800000ULL,
        .aux2_base    = 0xff1a01000ULL,
721
722
723
724
725
726
        .ecc_base     = 0xf00000000ULL,
        .ecc_version  = 0x20000000, // version 0, implementation 2
        .vram_size    = 0x00100000,
        .nvram_size   = 0x2000,
        .esp_irq = 18,
        .le_irq = 16,
727
        .clock_irq = 7,
728
729
730
731
732
        .clock1_irq = 19,
        .ms_kb_irq = 14,
        .ser_irq = 15,
        .fd_irq = 22,
        .me_irq = 30,
733
        .ecc_irq = 28,
734
735
        .nvram_machine_id = 0x72,
        .machine_id = ss20_id,
736
737
738
739
740
        .iommu_version = 0x13000000,
        .intbit_to_level = {
            2, 3, 5, 7, 9, 11, 0, 14,   3, 5, 7, 9, 11, 13, 12, 12,
            6, 0, 4, 10, 8, 0, 11, 0,   0, 0, 0, 0, 15, 0, 15, 0,
        },
741
        .max_mem = 0xf00000000ULL,
742
743
        .default_cpu_model = "TI SuperSparc II",
    },
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
    /* Voyager */
    {
        .iommu_base   = 0x10000000,
        .tcx_base     = 0x50000000,
        .slavio_base  = 0x70000000,
        .ms_kb_base   = 0x71000000,
        .serial_base  = 0x71100000,
        .nvram_base   = 0x71200000,
        .fd_base      = 0x71400000,
        .counter_base = 0x71d00000,
        .intctl_base  = 0x71e00000,
        .idreg_base   = 0x78000000,
        .dma_base     = 0x78400000,
        .esp_base     = 0x78800000,
        .le_base      = 0x78c00000,
        .apc_base     = 0x71300000, // pmc
        .aux1_base    = 0x71900000,
        .aux2_base    = 0x71910000,
        .vram_size    = 0x00100000,
        .nvram_size   = 0x2000,
        .esp_irq = 18,
        .le_irq = 16,
        .clock_irq = 7,
        .clock1_irq = 19,
        .ms_kb_irq = 14,
        .ser_irq = 15,
        .fd_irq = 22,
        .me_irq = 30,
772
773
        .nvram_machine_id = 0x80,
        .machine_id = vger_id,
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
        .iommu_version = 0x05000000,
        .intbit_to_level = {
            2, 3, 5, 7, 9, 11, 0, 14,   3, 5, 7, 9, 11, 13, 12, 12,
            6, 0, 4, 10, 8, 0, 11, 0,   0, 0, 0, 0, 15, 0, 15, 0,
        },
        .max_mem = 0x10000000,
        .default_cpu_model = "Fujitsu MB86904",
    },
    /* LX */
    {
        .iommu_base   = 0x10000000,
        .tcx_base     = 0x50000000,
        .slavio_base  = 0x70000000,
        .ms_kb_base   = 0x71000000,
        .serial_base  = 0x71100000,
        .nvram_base   = 0x71200000,
        .fd_base      = 0x71400000,
        .counter_base = 0x71d00000,
        .intctl_base  = 0x71e00000,
        .idreg_base   = 0x78000000,
        .dma_base     = 0x78400000,
        .esp_base     = 0x78800000,
        .le_base      = 0x78c00000,
        .aux1_base    = 0x71900000,
        .aux2_base    = 0x71910000,
        .vram_size    = 0x00100000,
        .nvram_size   = 0x2000,
        .esp_irq = 18,
        .le_irq = 16,
        .clock_irq = 7,
        .clock1_irq = 19,
        .ms_kb_irq = 14,
        .ser_irq = 15,
        .fd_irq = 22,
        .me_irq = 30,
809
810
        .nvram_machine_id = 0x80,
        .machine_id = lx_id,
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
        .iommu_version = 0x04000000,
        .intbit_to_level = {
            2, 3, 5, 7, 9, 11, 0, 14,   3, 5, 7, 9, 11, 13, 12, 12,
            6, 0, 4, 10, 8, 0, 11, 0,   0, 0, 0, 0, 15, 0, 15, 0,
        },
        .max_mem = 0x10000000,
        .default_cpu_model = "TI MicroSparc I",
    },
    /* SS-4 */
    {
        .iommu_base   = 0x10000000,
        .tcx_base     = 0x50000000,
        .cs_base      = 0x6c000000,
        .slavio_base  = 0x70000000,
        .ms_kb_base   = 0x71000000,
        .serial_base  = 0x71100000,
        .nvram_base   = 0x71200000,
        .fd_base      = 0x71400000,
        .counter_base = 0x71d00000,
        .intctl_base  = 0x71e00000,
        .idreg_base   = 0x78000000,
        .dma_base     = 0x78400000,
        .esp_base     = 0x78800000,
        .le_base      = 0x78c00000,
        .apc_base     = 0x6a000000,
        .aux1_base    = 0x71900000,
        .aux2_base    = 0x71910000,
        .vram_size    = 0x00100000,
        .nvram_size   = 0x2000,
        .esp_irq = 18,
        .le_irq = 16,
        .clock_irq = 7,
        .clock1_irq = 19,
        .ms_kb_irq = 14,
        .ser_irq = 15,
        .fd_irq = 22,
        .me_irq = 30,
        .cs_irq = 5,
849
850
        .nvram_machine_id = 0x80,
        .machine_id = ss4_id,
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
        .iommu_version = 0x05000000,
        .intbit_to_level = {
            2, 3, 5, 7, 9, 11, 0, 14,   3, 5, 7, 9, 11, 13, 12, 12,
            6, 0, 4, 10, 8, 0, 11, 0,   0, 0, 0, 0, 15, 0, 15, 0,
        },
        .max_mem = 0x10000000,
        .default_cpu_model = "Fujitsu MB86904",
    },
    /* SPARCClassic */
    {
        .iommu_base   = 0x10000000,
        .tcx_base     = 0x50000000,
        .slavio_base  = 0x70000000,
        .ms_kb_base   = 0x71000000,
        .serial_base  = 0x71100000,
        .nvram_base   = 0x71200000,
        .fd_base      = 0x71400000,
        .counter_base = 0x71d00000,
        .intctl_base  = 0x71e00000,
        .idreg_base   = 0x78000000,
        .dma_base     = 0x78400000,
        .esp_base     = 0x78800000,
        .le_base      = 0x78c00000,
        .apc_base     = 0x6a000000,
        .aux1_base    = 0x71900000,
        .aux2_base    = 0x71910000,
        .vram_size    = 0x00100000,
        .nvram_size   = 0x2000,
        .esp_irq = 18,
        .le_irq = 16,
        .clock_irq = 7,
        .clock1_irq = 19,
        .ms_kb_irq = 14,
        .ser_irq = 15,
        .fd_irq = 22,
        .me_irq = 30,
887
888
        .nvram_machine_id = 0x80,
        .machine_id = scls_id,
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
        .iommu_version = 0x05000000,
        .intbit_to_level = {
            2, 3, 5, 7, 9, 11, 0, 14,   3, 5, 7, 9, 11, 13, 12, 12,
            6, 0, 4, 10, 8, 0, 11, 0,   0, 0, 0, 0, 15, 0, 15, 0,
        },
        .max_mem = 0x10000000,
        .default_cpu_model = "TI MicroSparc I",
    },
    /* SPARCbook */
    {
        .iommu_base   = 0x10000000,
        .tcx_base     = 0x50000000, // XXX
        .slavio_base  = 0x70000000,
        .ms_kb_base   = 0x71000000,
        .serial_base  = 0x71100000,
        .nvram_base   = 0x71200000,
        .fd_base      = 0x71400000,
        .counter_base = 0x71d00000,
        .intctl_base  = 0x71e00000,
        .idreg_base   = 0x78000000,
        .dma_base     = 0x78400000,
        .esp_base     = 0x78800000,
        .le_base      = 0x78c00000,
        .apc_base     = 0x6a000000,
        .aux1_base    = 0x71900000,
        .aux2_base    = 0x71910000,
        .vram_size    = 0x00100000,
        .nvram_size   = 0x2000,
        .esp_irq = 18,
        .le_irq = 16,
        .clock_irq = 7,
        .clock1_irq = 19,
        .ms_kb_irq = 14,
        .ser_irq = 15,
        .fd_irq = 22,
        .me_irq = 30,
925
926
        .nvram_machine_id = 0x80,
        .machine_id = sbook_id,
927
928
929
930
931
932
933
934
        .iommu_version = 0x05000000,
        .intbit_to_level = {
            2, 3, 5, 7, 9, 11, 0, 14,   3, 5, 7, 9, 11, 13, 12, 12,
            6, 0, 4, 10, 8, 0, 11, 0,   0, 0, 0, 0, 15, 0, 15, 0,
        },
        .max_mem = 0x10000000,
        .default_cpu_model = "TI MicroSparc I",
    },
935
936
937
};

/* SPARCstation 5 hardware initialisation */
938
static void ss5_init(ram_addr_t RAM_size, int vga_ram_size,
939
                     const char *boot_device,
940
941
                     const char *kernel_filename, const char *kernel_cmdline,
                     const char *initrd_filename, const char *cpu_model)
942
{
943
    sun4m_hw_init(&sun4m_hwdefs[0], RAM_size, boot_device, kernel_filename,
944
                  kernel_cmdline, initrd_filename, cpu_model);
945
}
bellard authored
946
947
/* SPARCstation 10 hardware initialisation */
948
static void ss10_init(ram_addr_t RAM_size, int vga_ram_size,
949
                      const char *boot_device,
950
951
                      const char *kernel_filename, const char *kernel_cmdline,
                      const char *initrd_filename, const char *cpu_model)
952
{
953
    sun4m_hw_init(&sun4m_hwdefs[1], RAM_size, boot_device, kernel_filename,
954
                  kernel_cmdline, initrd_filename, cpu_model);
955
956
}
957
/* SPARCserver 600MP hardware initialisation */
958
static void ss600mp_init(ram_addr_t RAM_size, int vga_ram_size,
959
                         const char *boot_device,
blueswir1 authored
960
961
                         const char *kernel_filename,
                         const char *kernel_cmdline,
962
963
                         const char *initrd_filename, const char *cpu_model)
{
964
    sun4m_hw_init(&sun4m_hwdefs[2], RAM_size, boot_device, kernel_filename,
965
                  kernel_cmdline, initrd_filename, cpu_model);
966
967
}
968
/* SPARCstation 20 hardware initialisation */
969
static void ss20_init(ram_addr_t RAM_size, int vga_ram_size,
970
                      const char *boot_device,
971
972
973
                      const char *kernel_filename, const char *kernel_cmdline,
                      const char *initrd_filename, const char *cpu_model)
{
974
    sun4m_hw_init(&sun4m_hwdefs[3], RAM_size, boot_device, kernel_filename,
975
976
977
                  kernel_cmdline, initrd_filename, cpu_model);
}
978
/* SPARCstation Voyager hardware initialisation */
979
static void vger_init(ram_addr_t RAM_size, int vga_ram_size,
980
                      const char *boot_device,
981
982
983
                      const char *kernel_filename, const char *kernel_cmdline,
                      const char *initrd_filename, const char *cpu_model)
{
984
    sun4m_hw_init(&sun4m_hwdefs[4], RAM_size, boot_device, kernel_filename,
985
986
987
988
                  kernel_cmdline, initrd_filename, cpu_model);
}

/* SPARCstation LX hardware initialisation */
989
static void ss_lx_init(ram_addr_t RAM_size, int vga_ram_size,
990
                       const char *boot_device,
991
992
993
                       const char *kernel_filename, const char *kernel_cmdline,
                       const char *initrd_filename, const char *cpu_model)
{
994
    sun4m_hw_init(&sun4m_hwdefs[5], RAM_size, boot_device, kernel_filename,
995
996
997
998
                  kernel_cmdline, initrd_filename, cpu_model);
}

/* SPARCstation 4 hardware initialisation */
999
static void ss4_init(ram_addr_t RAM_size, int vga_ram_size,
1000
                     const char *boot_device,
1001
1002
1003
                     const char *kernel_filename, const char *kernel_cmdline,
                     const char *initrd_filename, const char *cpu_model)
{
1004
    sun4m_hw_init(&sun4m_hwdefs[6], RAM_size, boot_device, kernel_filename,
1005
1006
1007
1008
                  kernel_cmdline, initrd_filename, cpu_model);
}

/* SPARCClassic hardware initialisation */
1009
static void scls_init(ram_addr_t RAM_size, int vga_ram_size,
1010
                      const char *boot_device,
1011
1012
1013
                      const char *kernel_filename, const char *kernel_cmdline,
                      const char *initrd_filename, const char *cpu_model)
{
1014
    sun4m_hw_init(&sun4m_hwdefs[7], RAM_size, boot_device, kernel_filename,
1015
1016
1017
1018
                  kernel_cmdline, initrd_filename, cpu_model);
}

/* SPARCbook hardware initialisation */
1019
static void sbook_init(ram_addr_t RAM_size, int vga_ram_size,
1020
                       const char *boot_device,
1021
1022
1023
                       const char *kernel_filename, const char *kernel_cmdline,
                       const char *initrd_filename, const char *cpu_model)
{
1024
    sun4m_hw_init(&sun4m_hwdefs[8], RAM_size, boot_device, kernel_filename,
1025
1026
1027
                  kernel_cmdline, initrd_filename, cpu_model);
}
1028
QEMUMachine ss5_machine = {
blueswir1 authored
1029
1030
1031
1032
    .name = "SS-5",
    .desc = "Sun4m platform, SPARCstation 5",
    .init = ss5_init,
    .ram_require = PROM_SIZE_MAX + TCX_SIZE,
1033
    .use_scsi = 1,
bellard authored
1034
};
1035
1036

QEMUMachine ss10_machine = {
blueswir1 authored
1037
1038
1039
1040
    .name = "SS-10",
    .desc = "Sun4m platform, SPARCstation 10",
    .init = ss10_init,
    .ram_require = PROM_SIZE_MAX + TCX_SIZE,
1041
    .use_scsi = 1,
blueswir1 authored
1042
    .max_cpus = 4,
1043
};
1044
1045

QEMUMachine ss600mp_machine = {
blueswir1 authored
1046
1047
1048
1049
    .name = "SS-600MP",
    .desc = "Sun4m platform, SPARCserver 600MP",
    .init = ss600mp_init,
    .ram_require = PROM_SIZE_MAX + TCX_SIZE,
1050
    .use_scsi = 1,
blueswir1 authored
1051
    .max_cpus = 4,
1052
};
1053
1054

QEMUMachine ss20_machine = {
blueswir1 authored
1055
1056
1057
1058
    .name = "SS-20",
    .desc = "Sun4m platform, SPARCstation 20",
    .init = ss20_init,
    .ram_require = PROM_SIZE_MAX + TCX_SIZE,
1059
    .use_scsi = 1,
blueswir1 authored
1060
    .max_cpus = 4,
1061
1062
};
1063
QEMUMachine voyager_machine = {
blueswir1 authored
1064
1065
1066
1067
    .name = "Voyager",
    .desc = "Sun4m platform, SPARCstation Voyager",
    .init = vger_init,
    .ram_require = PROM_SIZE_MAX + TCX_SIZE,
1068
    .use_scsi = 1,
1069
1070
1071
};

QEMUMachine ss_lx_machine = {
blueswir1 authored
1072
1073
1074
1075
    .name = "LX",
    .desc = "Sun4m platform, SPARCstation LX",
    .init = ss_lx_init,
    .ram_require = PROM_SIZE_MAX + TCX_SIZE,
1076
    .use_scsi = 1,
1077
1078
1079
};

QEMUMachine ss4_machine = {
blueswir1 authored
1080
1081
1082
1083
    .name = "SS-4",
    .desc = "Sun4m platform, SPARCstation 4",
    .init = ss4_init,
    .ram_require = PROM_SIZE_MAX + TCX_SIZE,
1084
    .use_scsi = 1,
1085
1086
1087
};

QEMUMachine scls_machine = {
blueswir1 authored
1088
1089
1090
1091
    .name = "SPARCClassic",
    .desc = "Sun4m platform, SPARCClassic",
    .init = scls_init,
    .ram_require = PROM_SIZE_MAX + TCX_SIZE,
1092
    .use_scsi = 1,
1093
1094
1095
};

QEMUMachine sbook_machine = {
blueswir1 authored
1096
1097
1098
1099
    .name = "SPARCbook",
    .desc = "Sun4m platform, SPARCbook",
    .init = sbook_init,
    .ram_require = PROM_SIZE_MAX + TCX_SIZE,
1100
    .use_scsi = 1,
1101
1102
};
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
static const struct sun4d_hwdef sun4d_hwdefs[] = {
    /* SS-1000 */
    {
        .iounit_bases   = {
            0xfe0200000ULL,
            0xfe1200000ULL,
            0xfe2200000ULL,
            0xfe3200000ULL,
            -1,
        },
        .tcx_base     = 0x820000000ULL,
        .slavio_base  = 0xf00000000ULL,
        .ms_kb_base   = 0xf00240000ULL,
        .serial_base  = 0xf00200000ULL,
        .nvram_base   = 0xf00280000ULL,
        .counter_base = 0xf00300000ULL,
        .espdma_base  = 0x800081000ULL,
        .esp_base     = 0x800080000ULL,
        .ledma_base   = 0x800040000ULL,
        .le_base      = 0x800060000ULL,
        .sbi_base     = 0xf02800000ULL,
blueswir1 authored
1124
        .vram_size    = 0x00100000,
1125
1126
1127
1128
1129
1130
1131
        .nvram_size   = 0x2000,
        .esp_irq = 3,
        .le_irq = 4,
        .clock_irq = 14,
        .clock1_irq = 10,
        .ms_kb_irq = 12,
        .ser_irq = 12,
1132
1133
        .nvram_machine_id = 0x80,
        .machine_id = ss1000_id,
1134
        .iounit_version = 0x03000000,
1135
        .max_mem = 0xf00000000ULL,
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
        .default_cpu_model = "TI SuperSparc II",
    },
    /* SS-2000 */
    {
        .iounit_bases   = {
            0xfe0200000ULL,
            0xfe1200000ULL,
            0xfe2200000ULL,
            0xfe3200000ULL,
            0xfe4200000ULL,
        },
        .tcx_base     = 0x820000000ULL,
        .slavio_base  = 0xf00000000ULL,
        .ms_kb_base   = 0xf00240000ULL,
        .serial_base  = 0xf00200000ULL,
        .nvram_base   = 0xf00280000ULL,
        .counter_base = 0xf00300000ULL,
        .espdma_base  = 0x800081000ULL,
        .esp_base     = 0x800080000ULL,
        .ledma_base   = 0x800040000ULL,
        .le_base      = 0x800060000ULL,
        .sbi_base     = 0xf02800000ULL,
blueswir1 authored
1158
        .vram_size    = 0x00100000,
1159
1160
1161
1162
1163
1164
1165
        .nvram_size   = 0x2000,
        .esp_irq = 3,
        .le_irq = 4,
        .clock_irq = 14,
        .clock1_irq = 10,
        .ms_kb_irq = 12,
        .ser_irq = 12,
1166
1167
        .nvram_machine_id = 0x80,
        .machine_id = ss2000_id,
1168
        .iounit_version = 0x03000000,
1169
        .max_mem = 0xf00000000ULL,
1170
1171
1172
1173
        .default_cpu_model = "TI SuperSparc II",
    },
};
1174
static void sun4d_hw_init(const struct sun4d_hwdef *hwdef, ram_addr_t RAM_size,
1175
                          const char *boot_device,
1176
                          const char *kernel_filename,
1177
1178
1179
1180
1181
1182
1183
1184
1185
                          const char *kernel_cmdline,
                          const char *initrd_filename, const char *cpu_model)
{
    CPUState *env, *envs[MAX_CPUS];
    unsigned int i;
    void *iounits[MAX_IOUNITS], *espdma, *ledma, *main_esp, *nvram, *sbi;
    qemu_irq *cpu_irqs[MAX_CPUS], *sbi_irq, *sbi_cpu_irq,
        *espdma_irq, *ledma_irq;
    qemu_irq *esp_reset, *le_reset;
blueswir1 authored
1186
1187
    ram_addr_t ram_offset, prom_offset, tcx_offset;
    unsigned long kernel_size;
1188
1189
    int ret;
    char buf[1024];
blueswir1 authored
1190
    int drive_index;
1191
    void *fw_cfg;
1192
1193
1194
1195
1196
1197
1198
1199

    /* init CPUs */
    if (!cpu_model)
        cpu_model = hwdef->default_cpu_model;

    for (i = 0; i < smp_cpus; i++) {
        env = cpu_init(cpu_model);
        if (!env) {
1200
            fprintf(stderr, "qemu: Unable to find Sparc CPU definition\n");
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
            exit(1);
        }
        cpu_sparc_set_id(env, i);
        envs[i] = env;
        if (i == 0) {
            qemu_register_reset(main_cpu_reset, env);
        } else {
            qemu_register_reset(secondary_cpu_reset, env);
            env->halted = 1;
        }
        cpu_irqs[i] = qemu_allocate_irqs(cpu_set_irq, envs[i], MAX_PILS);
        env->prom_addr = hwdef->slavio_base;
    }

    for (i = smp_cpus; i < MAX_CPUS; i++)
        cpu_irqs[i] = qemu_allocate_irqs(dummy_cpu_set_irq, NULL, MAX_PILS);

    /* allocate RAM */
    if ((uint64_t)RAM_size > hwdef->max_mem) {
blueswir1 authored
1220
1221
        fprintf(stderr,
                "qemu: Too much memory for this machine: %d, maximum %d\n",
1222
                (unsigned int)(RAM_size / (1024 * 1024)),
1223
1224
1225
                (unsigned int)(hwdef->max_mem / (1024 * 1024)));
        exit(1);
    }
blueswir1 authored
1226
1227
    ram_offset = qemu_ram_alloc(RAM_size);
    cpu_register_physical_memory(0, RAM_size, ram_offset);
1228
1229

    /* load boot prom */
blueswir1 authored
1230
    prom_offset = qemu_ram_alloc(PROM_SIZE_MAX);
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
    cpu_register_physical_memory(hwdef->slavio_base,
                                 (PROM_SIZE_MAX + TARGET_PAGE_SIZE - 1) &
                                 TARGET_PAGE_MASK,
                                 prom_offset | IO_MEM_ROM);

    if (bios_name == NULL)
        bios_name = PROM_FILENAME;
    snprintf(buf, sizeof(buf), "%s/%s", bios_dir, bios_name);
    ret = load_elf(buf, hwdef->slavio_base - PROM_VADDR, NULL, NULL, NULL);
    if (ret < 0 || ret > PROM_SIZE_MAX)
blueswir1 authored
1241
        ret = load_image_targphys(buf, hwdef->slavio_base, PROM_SIZE_MAX);
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
    if (ret < 0 || ret > PROM_SIZE_MAX) {
        fprintf(stderr, "qemu: could not load prom '%s'\n",
                buf);
        exit(1);
    }

    /* set up devices */
    sbi = sbi_init(hwdef->sbi_base, &sbi_irq, &sbi_cpu_irq, cpu_irqs);

    for (i = 0; i < MAX_IOUNITS; i++)
        if (hwdef->iounit_bases[i] != (target_phys_addr_t)-1)
1253
1254
1255
            iounits[i] = iommu_init(hwdef->iounit_bases[i],
                                    hwdef->iounit_version,
                                    sbi_irq[hwdef->me_irq]);
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266

    espdma = sparc32_dma_init(hwdef->espdma_base, sbi_irq[hwdef->esp_irq],
                              iounits[0], &espdma_irq, &esp_reset);

    ledma = sparc32_dma_init(hwdef->ledma_base, sbi_irq[hwdef->le_irq],
                             iounits[0], &ledma_irq, &le_reset);

    if (graphic_depth != 8 && graphic_depth != 24) {
        fprintf(stderr, "qemu: Unsupported depth: %d\n", graphic_depth);
        exit (1);
    }
blueswir1 authored
1267
    tcx_offset = qemu_ram_alloc(hwdef->vram_size);
1268
    tcx_init(hwdef->tcx_base, phys_ram_base + tcx_offset, tcx_offset,
1269
1270
             hwdef->vram_size, graphic_width, graphic_height, graphic_depth);
1271
    lance_init(&nd_table[0], hwdef->le_base, ledma, *ledma_irq, le_reset);
1272
1273
1274
1275
1276
1277
1278
1279

    nvram = m48t59_init(sbi_irq[0], hwdef->nvram_base, 0,
                        hwdef->nvram_size, 8);

    slavio_timer_init_all(hwdef->counter_base, sbi_irq[hwdef->clock1_irq],
                          sbi_cpu_irq, smp_cpus);

    slavio_serial_ms_kbd_init(hwdef->ms_kb_base, sbi_irq[hwdef->ms_kb_irq],
1280
                              nographic, ESCC_CLOCK, 1);
1281
1282
    // Slavio TTYA (base+4, Linux ttyS0) is the first Qemu serial device
    // Slavio TTYB (base+0, Linux ttyS1) is the second Qemu serial device
1283
1284
    escc_init(hwdef->serial_base, sbi_irq[hwdef->ser_irq], sbi_irq[hwdef->ser_irq],
              serial_hds[0], serial_hds[1], ESCC_CLOCK, 1);
1285
1286
1287
1288
1289
1290

    if (drive_get_max_bus(IF_SCSI) > 0) {
        fprintf(stderr, "qemu: too many SCSI bus\n");
        exit(1);
    }
1291
    main_esp = esp_init(hwdef->esp_base, 2,
1292
1293
                        espdma_memory_read, espdma_memory_write,
                        espdma, *espdma_irq, esp_reset);
1294
1295

    for (i = 0; i < ESP_MAX_DEVS; i++) {
blueswir1 authored
1296
1297
        drive_index = drive_get_index(IF_SCSI, 0, i);
        if (drive_index == -1)
1298
            continue;
blueswir1 authored
1299
        esp_scsi_attach(main_esp, drives_table[drive_index].bdrv, i);
1300
1301
    }
1302
1303
    kernel_size = sun4m_load_kernel(kernel_filename, initrd_filename,
                                    RAM_size);
1304
1305
1306

    nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, kernel_cmdline,
               boot_device, RAM_size, kernel_size, graphic_width,
1307
1308
               graphic_height, graphic_depth, hwdef->nvram_machine_id,
               "Sun4d");
1309
1310
1311

    fw_cfg = fw_cfg_init(0, 0, CFG_ADDR, CFG_ADDR + 2);
    fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
1312
1313
    fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
    fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id);
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
    fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_DEPTH, graphic_depth);
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, KERNEL_LOAD_ADDR);
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
    if (kernel_cmdline) {
        fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, CMDLINE_ADDR);
        pstrcpy_targphys(CMDLINE_ADDR, TARGET_PAGE_SIZE, kernel_cmdline);
    } else {
        fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0);
    }
    fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, INITRD_LOAD_ADDR);
    fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, 0); // not used
    fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, boot_device[0]);
    qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
1327
1328
1329
}

/* SPARCserver 1000 hardware initialisation */
1330
static void ss1000_init(ram_addr_t RAM_size, int vga_ram_size,
1331
                        const char *boot_device,
1332
1333
1334
                        const char *kernel_filename, const char *kernel_cmdline,
                        const char *initrd_filename, const char *cpu_model)
{
1335
    sun4d_hw_init(&sun4d_hwdefs[0], RAM_size, boot_device, kernel_filename,
1336
1337
1338
1339
                  kernel_cmdline, initrd_filename, cpu_model);
}

/* SPARCcenter 2000 hardware initialisation */
1340
static void ss2000_init(ram_addr_t RAM_size, int vga_ram_size,
1341
                        const char *boot_device,
1342
1343
1344
                        const char *kernel_filename, const char *kernel_cmdline,
                        const char *initrd_filename, const char *cpu_model)
{
1345
    sun4d_hw_init(&sun4d_hwdefs[1], RAM_size, boot_device, kernel_filename,
1346
1347
1348
1349
                  kernel_cmdline, initrd_filename, cpu_model);
}

QEMUMachine ss1000_machine = {
blueswir1 authored
1350
1351
1352
1353
    .name = "SS-1000",
    .desc = "Sun4d platform, SPARCserver 1000",
    .init = ss1000_init,
    .ram_require = PROM_SIZE_MAX + TCX_SIZE,
1354
    .use_scsi = 1,
blueswir1 authored
1355
    .max_cpus = 8,
1356
1357
1358
};

QEMUMachine ss2000_machine = {
blueswir1 authored
1359
1360
1361
1362
    .name = "SS-2000",
    .desc = "Sun4d platform, SPARCcenter 2000",
    .init = ss2000_init,
    .ram_require = PROM_SIZE_MAX + TCX_SIZE,
1363
    .use_scsi = 1,
blueswir1 authored
1364
    .max_cpus = 20,
1365
};
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401

static const struct sun4c_hwdef sun4c_hwdefs[] = {
    /* SS-2 */
    {
        .iommu_base   = 0xf8000000,
        .tcx_base     = 0xfe000000,
        .slavio_base  = 0xf6000000,
        .intctl_base  = 0xf5000000,
        .counter_base = 0xf3000000,
        .ms_kb_base   = 0xf0000000,
        .serial_base  = 0xf1000000,
        .nvram_base   = 0xf2000000,
        .fd_base      = 0xf7200000,
        .dma_base     = 0xf8400000,
        .esp_base     = 0xf8800000,
        .le_base      = 0xf8c00000,
        .aux1_base    = 0xf7400003,
        .vram_size    = 0x00100000,
        .nvram_size   = 0x800,
        .esp_irq = 2,
        .le_irq = 3,
        .clock_irq = 5,
        .clock1_irq = 7,
        .ms_kb_irq = 1,
        .ser_irq = 1,
        .fd_irq = 1,
        .me_irq = 1,
        .nvram_machine_id = 0x55,
        .machine_id = ss2_id,
        .max_mem = 0x10000000,
        .default_cpu_model = "Cypress CY7C601",
    },
};

static void sun4c_hw_init(const struct sun4c_hwdef *hwdef, ram_addr_t RAM_size,
                          const char *boot_device,
1402
                          const char *kernel_filename,
1403
1404
1405
1406
1407
1408
1409
1410
1411
                          const char *kernel_cmdline,
                          const char *initrd_filename, const char *cpu_model)
{
    CPUState *env;
    unsigned int i;
    void *iommu, *espdma, *ledma, *main_esp, *nvram;
    qemu_irq *cpu_irqs, *slavio_irq, *espdma_irq, *ledma_irq;
    qemu_irq *esp_reset, *le_reset;
    qemu_irq *fdc_tc;
blueswir1 authored
1412
1413
    ram_addr_t ram_offset, prom_offset, tcx_offset;
    unsigned long kernel_size;
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
    int ret;
    char buf[1024];
    BlockDriverState *fd[MAX_FD];
    int drive_index;
    void *fw_cfg;

    /* init CPU */
    if (!cpu_model)
        cpu_model = hwdef->default_cpu_model;

    env = cpu_init(cpu_model);
    if (!env) {
        fprintf(stderr, "qemu: Unable to find Sparc CPU definition\n");
        exit(1);
    }

    cpu_sparc_set_id(env, 0);

    qemu_register_reset(main_cpu_reset, env);
    cpu_irqs = qemu_allocate_irqs(cpu_set_irq, env, MAX_PILS);
    env->prom_addr = hwdef->slavio_base;

    /* allocate RAM */
    if ((uint64_t)RAM_size > hwdef->max_mem) {
        fprintf(stderr,
                "qemu: Too much memory for this machine: %d, maximum %d\n",
                (unsigned int)(RAM_size / (1024 * 1024)),
                (unsigned int)(hwdef->max_mem / (1024 * 1024)));
        exit(1);
    }
blueswir1 authored
1444
1445
    ram_offset = qemu_ram_alloc(RAM_size);
    cpu_register_physical_memory(0, RAM_size, ram_offset);
1446
1447

    /* load boot prom */
blueswir1 authored
1448
    prom_offset = qemu_ram_alloc(PROM_SIZE_MAX);
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
    cpu_register_physical_memory(hwdef->slavio_base,
                                 (PROM_SIZE_MAX + TARGET_PAGE_SIZE - 1) &
                                 TARGET_PAGE_MASK,
                                 prom_offset | IO_MEM_ROM);

    if (bios_name == NULL)
        bios_name = PROM_FILENAME;
    snprintf(buf, sizeof(buf), "%s/%s", bios_dir, bios_name);
    ret = load_elf(buf, hwdef->slavio_base - PROM_VADDR, NULL, NULL, NULL);
    if (ret < 0 || ret > PROM_SIZE_MAX)
        ret = load_image_targphys(buf, hwdef->slavio_base, PROM_SIZE_MAX);
    if (ret < 0 || ret > PROM_SIZE_MAX) {
        fprintf(stderr, "qemu: could not load prom '%s'\n",
                buf);
        exit(1);
    }

    /* set up devices */
    slavio_intctl = sun4c_intctl_init(hwdef->intctl_base,
                                      &slavio_irq, cpu_irqs);

    iommu = iommu_init(hwdef->iommu_base, hwdef->iommu_version,
                       slavio_irq[hwdef->me_irq]);

    espdma = sparc32_dma_init(hwdef->dma_base, slavio_irq[hwdef->esp_irq],
                              iommu, &espdma_irq, &esp_reset);

    ledma = sparc32_dma_init(hwdef->dma_base + 16ULL,
                             slavio_irq[hwdef->le_irq], iommu, &ledma_irq,
                             &le_reset);

    if (graphic_depth != 8 && graphic_depth != 24) {
        fprintf(stderr, "qemu: Unsupported depth: %d\n", graphic_depth);
        exit (1);
    }
blueswir1 authored
1484
    tcx_offset = qemu_ram_alloc(hwdef->vram_size);
1485
    tcx_init(hwdef->tcx_base, phys_ram_base + tcx_offset, tcx_offset,
1486
1487
             hwdef->vram_size, graphic_width, graphic_height, graphic_depth);
1488
    lance_init(&nd_table[0], hwdef->le_base, ledma, *ledma_irq, le_reset);
1489
1490
1491
1492
1493

    nvram = m48t59_init(slavio_irq[0], hwdef->nvram_base, 0,
                        hwdef->nvram_size, 2);

    slavio_serial_ms_kbd_init(hwdef->ms_kb_base, slavio_irq[hwdef->ms_kb_irq],
1494
                              nographic, ESCC_CLOCK, 1);
1495
1496
    // Slavio TTYA (base+4, Linux ttyS0) is the first Qemu serial device
    // Slavio TTYB (base+0, Linux ttyS1) is the second Qemu serial device
1497
1498
1499
    escc_init(hwdef->serial_base, slavio_irq[hwdef->ser_irq],
              slavio_irq[hwdef->ser_irq], serial_hds[0], serial_hds[1],
              ESCC_CLOCK, 1);
1500
1501
    slavio_misc = slavio_misc_init(0, 0, hwdef->aux1_base, 0,
1502
                                   slavio_irq[hwdef->me_irq], NULL, &fdc_tc);
1503
1504
1505

    if (hwdef->fd_base != (target_phys_addr_t)-1) {
        /* there is zero or one floppy drive */
1506
        memset(fd, 0, sizeof(fd));
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
        drive_index = drive_get_index(IF_FLOPPY, 0, 0);
        if (drive_index != -1)
            fd[0] = drives_table[drive_index].bdrv;

        sun4m_fdctrl_init(slavio_irq[hwdef->fd_irq], hwdef->fd_base, fd,
                          fdc_tc);
    }

    if (drive_get_max_bus(IF_SCSI) > 0) {
        fprintf(stderr, "qemu: too many SCSI bus\n");
        exit(1);
    }

    main_esp = esp_init(hwdef->esp_base, 2,
                        espdma_memory_read, espdma_memory_write,
                        espdma, *espdma_irq, esp_reset);

    for (i = 0; i < ESP_MAX_DEVS; i++) {
        drive_index = drive_get_index(IF_SCSI, 0, i);
        if (drive_index == -1)
            continue;
        esp_scsi_attach(main_esp, drives_table[drive_index].bdrv, i);
    }

    kernel_size = sun4m_load_kernel(kernel_filename, initrd_filename,
                                    RAM_size);

    nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, kernel_cmdline,
               boot_device, RAM_size, kernel_size, graphic_width,
               graphic_height, graphic_depth, hwdef->nvram_machine_id,
               "Sun4c");

    fw_cfg = fw_cfg_init(0, 0, CFG_ADDR, CFG_ADDR + 2);
    fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
    fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
    fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id);
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
    fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_DEPTH, graphic_depth);
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, KERNEL_LOAD_ADDR);
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
    if (kernel_cmdline) {
        fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, CMDLINE_ADDR);
        pstrcpy_targphys(CMDLINE_ADDR, TARGET_PAGE_SIZE, kernel_cmdline);
    } else {
        fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0);
    }
    fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, INITRD_LOAD_ADDR);
    fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, 0); // not used
    fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, boot_device[0]);
    qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
1556
1557
1558
1559
}

/* SPARCstation 2 hardware initialisation */
static void ss2_init(ram_addr_t RAM_size, int vga_ram_size,
1560
                     const char *boot_device,
1561
1562
1563
                     const char *kernel_filename, const char *kernel_cmdline,
                     const char *initrd_filename, const char *cpu_model)
{
1564
    sun4c_hw_init(&sun4c_hwdefs[0], RAM_size, boot_device, kernel_filename,
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
                  kernel_cmdline, initrd_filename, cpu_model);
}

QEMUMachine ss2_machine = {
    .name = "SS-2",
    .desc = "Sun4c platform, SPARCstation 2",
    .init = ss2_init,
    .ram_require = PROM_SIZE_MAX + TCX_SIZE,
    .use_scsi = 1,
};