Commit e80cfcfc8884400e826328b772971913a14d0f44
1 parent
9772c73b
SPARC merge
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@1179 c046a42c-6fe2-441c-8c8c-71466251a162
Showing
24 changed files
with
1658 additions
and
852 deletions
Too many changes to show.
To preserve performance only 24 of 37 files are displayed.
Makefile
... | ... | @@ -50,7 +50,7 @@ install: all |
50 | 50 | install -m 644 pc-bios/bios.bin pc-bios/vgabios.bin \ |
51 | 51 | pc-bios/vgabios-cirrus.bin \ |
52 | 52 | pc-bios/ppc_rom.bin \ |
53 | - pc-bios/proll.bin \ | |
53 | + pc-bios/proll.elf \ | |
54 | 54 | pc-bios/linux_boot.bin "$(datadir)" |
55 | 55 | mkdir -p "$(docdir)" |
56 | 56 | install -m 644 qemu-doc.html qemu-tech.html "$(docdir)" |
... | ... | @@ -107,7 +107,7 @@ tarbin: |
107 | 107 | $(datadir)/vgabios.bin \ |
108 | 108 | $(datadir)/vgabios-cirrus.bin \ |
109 | 109 | $(datadir)/ppc_rom.bin \ |
110 | - $(datadir)/proll.bin \ | |
110 | + $(datadir)/proll.elf \ | |
111 | 111 | $(datadir)/linux_boot.bin \ |
112 | 112 | $(docdir)/qemu-doc.html \ |
113 | 113 | $(docdir)/qemu-tech.html \ | ... | ... |
Makefile.target
... | ... | @@ -175,6 +175,7 @@ endif |
175 | 175 | |
176 | 176 | ifeq ($(CONFIG_DARWIN),yes) |
177 | 177 | OP_CFLAGS+= -mdynamic-no-pic |
178 | +LIBS+=-lmx | |
178 | 179 | endif |
179 | 180 | |
180 | 181 | ######################################################### |
... | ... | @@ -300,7 +301,7 @@ VL_OBJS+= mc146818rtc.o serial.o i8259.o i8254.o fdc.o m48t59.o |
300 | 301 | VL_OBJS+= ppc_prep.o ppc_chrp.o cuda.o adb.o openpic.o mixeng.o |
301 | 302 | endif |
302 | 303 | ifeq ($(TARGET_ARCH), sparc) |
303 | -VL_OBJS+= sun4m.o tcx.o lance.o iommu.o sched.o m48t08.o magic-load.o timer.o | |
304 | +VL_OBJS+= sun4m.o tcx.o lance.o iommu.o m48t08.o magic-load.o slavio_intctl.o slavio_timer.o slavio_serial.o fdc.o | |
304 | 305 | endif |
305 | 306 | ifdef CONFIG_GDBSTUB |
306 | 307 | VL_OBJS+=gdbstub.o | ... | ... |
cpu-exec.c
... | ... | @@ -261,7 +261,7 @@ int cpu_exec(CPUState *env1) |
261 | 261 | } |
262 | 262 | #elif defined(TARGET_SPARC) |
263 | 263 | if (interrupt_request & CPU_INTERRUPT_HARD) { |
264 | - do_interrupt(0, 0, 0, 0, 0); | |
264 | + do_interrupt(env->interrupt_index, 0, 0, 0, 0); | |
265 | 265 | env->interrupt_request &= ~CPU_INTERRUPT_HARD; |
266 | 266 | } else if (interrupt_request & CPU_INTERRUPT_TIMER) { |
267 | 267 | //do_interrupt(0, 0, 0, 0, 0); | ... | ... |
disas.c
... | ... | @@ -9,9 +9,7 @@ |
9 | 9 | #include "disas.h" |
10 | 10 | |
11 | 11 | /* Filled in by elfload.c. Simplistic, but will do for now. */ |
12 | -unsigned int disas_num_syms; | |
13 | -void *disas_symtab; | |
14 | -const char *disas_strtab; | |
12 | +struct syminfo *syminfos = NULL; | |
15 | 13 | |
16 | 14 | /* Get LENGTH bytes from info's buffer, at target address memaddr. |
17 | 15 | Transfer them to myaddr. */ |
... | ... | @@ -203,19 +201,23 @@ const char *lookup_symbol(void *orig_addr) |
203 | 201 | { |
204 | 202 | unsigned int i; |
205 | 203 | /* Hack, because we know this is x86. */ |
206 | - Elf32_Sym *sym = disas_symtab; | |
207 | - | |
208 | - for (i = 0; i < disas_num_syms; i++) { | |
209 | - if (sym[i].st_shndx == SHN_UNDEF | |
210 | - || sym[i].st_shndx >= SHN_LORESERVE) | |
211 | - continue; | |
212 | - | |
213 | - if (ELF_ST_TYPE(sym[i].st_info) != STT_FUNC) | |
214 | - continue; | |
215 | - | |
216 | - if ((long)orig_addr >= sym[i].st_value | |
217 | - && (long)orig_addr < sym[i].st_value + sym[i].st_size) | |
218 | - return disas_strtab + sym[i].st_name; | |
204 | + Elf32_Sym *sym; | |
205 | + struct syminfo *s; | |
206 | + | |
207 | + for (s = syminfos; s; s = s->next) { | |
208 | + sym = s->disas_symtab; | |
209 | + for (i = 0; i < s->disas_num_syms; i++) { | |
210 | + if (sym[i].st_shndx == SHN_UNDEF | |
211 | + || sym[i].st_shndx >= SHN_LORESERVE) | |
212 | + continue; | |
213 | + | |
214 | + if (ELF_ST_TYPE(sym[i].st_info) != STT_FUNC) | |
215 | + continue; | |
216 | + | |
217 | + if ((long)orig_addr >= sym[i].st_value | |
218 | + && (long)orig_addr < sym[i].st_value + sym[i].st_size) | |
219 | + return s->disas_strtab + sym[i].st_name; | |
220 | + } | |
219 | 221 | } |
220 | 222 | return ""; |
221 | 223 | } | ... | ... |
disas.h
... | ... | @@ -9,7 +9,11 @@ void monitor_disas(target_ulong pc, int nb_insn, int is_physical, int flags); |
9 | 9 | const char *lookup_symbol(void *orig_addr); |
10 | 10 | |
11 | 11 | /* Filled in by elfload.c. Simplistic, but will do for now. */ |
12 | -extern unsigned int disas_num_syms; | |
13 | -extern void *disas_symtab; /* FIXME: includes are a mess --RR */ | |
14 | -extern const char *disas_strtab; | |
12 | +extern struct syminfo { | |
13 | + unsigned int disas_num_syms; | |
14 | + void *disas_symtab; | |
15 | + const char *disas_strtab; | |
16 | + struct syminfo *next; | |
17 | +} *syminfos; | |
18 | + | |
15 | 19 | #endif /* _QEMU_DISAS_H */ | ... | ... |
gdbstub.c
... | ... | @@ -298,11 +298,7 @@ static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf) |
298 | 298 | } |
299 | 299 | /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */ |
300 | 300 | registers[64] = tswapl(env->y); |
301 | - tmp = (0<<28) | (4<<24) | env->psr \ | |
302 | - | (env->psrs? PSR_S : 0) \ | |
303 | - | (env->psrs? PSR_PS : 0) \ | |
304 | - | (env->psret? PSR_ET : 0) \ | |
305 | - | env->cwp; | |
301 | + tmp = GET_PSR(env); | |
306 | 302 | registers[65] = tswapl(tmp); |
307 | 303 | registers[66] = tswapl(env->wim); |
308 | 304 | registers[67] = tswapl(env->tbr); |
... | ... | @@ -317,7 +313,7 @@ static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf) |
317 | 313 | |
318 | 314 | static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size) |
319 | 315 | { |
320 | - uint32_t *registers = (uint32_t *)mem_buf, tmp; | |
316 | + uint32_t *registers = (uint32_t *)mem_buf; | |
321 | 317 | int i; |
322 | 318 | |
323 | 319 | /* fill in g0..g7 */ |
... | ... | @@ -334,12 +330,7 @@ static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size) |
334 | 330 | } |
335 | 331 | /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */ |
336 | 332 | env->y = tswapl(registers[64]); |
337 | - tmp = tswapl(registers[65]); | |
338 | - env->psr = tmp & ~PSR_ICC; | |
339 | - env->psrs = (tmp & PSR_S)? 1 : 0; | |
340 | - env->psrps = (tmp & PSR_PS)? 1 : 0; | |
341 | - env->psret = (tmp & PSR_ET)? 1 : 0; | |
342 | - env->cwp = (tmp & PSR_CWP); | |
333 | + PUT_PSR(env, tswapl(registers[65])); | |
343 | 334 | env->wim = tswapl(registers[66]); |
344 | 335 | env->tbr = tswapl(registers[67]); |
345 | 336 | env->pc = tswapl(registers[68]); |
... | ... | @@ -495,8 +486,10 @@ static void gdb_vm_stopped(void *opaque, int reason) |
495 | 486 | /* disable single step if it was enable */ |
496 | 487 | cpu_single_step(cpu_single_env, 0); |
497 | 488 | |
498 | - if (reason == EXCP_DEBUG) | |
489 | + if (reason == EXCP_DEBUG) { | |
490 | + tb_flush(cpu_single_env); | |
499 | 491 | ret = SIGTRAP; |
492 | + } | |
500 | 493 | else |
501 | 494 | ret = 0; |
502 | 495 | snprintf(buf, sizeof(buf), "S%02x", ret); | ... | ... |
hw/fdc.c
... | ... | @@ -21,6 +21,10 @@ |
21 | 21 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
22 | 22 | * THE SOFTWARE. |
23 | 23 | */ |
24 | +/* | |
25 | + * The controller is used in Sun4m systems in a slightly different | |
26 | + * way. There are changes in DOR register and DMA is not available. | |
27 | + */ | |
24 | 28 | #include "vl.h" |
25 | 29 | |
26 | 30 | /********************************************************/ |
... | ... | @@ -90,6 +94,16 @@ typedef struct fdrive_t { |
90 | 94 | uint8_t ro; /* Is read-only */ |
91 | 95 | } fdrive_t; |
92 | 96 | |
97 | +#ifdef TARGET_SPARC | |
98 | +#define DMA_read_memory(a,b,c,d) | |
99 | +#define DMA_write_memory(a,b,c,d) | |
100 | +#define DMA_register_channel(a,b,c) | |
101 | +#define DMA_hold_DREQ(a) | |
102 | +#define DMA_release_DREQ(a) | |
103 | +#define DMA_get_channel_mode(a) (0) | |
104 | +#define DMA_schedule(a) | |
105 | +#endif | |
106 | + | |
93 | 107 | static void fd_init (fdrive_t *drv, BlockDriverState *bs) |
94 | 108 | { |
95 | 109 | /* Drive */ |
... | ... | @@ -455,6 +469,18 @@ static void fdctrl_write (void *opaque, uint32_t reg, uint32_t value) |
455 | 469 | } |
456 | 470 | } |
457 | 471 | |
472 | +static CPUReadMemoryFunc *fdctrl_mem_read[3] = { | |
473 | + fdctrl_read, | |
474 | + fdctrl_read, | |
475 | + fdctrl_read, | |
476 | +}; | |
477 | + | |
478 | +static CPUWriteMemoryFunc *fdctrl_mem_write[3] = { | |
479 | + fdctrl_write, | |
480 | + fdctrl_write, | |
481 | + fdctrl_write, | |
482 | +}; | |
483 | + | |
458 | 484 | static void fd_change_cb (void *opaque) |
459 | 485 | { |
460 | 486 | fdrive_t *drv = opaque; |
... | ... | @@ -473,7 +499,7 @@ fdctrl_t *fdctrl_init (int irq_lvl, int dma_chann, int mem_mapped, |
473 | 499 | BlockDriverState **fds) |
474 | 500 | { |
475 | 501 | fdctrl_t *fdctrl; |
476 | -// int io_mem; | |
502 | + int io_mem; | |
477 | 503 | int i; |
478 | 504 | |
479 | 505 | FLOPPY_DPRINTF("init controller\n"); |
... | ... | @@ -504,11 +530,8 @@ fdctrl_t *fdctrl_init (int irq_lvl, int dma_chann, int mem_mapped, |
504 | 530 | fdctrl_reset(fdctrl, 0); |
505 | 531 | fdctrl->state = FD_CTRL_ACTIVE; |
506 | 532 | if (mem_mapped) { |
507 | - FLOPPY_ERROR("memory mapped floppy not supported by now !\n"); | |
508 | -#if 0 | |
509 | - io_mem = cpu_register_io_memory(0, fdctrl_mem_read, fdctrl_mem_write); | |
510 | - cpu_register_physical_memory(base, 0x08, io_mem); | |
511 | -#endif | |
533 | + io_mem = cpu_register_io_memory(0, fdctrl_mem_read, fdctrl_mem_write, fdctrl); | |
534 | + cpu_register_physical_memory(io_base, 0x08, io_mem); | |
512 | 535 | } else { |
513 | 536 | register_ioport_read(io_base + 0x01, 5, 1, &fdctrl_read, fdctrl); |
514 | 537 | register_ioport_read(io_base + 0x07, 1, 1, &fdctrl_read, fdctrl); | ... | ... |
hw/iommu.c
... | ... | @@ -117,8 +117,6 @@ typedef struct IOMMUState { |
117 | 117 | uint32_t iostart; |
118 | 118 | } IOMMUState; |
119 | 119 | |
120 | -static IOMMUState *ps; | |
121 | - | |
122 | 120 | static uint32_t iommu_mem_readw(void *opaque, target_phys_addr_t addr) |
123 | 121 | { |
124 | 122 | IOMMUState *s = opaque; |
... | ... | @@ -187,25 +185,61 @@ static CPUWriteMemoryFunc *iommu_mem_write[3] = { |
187 | 185 | iommu_mem_writew, |
188 | 186 | }; |
189 | 187 | |
190 | -uint32_t iommu_translate(uint32_t addr) | |
188 | +uint32_t iommu_translate_local(void *opaque, uint32_t addr) | |
191 | 189 | { |
192 | - uint32_t *iopte = (void *)(ps->regs[1] << 4), pa; | |
190 | + IOMMUState *s = opaque; | |
191 | + uint32_t *iopte = (void *)(s->regs[1] << 4), pa; | |
193 | 192 | |
194 | - iopte += ((addr - ps->iostart) >> PAGE_SHIFT); | |
195 | - cpu_physical_memory_rw((uint32_t)iopte, (void *) &pa, 4, 0); | |
193 | + iopte += ((addr - s->iostart) >> PAGE_SHIFT); | |
194 | + cpu_physical_memory_read((uint32_t)iopte, (void *) &pa, 4); | |
196 | 195 | bswap32s(&pa); |
197 | 196 | pa = (pa & IOPTE_PAGE) << 4; /* Loose higher bits of 36 */ |
198 | 197 | return pa + (addr & PAGE_MASK); |
199 | 198 | } |
200 | 199 | |
201 | -void iommu_init(uint32_t addr) | |
200 | +static void iommu_save(QEMUFile *f, void *opaque) | |
201 | +{ | |
202 | + IOMMUState *s = opaque; | |
203 | + int i; | |
204 | + | |
205 | + qemu_put_be32s(f, &s->addr); | |
206 | + for (i = 0; i < sizeof(struct iommu_regs); i += 4) | |
207 | + qemu_put_be32s(f, &s->regs[i]); | |
208 | + qemu_put_be32s(f, &s->iostart); | |
209 | +} | |
210 | + | |
211 | +static int iommu_load(QEMUFile *f, void *opaque, int version_id) | |
212 | +{ | |
213 | + IOMMUState *s = opaque; | |
214 | + int i; | |
215 | + | |
216 | + if (version_id != 1) | |
217 | + return -EINVAL; | |
218 | + | |
219 | + qemu_get_be32s(f, &s->addr); | |
220 | + for (i = 0; i < sizeof(struct iommu_regs); i += 4) | |
221 | + qemu_put_be32s(f, &s->regs[i]); | |
222 | + qemu_get_be32s(f, &s->iostart); | |
223 | + | |
224 | + return 0; | |
225 | +} | |
226 | + | |
227 | +static void iommu_reset(void *opaque) | |
228 | +{ | |
229 | + IOMMUState *s = opaque; | |
230 | + | |
231 | + memset(s->regs, 0, sizeof(struct iommu_regs)); | |
232 | + s->iostart = 0; | |
233 | +} | |
234 | + | |
235 | +void *iommu_init(uint32_t addr) | |
202 | 236 | { |
203 | 237 | IOMMUState *s; |
204 | 238 | int iommu_io_memory; |
205 | 239 | |
206 | 240 | s = qemu_mallocz(sizeof(IOMMUState)); |
207 | 241 | if (!s) |
208 | - return; | |
242 | + return NULL; | |
209 | 243 | |
210 | 244 | s->addr = addr; |
211 | 245 | |
... | ... | @@ -213,6 +247,8 @@ void iommu_init(uint32_t addr) |
213 | 247 | cpu_register_physical_memory(addr, sizeof(struct iommu_regs), |
214 | 248 | iommu_io_memory); |
215 | 249 | |
216 | - ps = s; | |
250 | + register_savevm("iommu", addr, 1, iommu_save, iommu_load, s); | |
251 | + qemu_register_reset(iommu_reset, s); | |
252 | + return s; | |
217 | 253 | } |
218 | 254 | ... | ... |
hw/lance.c
... | ... | @@ -147,6 +147,7 @@ struct lance_init_block { |
147 | 147 | }; |
148 | 148 | |
149 | 149 | #define LEDMA_REGS 4 |
150 | +#define LEDMA_MAXADDR (LEDMA_REGS * 4 - 1) | |
150 | 151 | #if 0 |
151 | 152 | /* Structure to describe the current status of DMA registers on the Sparc */ |
152 | 153 | struct sparc_dma_registers { |
... | ... | @@ -157,32 +158,28 @@ struct sparc_dma_registers { |
157 | 158 | }; |
158 | 159 | #endif |
159 | 160 | |
160 | -typedef struct LEDMAState { | |
161 | - uint32_t addr; | |
162 | - uint32_t regs[LEDMA_REGS]; | |
163 | -} LEDMAState; | |
164 | - | |
165 | 161 | typedef struct LANCEState { |
166 | - uint32_t paddr; | |
167 | 162 | NetDriverState *nd; |
168 | 163 | uint32_t leptr; |
169 | 164 | uint16_t addr; |
170 | 165 | uint16_t regs[LE_MAXREG]; |
171 | 166 | uint8_t phys[6]; /* mac address */ |
172 | 167 | int irq; |
173 | - LEDMAState *ledma; | |
168 | + unsigned int rxptr, txptr; | |
169 | + uint32_t ledmaregs[LEDMA_REGS]; | |
174 | 170 | } LANCEState; |
175 | 171 | |
176 | -static unsigned int rxptr, txptr; | |
177 | - | |
178 | 172 | static void lance_send(void *opaque); |
179 | 173 | |
180 | -static void lance_reset(LANCEState *s) | |
174 | +static void lance_reset(void *opaque) | |
181 | 175 | { |
176 | + LANCEState *s = opaque; | |
182 | 177 | memcpy(s->phys, s->nd->macaddr, 6); |
183 | - rxptr = 0; | |
184 | - txptr = 0; | |
178 | + s->rxptr = 0; | |
179 | + s->txptr = 0; | |
180 | + memset(s->regs, 0, LE_MAXREG * 2); | |
185 | 181 | s->regs[LE_CSR0] = LE_C0_STOP; |
182 | + memset(s->ledmaregs, 0, LEDMA_REGS * 4); | |
186 | 183 | } |
187 | 184 | |
188 | 185 | static uint32_t lance_mem_readw(void *opaque, target_phys_addr_t addr) |
... | ... | @@ -190,7 +187,7 @@ static uint32_t lance_mem_readw(void *opaque, target_phys_addr_t addr) |
190 | 187 | LANCEState *s = opaque; |
191 | 188 | uint32_t saddr; |
192 | 189 | |
193 | - saddr = addr - s->paddr; | |
190 | + saddr = addr & LE_MAXREG; | |
194 | 191 | switch (saddr >> 1) { |
195 | 192 | case LE_RDP: |
196 | 193 | return s->regs[s->addr]; |
... | ... | @@ -208,7 +205,7 @@ static void lance_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val |
208 | 205 | uint32_t saddr; |
209 | 206 | uint16_t reg; |
210 | 207 | |
211 | - saddr = addr - s->paddr; | |
208 | + saddr = addr & LE_MAXREG; | |
212 | 209 | switch (saddr >> 1) { |
213 | 210 | case LE_RDP: |
214 | 211 | switch(s->addr) { |
... | ... | @@ -292,7 +289,7 @@ static CPUWriteMemoryFunc *lance_mem_write[3] = { |
292 | 289 | static int lance_can_receive(void *opaque) |
293 | 290 | { |
294 | 291 | LANCEState *s = opaque; |
295 | - void *dmaptr = (void *) (s->leptr + s->ledma->regs[3]); | |
292 | + uint32_t dmaptr = s->leptr + s->ledmaregs[3]; | |
296 | 293 | struct lance_init_block *ib; |
297 | 294 | int i; |
298 | 295 | uint16_t temp; |
... | ... | @@ -303,7 +300,7 @@ static int lance_can_receive(void *opaque) |
303 | 300 | ib = (void *) iommu_translate(dmaptr); |
304 | 301 | |
305 | 302 | for (i = 0; i < RX_RING_SIZE; i++) { |
306 | - cpu_physical_memory_read(&ib->brx_ring[i].rmd1_bits, (void *) &temp, 1); | |
303 | + cpu_physical_memory_read((uint32_t)&ib->brx_ring[i].rmd1_bits, (void *) &temp, 1); | |
307 | 304 | temp &= 0xff; |
308 | 305 | if (temp == (LE_R1_OWN)) { |
309 | 306 | #ifdef DEBUG_LANCE |
... | ... | @@ -323,7 +320,7 @@ static int lance_can_receive(void *opaque) |
323 | 320 | static void lance_receive(void *opaque, const uint8_t *buf, int size) |
324 | 321 | { |
325 | 322 | LANCEState *s = opaque; |
326 | - void *dmaptr = (void *) (s->leptr + s->ledma->regs[3]); | |
323 | + uint32_t dmaptr = s->leptr + s->ledmaregs[3]; | |
327 | 324 | struct lance_init_block *ib; |
328 | 325 | unsigned int i, old_rxptr, j; |
329 | 326 | uint16_t temp; |
... | ... | @@ -333,23 +330,23 @@ static void lance_receive(void *opaque, const uint8_t *buf, int size) |
333 | 330 | |
334 | 331 | ib = (void *) iommu_translate(dmaptr); |
335 | 332 | |
336 | - old_rxptr = rxptr; | |
337 | - for (i = rxptr; i != ((old_rxptr - 1) & RX_RING_MOD_MASK); i = (i + 1) & RX_RING_MOD_MASK) { | |
338 | - cpu_physical_memory_read(&ib->brx_ring[i].rmd1_bits, (void *) &temp, 1); | |
333 | + old_rxptr = s->rxptr; | |
334 | + for (i = s->rxptr; i != ((old_rxptr - 1) & RX_RING_MOD_MASK); i = (i + 1) & RX_RING_MOD_MASK) { | |
335 | + cpu_physical_memory_read((uint32_t)&ib->brx_ring[i].rmd1_bits, (void *) &temp, 1); | |
339 | 336 | if (temp == (LE_R1_OWN)) { |
340 | - rxptr = (rxptr + 1) & RX_RING_MOD_MASK; | |
337 | + s->rxptr = (s->rxptr + 1) & RX_RING_MOD_MASK; | |
341 | 338 | temp = size; |
342 | 339 | bswap16s(&temp); |
343 | - cpu_physical_memory_write(&ib->brx_ring[i].mblength, (void *) &temp, 2); | |
340 | + cpu_physical_memory_write((uint32_t)&ib->brx_ring[i].mblength, (void *) &temp, 2); | |
344 | 341 | #if 0 |
345 | - cpu_physical_memory_write(&ib->rx_buf[i], buf, size); | |
342 | + cpu_physical_memory_write((uint32_t)&ib->rx_buf[i], buf, size); | |
346 | 343 | #else |
347 | 344 | for (j = 0; j < size; j++) { |
348 | - cpu_physical_memory_write(((void *)&ib->rx_buf[i]) + j, &buf[j], 1); | |
345 | + cpu_physical_memory_write(((uint32_t)&ib->rx_buf[i]) + j, &buf[j], 1); | |
349 | 346 | } |
350 | 347 | #endif |
351 | 348 | temp = LE_R1_POK; |
352 | - cpu_physical_memory_write(&ib->brx_ring[i].rmd1_bits, (void *) &temp, 1); | |
349 | + cpu_physical_memory_write((uint32_t)&ib->brx_ring[i].rmd1_bits, (void *) &temp, 1); | |
353 | 350 | s->regs[LE_CSR0] |= LE_C0_RINT | LE_C0_INTR; |
354 | 351 | if ((s->regs[LE_CSR0] & LE_C0_INTR) && (s->regs[LE_CSR0] & LE_C0_INEA)) |
355 | 352 | pic_set_irq(s->irq, 1); |
... | ... | @@ -364,7 +361,7 @@ static void lance_receive(void *opaque, const uint8_t *buf, int size) |
364 | 361 | static void lance_send(void *opaque) |
365 | 362 | { |
366 | 363 | LANCEState *s = opaque; |
367 | - void *dmaptr = (void *) (s->leptr + s->ledma->regs[3]); | |
364 | + uint32_t dmaptr = s->leptr + s->ledmaregs[3]; | |
368 | 365 | struct lance_init_block *ib; |
369 | 366 | unsigned int i, old_txptr, j; |
370 | 367 | uint16_t temp; |
... | ... | @@ -375,18 +372,18 @@ static void lance_send(void *opaque) |
375 | 372 | |
376 | 373 | ib = (void *) iommu_translate(dmaptr); |
377 | 374 | |
378 | - old_txptr = txptr; | |
379 | - for (i = txptr; i != ((old_txptr - 1) & TX_RING_MOD_MASK); i = (i + 1) & TX_RING_MOD_MASK) { | |
380 | - cpu_physical_memory_read(&ib->btx_ring[i].tmd1_bits, (void *) &temp, 1); | |
375 | + old_txptr = s->txptr; | |
376 | + for (i = s->txptr; i != ((old_txptr - 1) & TX_RING_MOD_MASK); i = (i + 1) & TX_RING_MOD_MASK) { | |
377 | + cpu_physical_memory_read((uint32_t)&ib->btx_ring[i].tmd1_bits, (void *) &temp, 1); | |
381 | 378 | if (temp == (LE_T1_POK|LE_T1_OWN)) { |
382 | - cpu_physical_memory_read(&ib->btx_ring[i].length, (void *) &temp, 2); | |
379 | + cpu_physical_memory_read((uint32_t)&ib->btx_ring[i].length, (void *) &temp, 2); | |
383 | 380 | bswap16s(&temp); |
384 | 381 | temp = (~temp) + 1; |
385 | 382 | #if 0 |
386 | - cpu_physical_memory_read(&ib->tx_buf[i], pkt_buf, temp); | |
383 | + cpu_physical_memory_read((uint32_t)&ib->tx_buf[i], pkt_buf, temp); | |
387 | 384 | #else |
388 | 385 | for (j = 0; j < temp; j++) { |
389 | - cpu_physical_memory_read(((void *)&ib->tx_buf[i]) + j, &pkt_buf[j], 1); | |
386 | + cpu_physical_memory_read((uint32_t)&ib->tx_buf[i] + j, &pkt_buf[j], 1); | |
390 | 387 | } |
391 | 388 | #endif |
392 | 389 | |
... | ... | @@ -395,8 +392,8 @@ static void lance_send(void *opaque) |
395 | 392 | #endif |
396 | 393 | qemu_send_packet(s->nd, pkt_buf, temp); |
397 | 394 | temp = LE_T1_POK; |
398 | - cpu_physical_memory_write(&ib->btx_ring[i].tmd1_bits, (void *) &temp, 1); | |
399 | - txptr = (txptr + 1) & TX_RING_MOD_MASK; | |
395 | + cpu_physical_memory_write((uint32_t)&ib->btx_ring[i].tmd1_bits, (void *) &temp, 1); | |
396 | + s->txptr = (s->txptr + 1) & TX_RING_MOD_MASK; | |
400 | 397 | s->regs[LE_CSR0] |= LE_C0_TINT | LE_C0_INTR; |
401 | 398 | } |
402 | 399 | } |
... | ... | @@ -404,24 +401,20 @@ static void lance_send(void *opaque) |
404 | 401 | |
405 | 402 | static uint32_t ledma_mem_readl(void *opaque, target_phys_addr_t addr) |
406 | 403 | { |
407 | - LEDMAState *s = opaque; | |
404 | + LANCEState *s = opaque; | |
408 | 405 | uint32_t saddr; |
409 | 406 | |
410 | - saddr = (addr - s->addr) >> 2; | |
411 | - if (saddr < LEDMA_REGS) | |
412 | - return s->regs[saddr]; | |
413 | - else | |
414 | - return 0; | |
407 | + saddr = (addr & LEDMA_MAXADDR) >> 2; | |
408 | + return s->ledmaregs[saddr]; | |
415 | 409 | } |
416 | 410 | |
417 | 411 | static void ledma_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val) |
418 | 412 | { |
419 | - LEDMAState *s = opaque; | |
413 | + LANCEState *s = opaque; | |
420 | 414 | uint32_t saddr; |
421 | 415 | |
422 | - saddr = (addr - s->addr) >> 2; | |
423 | - if (saddr < LEDMA_REGS) | |
424 | - s->regs[saddr] = val; | |
416 | + saddr = (addr & LEDMA_MAXADDR) >> 2; | |
417 | + s->ledmaregs[saddr] = val; | |
425 | 418 | } |
426 | 419 | |
427 | 420 | static CPUReadMemoryFunc *ledma_mem_read[3] = { |
... | ... | @@ -436,33 +429,61 @@ static CPUWriteMemoryFunc *ledma_mem_write[3] = { |
436 | 429 | ledma_mem_writel, |
437 | 430 | }; |
438 | 431 | |
432 | +static void lance_save(QEMUFile *f, void *opaque) | |
433 | +{ | |
434 | + LANCEState *s = opaque; | |
435 | + int i; | |
436 | + | |
437 | + qemu_put_be32s(f, &s->leptr); | |
438 | + qemu_put_be16s(f, &s->addr); | |
439 | + for (i = 0; i < LE_MAXREG; i ++) | |
440 | + qemu_put_be16s(f, &s->regs[i]); | |
441 | + qemu_put_buffer(f, s->phys, 6); | |
442 | + qemu_put_be32s(f, &s->irq); | |
443 | + for (i = 0; i < LEDMA_REGS; i ++) | |
444 | + qemu_put_be32s(f, &s->ledmaregs[i]); | |
445 | +} | |
446 | + | |
447 | +static int lance_load(QEMUFile *f, void *opaque, int version_id) | |
448 | +{ | |
449 | + LANCEState *s = opaque; | |
450 | + int i; | |
451 | + | |
452 | + if (version_id != 1) | |
453 | + return -EINVAL; | |
454 | + | |
455 | + qemu_get_be32s(f, &s->leptr); | |
456 | + qemu_get_be16s(f, &s->addr); | |
457 | + for (i = 0; i < LE_MAXREG; i ++) | |
458 | + qemu_get_be16s(f, &s->regs[i]); | |
459 | + qemu_get_buffer(f, s->phys, 6); | |
460 | + qemu_get_be32s(f, &s->irq); | |
461 | + for (i = 0; i < LEDMA_REGS; i ++) | |
462 | + qemu_get_be32s(f, &s->ledmaregs[i]); | |
463 | + return 0; | |
464 | +} | |
465 | + | |
439 | 466 | void lance_init(NetDriverState *nd, int irq, uint32_t leaddr, uint32_t ledaddr) |
440 | 467 | { |
441 | 468 | LANCEState *s; |
442 | - LEDMAState *led; | |
443 | 469 | int lance_io_memory, ledma_io_memory; |
444 | 470 | |
445 | 471 | s = qemu_mallocz(sizeof(LANCEState)); |
446 | 472 | if (!s) |
447 | 473 | return; |
448 | 474 | |
449 | - s->paddr = leaddr; | |
450 | 475 | s->nd = nd; |
451 | 476 | s->irq = irq; |
452 | 477 | |
453 | 478 | lance_io_memory = cpu_register_io_memory(0, lance_mem_read, lance_mem_write, s); |
454 | 479 | cpu_register_physical_memory(leaddr, 8, lance_io_memory); |
455 | 480 | |
456 | - led = qemu_mallocz(sizeof(LEDMAState)); | |
457 | - if (!led) | |
458 | - return; | |
459 | - | |
460 | - s->ledma = led; | |
461 | - led->addr = ledaddr; | |
462 | - ledma_io_memory = cpu_register_io_memory(0, ledma_mem_read, ledma_mem_write, led); | |
481 | + ledma_io_memory = cpu_register_io_memory(0, ledma_mem_read, ledma_mem_write, s); | |
463 | 482 | cpu_register_physical_memory(ledaddr, 16, ledma_io_memory); |
464 | 483 | |
465 | 484 | lance_reset(s); |
466 | 485 | qemu_add_read_packet(nd, lance_can_receive, lance_receive, s); |
486 | + register_savevm("lance", leaddr, 1, lance_save, lance_load, s); | |
487 | + qemu_register_reset(lance_reset, s); | |
467 | 488 | } |
468 | 489 | ... | ... |
hw/m48t08.c
... | ... | @@ -32,19 +32,14 @@ |
32 | 32 | #define NVRAM_PRINTF(fmt, args...) do { } while (0) |
33 | 33 | #endif |
34 | 34 | |
35 | -#define NVRAM_MAX_MEM 0xfff0 | |
35 | +#define NVRAM_MAX_MEM 0x1ff0 | |
36 | +#define NVRAM_MAXADDR 0x1fff | |
36 | 37 | |
37 | 38 | struct m48t08_t { |
38 | - /* Hardware parameters */ | |
39 | - int mem_index; | |
40 | - uint32_t mem_base; | |
41 | - uint16_t size; | |
42 | 39 | /* RTC management */ |
43 | 40 | time_t time_offset; |
44 | 41 | time_t stop_time; |
45 | 42 | /* NVRAM storage */ |
46 | - uint8_t lock; | |
47 | - uint16_t addr; | |
48 | 43 | uint8_t *buffer; |
49 | 44 | }; |
50 | 45 | |
... | ... | @@ -83,14 +78,13 @@ static void set_time (m48t08_t *NVRAM, struct tm *tm) |
83 | 78 | } |
84 | 79 | |
85 | 80 | /* Direct access to NVRAM */ |
86 | -void m48t08_write (m48t08_t *NVRAM, uint32_t val) | |
81 | +void m48t08_write (m48t08_t *NVRAM, uint32_t addr, uint8_t val) | |
87 | 82 | { |
88 | 83 | struct tm tm; |
89 | 84 | int tmp; |
90 | 85 | |
91 | - if (NVRAM->addr > NVRAM_MAX_MEM && NVRAM->addr < 0x2000) | |
92 | - NVRAM_PRINTF("%s: 0x%08x => 0x%08x\n", __func__, NVRAM->addr, val); | |
93 | - switch (NVRAM->addr) { | |
86 | + addr &= NVRAM_MAXADDR; | |
87 | + switch (addr) { | |
94 | 88 | case 0x1FF8: |
95 | 89 | /* control */ |
96 | 90 | NVRAM->buffer[0x1FF8] = (val & ~0xA0) | 0x90; |
... | ... | @@ -167,25 +161,18 @@ void m48t08_write (m48t08_t *NVRAM, uint32_t val) |
167 | 161 | } |
168 | 162 | break; |
169 | 163 | default: |
170 | - /* Check lock registers state */ | |
171 | - if (NVRAM->addr >= 0x20 && NVRAM->addr <= 0x2F && (NVRAM->lock & 1)) | |
172 | - break; | |
173 | - if (NVRAM->addr >= 0x30 && NVRAM->addr <= 0x3F && (NVRAM->lock & 2)) | |
174 | - break; | |
175 | - if (NVRAM->addr < NVRAM_MAX_MEM || | |
176 | - (NVRAM->addr > 0x1FFF && NVRAM->addr < NVRAM->size)) { | |
177 | - NVRAM->buffer[NVRAM->addr] = val & 0xFF; | |
178 | - } | |
164 | + NVRAM->buffer[addr] = val & 0xFF; | |
179 | 165 | break; |
180 | 166 | } |
181 | 167 | } |
182 | 168 | |
183 | -uint32_t m48t08_read (m48t08_t *NVRAM) | |
169 | +uint8_t m48t08_read (m48t08_t *NVRAM, uint32_t addr) | |
184 | 170 | { |
185 | 171 | struct tm tm; |
186 | - uint32_t retval = 0xFF; | |
172 | + uint8_t retval = 0xFF; | |
187 | 173 | |
188 | - switch (NVRAM->addr) { | |
174 | + addr &= NVRAM_MAXADDR; | |
175 | + switch (addr) { | |
189 | 176 | case 0x1FF8: |
190 | 177 | /* control */ |
191 | 178 | goto do_read; |
... | ... | @@ -225,65 +212,36 @@ uint32_t m48t08_read (m48t08_t *NVRAM) |
225 | 212 | retval = toBCD(tm.tm_year); |
226 | 213 | break; |
227 | 214 | default: |
228 | - /* Check lock registers state */ | |
229 | - if (NVRAM->addr >= 0x20 && NVRAM->addr <= 0x2F && (NVRAM->lock & 1)) | |
230 | - break; | |
231 | - if (NVRAM->addr >= 0x30 && NVRAM->addr <= 0x3F && (NVRAM->lock & 2)) | |
232 | - break; | |
233 | - if (NVRAM->addr < NVRAM_MAX_MEM || | |
234 | - (NVRAM->addr > 0x1FFF && NVRAM->addr < NVRAM->size)) { | |
235 | - do_read: | |
236 | - retval = NVRAM->buffer[NVRAM->addr]; | |
237 | - } | |
215 | + do_read: | |
216 | + retval = NVRAM->buffer[addr]; | |
238 | 217 | break; |
239 | 218 | } |
240 | - if (NVRAM->addr > NVRAM_MAX_MEM + 1 && NVRAM->addr < 0x2000) | |
241 | - NVRAM_PRINTF("0x%08x <= 0x%08x\n", NVRAM->addr, retval); | |
242 | - | |
243 | 219 | return retval; |
244 | 220 | } |
245 | 221 | |
246 | -void m48t08_set_addr (m48t08_t *NVRAM, uint32_t addr) | |
247 | -{ | |
248 | - NVRAM->addr = addr; | |
249 | -} | |
250 | - | |
251 | -void m48t08_toggle_lock (m48t08_t *NVRAM, int lock) | |
252 | -{ | |
253 | - NVRAM->lock ^= 1 << lock; | |
254 | -} | |
255 | - | |
256 | 222 | static void nvram_writeb (void *opaque, target_phys_addr_t addr, uint32_t value) |
257 | 223 | { |
258 | 224 | m48t08_t *NVRAM = opaque; |
259 | 225 | |
260 | - addr -= NVRAM->mem_base; | |
261 | - if (addr < NVRAM_MAX_MEM) | |
262 | - NVRAM->buffer[addr] = value; | |
226 | + m48t08_write(NVRAM, addr, value); | |
263 | 227 | } |
264 | 228 | |
265 | 229 | static void nvram_writew (void *opaque, target_phys_addr_t addr, uint32_t value) |
266 | 230 | { |
267 | 231 | m48t08_t *NVRAM = opaque; |
268 | 232 | |
269 | - addr -= NVRAM->mem_base; | |
270 | - if (addr < NVRAM_MAX_MEM) { | |
271 | - NVRAM->buffer[addr] = value >> 8; | |
272 | - NVRAM->buffer[addr + 1] = value; | |
273 | - } | |
233 | + m48t08_write(NVRAM, addr, value); | |
234 | + m48t08_write(NVRAM, addr + 1, value >> 8); | |
274 | 235 | } |
275 | 236 | |
276 | 237 | static void nvram_writel (void *opaque, target_phys_addr_t addr, uint32_t value) |
277 | 238 | { |
278 | 239 | m48t08_t *NVRAM = opaque; |
279 | 240 | |
280 | - addr -= NVRAM->mem_base; | |
281 | - if (addr < NVRAM_MAX_MEM) { | |
282 | - NVRAM->buffer[addr] = value >> 24; | |
283 | - NVRAM->buffer[addr + 1] = value >> 16; | |
284 | - NVRAM->buffer[addr + 2] = value >> 8; | |
285 | - NVRAM->buffer[addr + 3] = value; | |
286 | - } | |
241 | + m48t08_write(NVRAM, addr, value); | |
242 | + m48t08_write(NVRAM, addr + 1, value >> 8); | |
243 | + m48t08_write(NVRAM, addr + 2, value >> 16); | |
244 | + m48t08_write(NVRAM, addr + 3, value >> 24); | |
287 | 245 | } |
288 | 246 | |
289 | 247 | static uint32_t nvram_readb (void *opaque, target_phys_addr_t addr) |
... | ... | @@ -291,10 +249,7 @@ static uint32_t nvram_readb (void *opaque, target_phys_addr_t addr) |
291 | 249 | m48t08_t *NVRAM = opaque; |
292 | 250 | uint32_t retval = 0; |
293 | 251 | |
294 | - addr -= NVRAM->mem_base; | |
295 | - if (addr < NVRAM_MAX_MEM) | |
296 | - retval = NVRAM->buffer[addr]; | |
297 | - | |
252 | + retval = m48t08_read(NVRAM, addr); | |
298 | 253 | return retval; |
299 | 254 | } |
300 | 255 | |
... | ... | @@ -303,12 +258,8 @@ static uint32_t nvram_readw (void *opaque, target_phys_addr_t addr) |
303 | 258 | m48t08_t *NVRAM = opaque; |
304 | 259 | uint32_t retval = 0; |
305 | 260 | |
306 | - addr -= NVRAM->mem_base; | |
307 | - if (addr < NVRAM_MAX_MEM) { | |
308 | - retval = NVRAM->buffer[addr] << 8; | |
309 | - retval |= NVRAM->buffer[addr + 1]; | |
310 | - } | |
311 | - | |
261 | + retval = m48t08_read(NVRAM, addr) << 8; | |
262 | + retval |= m48t08_read(NVRAM, addr + 1); | |
312 | 263 | return retval; |
313 | 264 | } |
314 | 265 | |
... | ... | @@ -317,14 +268,10 @@ static uint32_t nvram_readl (void *opaque, target_phys_addr_t addr) |
317 | 268 | m48t08_t *NVRAM = opaque; |
318 | 269 | uint32_t retval = 0; |
319 | 270 | |
320 | - addr -= NVRAM->mem_base; | |
321 | - if (addr < NVRAM_MAX_MEM) { | |
322 | - retval = NVRAM->buffer[addr] << 24; | |
323 | - retval |= NVRAM->buffer[addr + 1] << 16; | |
324 | - retval |= NVRAM->buffer[addr + 2] << 8; | |
325 | - retval |= NVRAM->buffer[addr + 3]; | |
326 | - } | |
327 | - | |
271 | + retval = m48t08_read(NVRAM, addr) << 24; | |
272 | + retval |= m48t08_read(NVRAM, addr + 1) << 16; | |
273 | + retval |= m48t08_read(NVRAM, addr + 2) << 8; | |
274 | + retval |= m48t08_read(NVRAM, addr + 3); | |
328 | 275 | return retval; |
329 | 276 | } |
330 | 277 | |
... | ... | @@ -340,12 +287,42 @@ static CPUReadMemoryFunc *nvram_read[] = { |
340 | 287 | &nvram_readl, |
341 | 288 | }; |
342 | 289 | |
290 | +static void nvram_save(QEMUFile *f, void *opaque) | |
291 | +{ | |
292 | + m48t08_t *s = opaque; | |
293 | + | |
294 | + qemu_put_be32s(f, (uint32_t *)&s->time_offset); | |
295 | + qemu_put_be32s(f, (uint32_t *)&s->stop_time); | |
296 | + qemu_put_buffer(f, s->buffer, 0x2000); | |
297 | +} | |
298 | + | |
299 | +static int nvram_load(QEMUFile *f, void *opaque, int version_id) | |
300 | +{ | |
301 | + m48t08_t *s = opaque; | |
302 | + | |
303 | + if (version_id != 1) | |
304 | + return -EINVAL; | |
305 | + | |
306 | + qemu_get_be32s(f, (uint32_t *)&s->time_offset); | |
307 | + qemu_get_be32s(f, (uint32_t *)&s->stop_time); | |
308 | + qemu_get_buffer(f, s->buffer, 0x2000); | |
309 | + return 0; | |
310 | +} | |
311 | + | |
312 | +static void m48t08_reset(void *opaque) | |
313 | +{ | |
314 | + m48t08_t *s = opaque; | |
315 | + | |
316 | + s->time_offset = 0; | |
317 | + s->stop_time = 0; | |
318 | +} | |
319 | + | |
320 | + | |
343 | 321 | /* Initialisation routine */ |
344 | -m48t08_t *m48t08_init(uint32_t mem_base, uint16_t size, uint8_t *macaddr) | |
322 | +m48t08_t *m48t08_init(uint32_t mem_base, uint16_t size) | |
345 | 323 | { |
346 | 324 | m48t08_t *s; |
347 | - int i; | |
348 | - unsigned char tmp = 0; | |
325 | + int mem_index; | |
349 | 326 | |
350 | 327 | s = qemu_mallocz(sizeof(m48t08_t)); |
351 | 328 | if (!s) |
... | ... | @@ -355,25 +332,13 @@ m48t08_t *m48t08_init(uint32_t mem_base, uint16_t size, uint8_t *macaddr) |
355 | 332 | qemu_free(s); |
356 | 333 | return NULL; |
357 | 334 | } |
358 | - s->size = size; | |
359 | - s->mem_base = mem_base; | |
360 | - s->addr = 0; | |
361 | 335 | if (mem_base != 0) { |
362 | - s->mem_index = cpu_register_io_memory(0, nvram_read, nvram_write, s); | |
363 | - cpu_register_physical_memory(mem_base, 0x4000, s->mem_index); | |
336 | + mem_index = cpu_register_io_memory(0, nvram_read, nvram_write, s); | |
337 | + cpu_register_physical_memory(mem_base, 0x2000, mem_index); | |
364 | 338 | } |
365 | - s->lock = 0; | |
366 | 339 | |
367 | - i = 0x1fd8; | |
368 | - s->buffer[i++] = 0x01; | |
369 | - s->buffer[i++] = 0x80; /* Sun4m OBP */ | |
370 | - memcpy(&s->buffer[i], macaddr, 6); | |
371 | - | |
372 | - /* Calculate checksum */ | |
373 | - for (i = 0x1fd8; i < 0x1fe7; i++) { | |
374 | - tmp ^= s->buffer[i]; | |
375 | - } | |
376 | - s->buffer[0x1fe7] = tmp; | |
340 | + register_savevm("nvram", mem_base, 1, nvram_save, nvram_load, s); | |
341 | + qemu_register_reset(m48t08_reset, s); | |
377 | 342 | return s; |
378 | 343 | } |
379 | 344 | ... | ... |
hw/m48t08.h
... | ... | @@ -3,10 +3,8 @@ |
3 | 3 | |
4 | 4 | typedef struct m48t08_t m48t08_t; |
5 | 5 | |
6 | -void m48t08_write (m48t08_t *NVRAM, uint32_t val); | |
7 | -uint32_t m48t08_read (m48t08_t *NVRAM); | |
8 | -void m48t08_set_addr (m48t08_t *NVRAM, uint32_t addr); | |
9 | -void m48t08_toggle_lock (m48t08_t *NVRAM, int lock); | |
10 | -m48t08_t *m48t08_init(uint32_t mem_base, uint16_t size, uint8_t *macaddr); | |
6 | +void m48t08_write (m48t08_t *NVRAM, uint32_t addr, uint8_t val); | |
7 | +uint8_t m48t08_read (m48t08_t *NVRAM, uint32_t addr); | |
8 | +m48t08_t *m48t08_init(uint32_t mem_base, uint16_t size); | |
11 | 9 | |
12 | 10 | #endif /* !defined (__M48T08_H__) */ | ... | ... |
hw/magic-load.c
1 | 1 | #include "vl.h" |
2 | 2 | #include "disas.h" |
3 | +#include "exec-all.h" | |
4 | + | |
5 | +struct exec | |
6 | +{ | |
7 | + uint32_t a_info; /* Use macros N_MAGIC, etc for access */ | |
8 | + uint32_t a_text; /* length of text, in bytes */ | |
9 | + uint32_t a_data; /* length of data, in bytes */ | |
10 | + uint32_t a_bss; /* length of uninitialized data area, in bytes */ | |
11 | + uint32_t a_syms; /* length of symbol table data in file, in bytes */ | |
12 | + uint32_t a_entry; /* start address */ | |
13 | + uint32_t a_trsize; /* length of relocation info for text, in bytes */ | |
14 | + uint32_t a_drsize; /* length of relocation info for data, in bytes */ | |
15 | +}; | |
16 | + | |
17 | +#ifdef BSWAP_NEEDED | |
18 | +static void bswap_ahdr(struct exec *e) | |
19 | +{ | |
20 | + bswap32s(&e->a_info); | |
21 | + bswap32s(&e->a_text); | |
22 | + bswap32s(&e->a_data); | |
23 | + bswap32s(&e->a_bss); | |
24 | + bswap32s(&e->a_syms); | |
25 | + bswap32s(&e->a_entry); | |
26 | + bswap32s(&e->a_trsize); | |
27 | + bswap32s(&e->a_drsize); | |
28 | +} | |
29 | +#else | |
30 | +#define bswap_ahdr(x) do { } while (0) | |
31 | +#endif | |
32 | + | |
33 | +#define N_MAGIC(exec) ((exec).a_info & 0xffff) | |
34 | +#define OMAGIC 0407 | |
35 | +#define NMAGIC 0410 | |
36 | +#define ZMAGIC 0413 | |
37 | +#define QMAGIC 0314 | |
38 | +#define _N_HDROFF(x) (1024 - sizeof (struct exec)) | |
39 | +#define N_TXTOFF(x) \ | |
40 | + (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \ | |
41 | + (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec))) | |
42 | +#define N_TXTADDR(x) (N_MAGIC(x) == QMAGIC ? TARGET_PAGE_SIZE : 0) | |
43 | +#define N_DATOFF(x) (N_TXTOFF(x) + (x).a_text) | |
44 | +#define _N_SEGMENT_ROUND(x) (((x) + TARGET_PAGE_SIZE - 1) & ~(TARGET_PAGE_SIZE - 1)) | |
45 | + | |
46 | +#define _N_TXTENDADDR(x) (N_TXTADDR(x)+(x).a_text) | |
47 | + | |
48 | +#define N_DATADDR(x) \ | |
49 | + (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x)) \ | |
50 | + : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x)))) | |
51 | + | |
3 | 52 | |
4 | 53 | #define ELF_CLASS ELFCLASS32 |
5 | 54 | #define ELF_DATA ELFDATA2MSB |
... | ... | @@ -103,27 +152,27 @@ static void *find_shdr(struct elfhdr *ehdr, int fd, struct elf_shdr *shdr, uint3 |
103 | 152 | return NULL; |
104 | 153 | } |
105 | 154 | |
106 | -static int find_strtab(struct elfhdr *ehdr, int fd, struct elf_shdr *shdr, struct elf_shdr *symtab) | |
155 | +static void *find_strtab(struct elfhdr *ehdr, int fd, struct elf_shdr *shdr, struct elf_shdr *symtab) | |
107 | 156 | { |
108 | 157 | int retval; |
109 | 158 | |
110 | 159 | retval = lseek(fd, ehdr->e_shoff + sizeof(struct elf_shdr) * symtab->sh_link, SEEK_SET); |
111 | 160 | if (retval < 0) |
112 | - return -1; | |
161 | + return NULL; | |
113 | 162 | |
114 | 163 | retval = read(fd, shdr, sizeof(*shdr)); |
115 | 164 | if (retval < 0) |
116 | - return -1; | |
165 | + return NULL; | |
117 | 166 | bswap_shdr(shdr); |
118 | 167 | if (shdr->sh_type == SHT_STRTAB) |
119 | 168 | return qemu_malloc(shdr->sh_size);; |
120 | - return 0; | |
169 | + return NULL; | |
121 | 170 | } |
122 | 171 | |
123 | -static int read_program(int fd, struct elf_phdr *phdr, void *dst) | |
172 | +static int read_program(int fd, struct elf_phdr *phdr, void *dst, uint32_t entry) | |
124 | 173 | { |
125 | 174 | int retval; |
126 | - retval = lseek(fd, 0x4000, SEEK_SET); | |
175 | + retval = lseek(fd, phdr->p_offset + entry - phdr->p_vaddr, SEEK_SET); | |
127 | 176 | if (retval < 0) |
128 | 177 | return -1; |
129 | 178 | return read(fd, dst, phdr->p_filesz); |
... | ... | @@ -178,6 +227,7 @@ static void load_symbols(struct elfhdr *ehdr, int fd) |
178 | 227 | { |
179 | 228 | struct elf_shdr symtab, strtab; |
180 | 229 | struct elf_sym *syms; |
230 | + struct syminfo *s; | |
181 | 231 | int nsyms, i; |
182 | 232 | char *str; |
183 | 233 | |
... | ... | @@ -196,20 +246,19 @@ static void load_symbols(struct elfhdr *ehdr, int fd) |
196 | 246 | goto error_freesyms; |
197 | 247 | |
198 | 248 | /* Commit */ |
199 | - if (disas_symtab) | |
200 | - qemu_free(disas_symtab); /* XXX Merge with old symbols? */ | |
201 | - if (disas_strtab) | |
202 | - qemu_free(disas_strtab); | |
203 | - disas_symtab = syms; | |
204 | - disas_num_syms = nsyms; | |
205 | - disas_strtab = str; | |
249 | + s = qemu_mallocz(sizeof(*s)); | |
250 | + s->disas_symtab = syms; | |
251 | + s->disas_num_syms = nsyms; | |
252 | + s->disas_strtab = str; | |
253 | + s->next = syminfos; | |
254 | + syminfos = s; | |
206 | 255 | return; |
207 | 256 | error_freesyms: |
208 | 257 | qemu_free(syms); |
209 | 258 | return; |
210 | 259 | } |
211 | 260 | |
212 | -int load_elf(const char * filename, uint8_t *addr) | |
261 | +int load_elf(const char *filename, uint8_t *addr) | |
213 | 262 | { |
214 | 263 | struct elfhdr ehdr; |
215 | 264 | struct elf_phdr phdr; |
... | ... | @@ -227,12 +276,13 @@ int load_elf(const char * filename, uint8_t *addr) |
227 | 276 | |
228 | 277 | if (ehdr.e_ident[0] != 0x7f || ehdr.e_ident[1] != 'E' |
229 | 278 | || ehdr.e_ident[2] != 'L' || ehdr.e_ident[3] != 'F' |
230 | - || ehdr.e_machine != EM_SPARC) | |
279 | + || (ehdr.e_machine != EM_SPARC | |
280 | + && ehdr.e_machine != EM_SPARC32PLUS)) | |
231 | 281 | goto error; |
232 | 282 | |
233 | 283 | if (find_phdr(&ehdr, fd, &phdr, PT_LOAD)) |
234 | 284 | goto error; |
235 | - retval = read_program(fd, &phdr, addr); | |
285 | + retval = read_program(fd, &phdr, addr, ehdr.e_entry); | |
236 | 286 | if (retval < 0) |
237 | 287 | goto error; |
238 | 288 | |
... | ... | @@ -245,17 +295,45 @@ int load_elf(const char * filename, uint8_t *addr) |
245 | 295 | return -1; |
246 | 296 | } |
247 | 297 | |
248 | -int load_kernel(const char *filename, uint8_t *addr) | |
298 | +int load_aout(const char *filename, uint8_t *addr) | |
249 | 299 | { |
250 | - int fd, size; | |
300 | + int fd, size, ret; | |
301 | + struct exec e; | |
302 | + uint32_t magic; | |
251 | 303 | |
252 | 304 | fd = open(filename, O_RDONLY | O_BINARY); |
253 | 305 | if (fd < 0) |
254 | 306 | return -1; |
255 | - /* load 32 bit code */ | |
256 | - size = read(fd, addr, 16 * 1024 * 1024); | |
307 | + | |
308 | + size = read(fd, &e, sizeof(e)); | |
257 | 309 | if (size < 0) |
258 | 310 | goto fail; |
311 | + | |
312 | + bswap_ahdr(&e); | |
313 | + | |
314 | + magic = N_MAGIC(e); | |
315 | + switch (magic) { | |
316 | + case ZMAGIC: | |
317 | + case QMAGIC: | |
318 | + case OMAGIC: | |
319 | + lseek(fd, N_TXTOFF(e), SEEK_SET); | |
320 | + size = read(fd, addr, e.a_text + e.a_data); | |
321 | + if (size < 0) | |
322 | + goto fail; | |
323 | + break; | |
324 | + case NMAGIC: | |
325 | + lseek(fd, N_TXTOFF(e), SEEK_SET); | |
326 | + size = read(fd, addr, e.a_text); | |
327 | + if (size < 0) | |
328 | + goto fail; | |
329 | + ret = read(fd, addr + N_DATADDR(e), e.a_data); | |
330 | + if (ret < 0) | |
331 | + goto fail; | |
332 | + size += ret; | |
333 | + break; | |
334 | + default: | |
335 | + goto fail; | |
336 | + } | |
259 | 337 | close(fd); |
260 | 338 | return size; |
261 | 339 | fail: |
... | ... | @@ -263,64 +341,3 @@ int load_kernel(const char *filename, uint8_t *addr) |
263 | 341 | return -1; |
264 | 342 | } |
265 | 343 | |
266 | -typedef struct MAGICState { | |
267 | - uint32_t addr; | |
268 | - uint32_t saved_addr; | |
269 | - int magic_state; | |
270 | - char saved_kfn[1024]; | |
271 | -} MAGICState; | |
272 | - | |
273 | -static uint32_t magic_mem_readl(void *opaque, target_phys_addr_t addr) | |
274 | -{ | |
275 | - int ret; | |
276 | - MAGICState *s = opaque; | |
277 | - | |
278 | - if (s->magic_state == 0) { | |
279 | - ret = load_elf(s->saved_kfn, (uint8_t *)s->saved_addr); | |
280 | - if (ret < 0) | |
281 | - ret = load_kernel(s->saved_kfn, (uint8_t *)s->saved_addr); | |
282 | - if (ret < 0) { | |
283 | - fprintf(stderr, "qemu: could not load kernel '%s'\n", | |
284 | - s->saved_kfn); | |
285 | - } | |
286 | - s->magic_state = 1; /* No more magic */ | |
287 | - tb_flush(); | |
288 | - return bswap32(ret); | |
289 | - } | |
290 | - return 0; | |
291 | -} | |
292 | - | |
293 | -static void magic_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val) | |
294 | -{ | |
295 | -} | |
296 | - | |
297 | - | |
298 | -static CPUReadMemoryFunc *magic_mem_read[3] = { | |
299 | - magic_mem_readl, | |
300 | - magic_mem_readl, | |
301 | - magic_mem_readl, | |
302 | -}; | |
303 | - | |
304 | -static CPUWriteMemoryFunc *magic_mem_write[3] = { | |
305 | - magic_mem_writel, | |
306 | - magic_mem_writel, | |
307 | - magic_mem_writel, | |
308 | -}; | |
309 | - | |
310 | -void magic_init(const char *kfn, int kloadaddr, uint32_t addr) | |
311 | -{ | |
312 | - int magic_io_memory; | |
313 | - MAGICState *s; | |
314 | - | |
315 | - s = qemu_mallocz(sizeof(MAGICState)); | |
316 | - if (!s) | |
317 | - return; | |
318 | - | |
319 | - strcpy(s->saved_kfn, kfn); | |
320 | - s->saved_addr = kloadaddr; | |
321 | - s->magic_state = 0; | |
322 | - s->addr = addr; | |
323 | - magic_io_memory = cpu_register_io_memory(0, magic_mem_read, magic_mem_write, s); | |
324 | - cpu_register_physical_memory(addr, 4, magic_io_memory); | |
325 | -} | |
326 | - | ... | ... |
hw/sched.c deleted
100644 → 0
1 | -/* | |
2 | - * QEMU interrupt controller emulation | |
3 | - * | |
4 | - * Copyright (c) 2003-2004 Fabrice Bellard | |
5 | - * | |
6 | - * Permission is hereby granted, free of charge, to any person obtaining a copy | |
7 | - * of this software and associated documentation files (the "Software"), to deal | |
8 | - * in the Software without restriction, including without limitation the rights | |
9 | - * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
10 | - * copies of the Software, and to permit persons to whom the Software is | |
11 | - * furnished to do so, subject to the following conditions: | |
12 | - * | |
13 | - * The above copyright notice and this permission notice shall be included in | |
14 | - * all copies or substantial portions of the Software. | |
15 | - * | |
16 | - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
17 | - * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
18 | - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
19 | - * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
20 | - * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
21 | - * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
22 | - * THE SOFTWARE. | |
23 | - */ | |
24 | -#include "vl.h" | |
25 | -//#define DEBUG_IRQ_COUNT | |
26 | - | |
27 | -/* These registers are used for sending/receiving irqs from/to | |
28 | - * different cpu's. | |
29 | - */ | |
30 | -struct sun4m_intreg_percpu { | |
31 | - unsigned int tbt; /* Intrs pending for this cpu, by PIL. */ | |
32 | - /* These next two registers are WRITE-ONLY and are only | |
33 | - * "on bit" sensitive, "off bits" written have NO affect. | |
34 | - */ | |
35 | - unsigned int clear; /* Clear this cpus irqs here. */ | |
36 | - unsigned int set; /* Set this cpus irqs here. */ | |
37 | -}; | |
38 | -/* | |
39 | - * djhr | |
40 | - * Actually the clear and set fields in this struct are misleading.. | |
41 | - * according to the SLAVIO manual (and the same applies for the SEC) | |
42 | - * the clear field clears bits in the mask which will ENABLE that IRQ | |
43 | - * the set field sets bits in the mask to DISABLE the IRQ. | |
44 | - * | |
45 | - * Also the undirected_xx address in the SLAVIO is defined as | |
46 | - * RESERVED and write only.. | |
47 | - * | |
48 | - * DAVEM_NOTE: The SLAVIO only specifies behavior on uniprocessor | |
49 | - * sun4m machines, for MP the layout makes more sense. | |
50 | - */ | |
51 | -struct sun4m_intreg_master { | |
52 | - unsigned int tbt; /* IRQ's that are pending, see sun4m masks. */ | |
53 | - unsigned int irqs; /* Master IRQ bits. */ | |
54 | - | |
55 | - /* Again, like the above, two these registers are WRITE-ONLY. */ | |
56 | - unsigned int clear; /* Clear master IRQ's by setting bits here. */ | |
57 | - unsigned int set; /* Set master IRQ's by setting bits here. */ | |
58 | - | |
59 | - /* This register is both READ and WRITE. */ | |
60 | - unsigned int undirected_target; /* Which cpu gets undirected irqs. */ | |
61 | -}; | |
62 | - | |
63 | -#define SUN4M_INT_ENABLE 0x80000000 | |
64 | -#define SUN4M_INT_E14 0x00000080 | |
65 | -#define SUN4M_INT_E10 0x00080000 | |
66 | - | |
67 | -#define SUN4M_HARD_INT(x) (0x000000001 << (x)) | |
68 | -#define SUN4M_SOFT_INT(x) (0x000010000 << (x)) | |
69 | - | |
70 | -#define SUN4M_INT_MASKALL 0x80000000 /* mask all interrupts */ | |
71 | -#define SUN4M_INT_MODULE_ERR 0x40000000 /* module error */ | |
72 | -#define SUN4M_INT_M2S_WRITE 0x20000000 /* write buffer error */ | |
73 | -#define SUN4M_INT_ECC 0x10000000 /* ecc memory error */ | |
74 | -#define SUN4M_INT_FLOPPY 0x00400000 /* floppy disk */ | |
75 | -#define SUN4M_INT_MODULE 0x00200000 /* module interrupt */ | |
76 | -#define SUN4M_INT_VIDEO 0x00100000 /* onboard video */ | |
77 | -#define SUN4M_INT_REALTIME 0x00080000 /* system timer */ | |
78 | -#define SUN4M_INT_SCSI 0x00040000 /* onboard scsi */ | |
79 | -#define SUN4M_INT_AUDIO 0x00020000 /* audio/isdn */ | |
80 | -#define SUN4M_INT_ETHERNET 0x00010000 /* onboard ethernet */ | |
81 | -#define SUN4M_INT_SERIAL 0x00008000 /* serial ports */ | |
82 | -#define SUN4M_INT_SBUSBITS 0x00003F80 /* sbus int bits */ | |
83 | - | |
84 | -#define SUN4M_INT_SBUS(x) (1 << (x+7)) | |
85 | -#define SUN4M_INT_VME(x) (1 << (x)) | |
86 | - | |
87 | -typedef struct SCHEDState { | |
88 | - uint32_t addr, addrg; | |
89 | - uint32_t intreg_pending; | |
90 | - uint32_t intreg_enabled; | |
91 | - uint32_t intregm_pending; | |
92 | - uint32_t intregm_enabled; | |
93 | -} SCHEDState; | |
94 | - | |
95 | -static SCHEDState *ps; | |
96 | - | |
97 | -#ifdef DEBUG_IRQ_COUNT | |
98 | -static uint64_t irq_count[32]; | |
99 | -#endif | |
100 | - | |
101 | -static uint32_t intreg_mem_readl(void *opaque, target_phys_addr_t addr) | |
102 | -{ | |
103 | - SCHEDState *s = opaque; | |
104 | - uint32_t saddr; | |
105 | - | |
106 | - saddr = (addr - s->addr) >> 2; | |
107 | - switch (saddr) { | |
108 | - case 0: | |
109 | - return s->intreg_pending; | |
110 | - break; | |
111 | - default: | |
112 | - break; | |
113 | - } | |
114 | - return 0; | |
115 | -} | |
116 | - | |
117 | -static void intreg_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val) | |
118 | -{ | |
119 | - SCHEDState *s = opaque; | |
120 | - uint32_t saddr; | |
121 | - | |
122 | - saddr = (addr - s->addr) >> 2; | |
123 | - switch (saddr) { | |
124 | - case 0: | |
125 | - s->intreg_pending = val; | |
126 | - break; | |
127 | - case 1: // clear | |
128 | - s->intreg_enabled &= ~val; | |
129 | - break; | |
130 | - case 2: // set | |
131 | - s->intreg_enabled |= val; | |
132 | - break; | |
133 | - default: | |
134 | - break; | |
135 | - } | |
136 | -} | |
137 | - | |
138 | -static CPUReadMemoryFunc *intreg_mem_read[3] = { | |
139 | - intreg_mem_readl, | |
140 | - intreg_mem_readl, | |
141 | - intreg_mem_readl, | |
142 | -}; | |
143 | - | |
144 | -static CPUWriteMemoryFunc *intreg_mem_write[3] = { | |
145 | - intreg_mem_writel, | |
146 | - intreg_mem_writel, | |
147 | - intreg_mem_writel, | |
148 | -}; | |
149 | - | |
150 | -static uint32_t intregm_mem_readl(void *opaque, target_phys_addr_t addr) | |
151 | -{ | |
152 | - SCHEDState *s = opaque; | |
153 | - uint32_t saddr; | |
154 | - | |
155 | - saddr = (addr - s->addrg) >> 2; | |
156 | - switch (saddr) { | |
157 | - case 0: | |
158 | - return s->intregm_pending; | |
159 | - break; | |
160 | - case 1: | |
161 | - return s->intregm_enabled; | |
162 | - break; | |
163 | - default: | |
164 | - break; | |
165 | - } | |
166 | - return 0; | |
167 | -} | |
168 | - | |
169 | -static void intregm_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val) | |
170 | -{ | |
171 | - SCHEDState *s = opaque; | |
172 | - uint32_t saddr; | |
173 | - | |
174 | - saddr = (addr - s->addrg) >> 2; | |
175 | - switch (saddr) { | |
176 | - case 0: | |
177 | - s->intregm_pending = val; | |
178 | - break; | |
179 | - case 1: | |
180 | - s->intregm_enabled = val; | |
181 | - break; | |
182 | - case 2: // clear | |
183 | - s->intregm_enabled &= ~val; | |
184 | - break; | |
185 | - case 3: // set | |
186 | - s->intregm_enabled |= val; | |
187 | - break; | |
188 | - default: | |
189 | - break; | |
190 | - } | |
191 | -} | |
192 | - | |
193 | -static CPUReadMemoryFunc *intregm_mem_read[3] = { | |
194 | - intregm_mem_readl, | |
195 | - intregm_mem_readl, | |
196 | - intregm_mem_readl, | |
197 | -}; | |
198 | - | |
199 | -static CPUWriteMemoryFunc *intregm_mem_write[3] = { | |
200 | - intregm_mem_writel, | |
201 | - intregm_mem_writel, | |
202 | - intregm_mem_writel, | |
203 | -}; | |
204 | - | |
205 | -void pic_info(void) | |
206 | -{ | |
207 | - term_printf("per-cpu: pending 0x%08x, enabled 0x%08x\n", ps->intreg_pending, ps->intreg_enabled); | |
208 | - term_printf("master: pending 0x%08x, enabled 0x%08x\n", ps->intregm_pending, ps->intregm_enabled); | |
209 | -} | |
210 | - | |
211 | -void irq_info(void) | |
212 | -{ | |
213 | -#ifndef DEBUG_IRQ_COUNT | |
214 | - term_printf("irq statistic code not compiled.\n"); | |
215 | -#else | |
216 | - int i; | |
217 | - int64_t count; | |
218 | - | |
219 | - term_printf("IRQ statistics:\n"); | |
220 | - for (i = 0; i < 32; i++) { | |
221 | - count = irq_count[i]; | |
222 | - if (count > 0) | |
223 | - term_printf("%2d: %lld\n", i, count); | |
224 | - } | |
225 | -#endif | |
226 | -} | |
227 | - | |
228 | -static const unsigned int intr_to_mask[16] = { | |
229 | - 0, 0, 0, 0, 0, 0, SUN4M_INT_ETHERNET, 0, | |
230 | - 0, 0, 0, 0, 0, 0, 0, 0, | |
231 | -}; | |
232 | - | |
233 | -void pic_set_irq(int irq, int level) | |
234 | -{ | |
235 | - if (irq < 16) { | |
236 | - unsigned int mask = intr_to_mask[irq]; | |
237 | - ps->intreg_pending |= 1 << irq; | |
238 | - if (ps->intregm_enabled & mask) { | |
239 | - cpu_single_env->interrupt_index = irq; | |
240 | - cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HARD); | |
241 | - } | |
242 | - } | |
243 | -#ifdef DEBUG_IRQ_COUNT | |
244 | - if (level == 1) | |
245 | - irq_count[irq]++; | |
246 | -#endif | |
247 | -} | |
248 | - | |
249 | -void sched_init(uint32_t addr, uint32_t addrg) | |
250 | -{ | |
251 | - int intreg_io_memory, intregm_io_memory; | |
252 | - SCHEDState *s; | |
253 | - | |
254 | - s = qemu_mallocz(sizeof(SCHEDState)); | |
255 | - if (!s) | |
256 | - return; | |
257 | - s->addr = addr; | |
258 | - s->addrg = addrg; | |
259 | - | |
260 | - intreg_io_memory = cpu_register_io_memory(0, intreg_mem_read, intreg_mem_write, s); | |
261 | - cpu_register_physical_memory(addr, 3, intreg_io_memory); | |
262 | - | |
263 | - intregm_io_memory = cpu_register_io_memory(0, intregm_mem_read, intregm_mem_write, s); | |
264 | - cpu_register_physical_memory(addrg, 5, intregm_io_memory); | |
265 | - | |
266 | - ps = s; | |
267 | -} | |
268 | - |
hw/slavio_intctl.c
0 → 100644
1 | +/* | |
2 | + * QEMU Sparc SLAVIO interrupt controller emulation | |
3 | + * | |
4 | + * Copyright (c) 2003-2004 Fabrice Bellard | |
5 | + * | |
6 | + * Permission is hereby granted, free of charge, to any person obtaining a copy | |
7 | + * of this software and associated documentation files (the "Software"), to deal | |
8 | + * in the Software without restriction, including without limitation the rights | |
9 | + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
10 | + * copies of the Software, and to permit persons to whom the Software is | |
11 | + * furnished to do so, subject to the following conditions: | |
12 | + * | |
13 | + * The above copyright notice and this permission notice shall be included in | |
14 | + * all copies or substantial portions of the Software. | |
15 | + * | |
16 | + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
17 | + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
18 | + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
19 | + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
20 | + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
21 | + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
22 | + * THE SOFTWARE. | |
23 | + */ | |
24 | +#include "vl.h" | |
25 | +//#define DEBUG_IRQ_COUNT | |
26 | + | |
27 | +/* | |
28 | + * Registers of interrupt controller in sun4m. | |
29 | + * | |
30 | + * This is the interrupt controller part of chip STP2001 (Slave I/O), also | |
31 | + * produced as NCR89C105. See | |
32 | + * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt | |
33 | + * | |
34 | + * There is a system master controller and one for each cpu. | |
35 | + * | |
36 | + */ | |
37 | + | |
38 | +#define MAX_CPUS 16 | |
39 | + | |
40 | +typedef struct SLAVIO_INTCTLState { | |
41 | + uint32_t intreg_pending[MAX_CPUS]; | |
42 | + uint32_t intregm_pending; | |
43 | + uint32_t intregm_disabled; | |
44 | + uint32_t target_cpu; | |
45 | +#ifdef DEBUG_IRQ_COUNT | |
46 | + uint64_t irq_count[32]; | |
47 | +#endif | |
48 | +} SLAVIO_INTCTLState; | |
49 | + | |
50 | +#define INTCTL_MAXADDR 0xf | |
51 | +#define INTCTLM_MAXADDR 0xf | |
52 | + | |
53 | +// per-cpu interrupt controller | |
54 | +static uint32_t slavio_intctl_mem_readl(void *opaque, target_phys_addr_t addr) | |
55 | +{ | |
56 | + SLAVIO_INTCTLState *s = opaque; | |
57 | + uint32_t saddr; | |
58 | + int cpu; | |
59 | + | |
60 | + cpu = (addr & (MAX_CPUS - 1) * TARGET_PAGE_SIZE) >> 12; | |
61 | + saddr = (addr & INTCTL_MAXADDR) >> 2; | |
62 | + switch (saddr) { | |
63 | + case 0: | |
64 | + return s->intreg_pending[cpu]; | |
65 | + default: | |
66 | + break; | |
67 | + } | |
68 | + return 0; | |
69 | +} | |
70 | + | |
71 | +static void slavio_intctl_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val) | |
72 | +{ | |
73 | + SLAVIO_INTCTLState *s = opaque; | |
74 | + uint32_t saddr; | |
75 | + int cpu; | |
76 | + | |
77 | + cpu = (addr & (MAX_CPUS - 1) * TARGET_PAGE_SIZE) >> 12; | |
78 | + saddr = (addr & INTCTL_MAXADDR) >> 2; | |
79 | + switch (saddr) { | |
80 | + case 1: // clear pending softints | |
81 | + if (val & 0x4000) | |
82 | + val |= 80000000; | |
83 | + val &= 0xfffe0000; | |
84 | + s->intreg_pending[cpu] &= ~val; | |
85 | + break; | |
86 | + case 2: // set softint | |
87 | + val &= 0xfffe0000; | |
88 | + s->intreg_pending[cpu] |= val; | |
89 | + break; | |
90 | + default: | |
91 | + break; | |
92 | + } | |
93 | +} | |
94 | + | |
95 | +static CPUReadMemoryFunc *slavio_intctl_mem_read[3] = { | |
96 | + slavio_intctl_mem_readl, | |
97 | + slavio_intctl_mem_readl, | |
98 | + slavio_intctl_mem_readl, | |
99 | +}; | |
100 | + | |
101 | +static CPUWriteMemoryFunc *slavio_intctl_mem_write[3] = { | |
102 | + slavio_intctl_mem_writel, | |
103 | + slavio_intctl_mem_writel, | |
104 | + slavio_intctl_mem_writel, | |
105 | +}; | |
106 | + | |
107 | +// master system interrupt controller | |
108 | +static uint32_t slavio_intctlm_mem_readl(void *opaque, target_phys_addr_t addr) | |
109 | +{ | |
110 | + SLAVIO_INTCTLState *s = opaque; | |
111 | + uint32_t saddr; | |
112 | + | |
113 | + saddr = (addr & INTCTLM_MAXADDR) >> 2; | |
114 | + switch (saddr) { | |
115 | + case 0: | |
116 | + return s->intregm_pending; | |
117 | + case 1: | |
118 | + return s->intregm_disabled; | |
119 | + case 4: | |
120 | + return s->target_cpu; | |
121 | + default: | |
122 | + break; | |
123 | + } | |
124 | + return 0; | |
125 | +} | |
126 | + | |
127 | +static void slavio_intctlm_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val) | |
128 | +{ | |
129 | + SLAVIO_INTCTLState *s = opaque; | |
130 | + uint32_t saddr; | |
131 | + | |
132 | + saddr = (addr & INTCTLM_MAXADDR) >> 2; | |
133 | + switch (saddr) { | |
134 | + case 2: // clear (enable) | |
135 | + // Force unused bits | |
136 | + val |= 0x7fb2007f; | |
137 | + s->intregm_disabled &= ~val; | |
138 | + break; | |
139 | + case 3: // set (disable, clear pending) | |
140 | + // Force unused bits | |
141 | + val &= ~0x7fb2007f; | |
142 | + s->intregm_disabled |= val; | |
143 | + s->intregm_pending &= ~val; | |
144 | + break; | |
145 | + case 4: | |
146 | + s->target_cpu = val & (MAX_CPUS - 1); | |
147 | + break; | |
148 | + default: | |
149 | + break; | |
150 | + } | |
151 | +} | |
152 | + | |
153 | +static CPUReadMemoryFunc *slavio_intctlm_mem_read[3] = { | |
154 | + slavio_intctlm_mem_readl, | |
155 | + slavio_intctlm_mem_readl, | |
156 | + slavio_intctlm_mem_readl, | |
157 | +}; | |
158 | + | |
159 | +static CPUWriteMemoryFunc *slavio_intctlm_mem_write[3] = { | |
160 | + slavio_intctlm_mem_writel, | |
161 | + slavio_intctlm_mem_writel, | |
162 | + slavio_intctlm_mem_writel, | |
163 | +}; | |
164 | + | |
165 | +void slavio_pic_info(void *opaque) | |
166 | +{ | |
167 | + SLAVIO_INTCTLState *s = opaque; | |
168 | + int i; | |
169 | + | |
170 | + for (i = 0; i < MAX_CPUS; i++) { | |
171 | + term_printf("per-cpu %d: pending 0x%08x\n", i, s->intreg_pending[i]); | |
172 | + } | |
173 | + term_printf("master: pending 0x%08x, disabled 0x%08x\n", s->intregm_pending, s->intregm_disabled); | |
174 | +} | |
175 | + | |
176 | +void slavio_irq_info(void *opaque) | |
177 | +{ | |
178 | +#ifndef DEBUG_IRQ_COUNT | |
179 | + term_printf("irq statistic code not compiled.\n"); | |
180 | +#else | |
181 | + SLAVIO_INTCTLState *s = opaque; | |
182 | + int i; | |
183 | + int64_t count; | |
184 | + | |
185 | + term_printf("IRQ statistics:\n"); | |
186 | + for (i = 0; i < 32; i++) { | |
187 | + count = s->irq_count[i]; | |
188 | + if (count > 0) | |
189 | + term_printf("%2d: %lld\n", i, count); | |
190 | + } | |
191 | +#endif | |
192 | +} | |
193 | + | |
194 | +static const uint32_t intbit_to_level[32] = { | |
195 | + 2, 3, 5, 7, 9, 11, 0, 14, 3, 5, 7, 9, 11, 13, 12, 12, | |
196 | + 6, 0, 4, 10, 8, 0, 11, 0, 0, 0, 0, 0, 15, 0, 0, 0, | |
197 | +}; | |
198 | + | |
199 | +/* | |
200 | + * "irq" here is the bit number in the system interrupt register to | |
201 | + * separate serial and keyboard interrupts sharing a level. | |
202 | + */ | |
203 | +void slavio_pic_set_irq(void *opaque, int irq, int level) | |
204 | +{ | |
205 | + SLAVIO_INTCTLState *s = opaque; | |
206 | + | |
207 | + if (irq < 32) { | |
208 | + uint32_t mask = 1 << irq; | |
209 | + uint32_t pil = intbit_to_level[irq]; | |
210 | + if (pil > 0) { | |
211 | + if (level) { | |
212 | + s->intregm_pending |= mask; | |
213 | + s->intreg_pending[s->target_cpu] |= 1 << pil; | |
214 | + } | |
215 | + else { | |
216 | + s->intregm_pending &= ~mask; | |
217 | + s->intreg_pending[s->target_cpu] &= ~(1 << pil); | |
218 | + } | |
219 | + if (level && | |
220 | + !(s->intregm_disabled & mask) && | |
221 | + !(s->intregm_disabled & 0x80000000) && | |
222 | + (pil == 15 || (pil > cpu_single_env->psrpil && cpu_single_env->psret == 1))) { | |
223 | +#ifdef DEBUG_IRQ_COUNT | |
224 | + if (level == 1) | |
225 | + s->irq_count[pil]++; | |
226 | +#endif | |
227 | + cpu_single_env->interrupt_index = TT_EXTINT | pil; | |
228 | + cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HARD); | |
229 | + } | |
230 | + } | |
231 | + } | |
232 | +} | |
233 | + | |
234 | +static void slavio_intctl_save(QEMUFile *f, void *opaque) | |
235 | +{ | |
236 | + SLAVIO_INTCTLState *s = opaque; | |
237 | + int i; | |
238 | + | |
239 | + for (i = 0; i < MAX_CPUS; i++) { | |
240 | + qemu_put_be32s(f, &s->intreg_pending[i]); | |
241 | + } | |
242 | + qemu_put_be32s(f, &s->intregm_pending); | |
243 | + qemu_put_be32s(f, &s->intregm_disabled); | |
244 | + qemu_put_be32s(f, &s->target_cpu); | |
245 | +} | |
246 | + | |
247 | +static int slavio_intctl_load(QEMUFile *f, void *opaque, int version_id) | |
248 | +{ | |
249 | + SLAVIO_INTCTLState *s = opaque; | |
250 | + int i; | |
251 | + | |
252 | + if (version_id != 1) | |
253 | + return -EINVAL; | |
254 | + | |
255 | + for (i = 0; i < MAX_CPUS; i++) { | |
256 | + qemu_get_be32s(f, &s->intreg_pending[i]); | |
257 | + } | |
258 | + qemu_get_be32s(f, &s->intregm_pending); | |
259 | + qemu_get_be32s(f, &s->intregm_disabled); | |
260 | + qemu_get_be32s(f, &s->target_cpu); | |
261 | + return 0; | |
262 | +} | |
263 | + | |
264 | +static void slavio_intctl_reset(void *opaque) | |
265 | +{ | |
266 | + SLAVIO_INTCTLState *s = opaque; | |
267 | + int i; | |
268 | + | |
269 | + for (i = 0; i < MAX_CPUS; i++) { | |
270 | + s->intreg_pending[i] = 0; | |
271 | + } | |
272 | + s->intregm_disabled = 0xffffffff; | |
273 | + s->intregm_pending = 0; | |
274 | + s->target_cpu = 0; | |
275 | +} | |
276 | + | |
277 | +void *slavio_intctl_init(uint32_t addr, uint32_t addrg) | |
278 | +{ | |
279 | + int slavio_intctl_io_memory, slavio_intctlm_io_memory, i; | |
280 | + SLAVIO_INTCTLState *s; | |
281 | + | |
282 | + s = qemu_mallocz(sizeof(SLAVIO_INTCTLState)); | |
283 | + if (!s) | |
284 | + return NULL; | |
285 | + | |
286 | + for (i = 0; i < MAX_CPUS; i++) { | |
287 | + slavio_intctl_io_memory = cpu_register_io_memory(0, slavio_intctl_mem_read, slavio_intctl_mem_write, s); | |
288 | + cpu_register_physical_memory(addr + i * TARGET_PAGE_SIZE, INTCTL_MAXADDR, slavio_intctl_io_memory); | |
289 | + } | |
290 | + | |
291 | + slavio_intctlm_io_memory = cpu_register_io_memory(0, slavio_intctlm_mem_read, slavio_intctlm_mem_write, s); | |
292 | + cpu_register_physical_memory(addrg, INTCTLM_MAXADDR, slavio_intctlm_io_memory); | |
293 | + | |
294 | + register_savevm("slavio_intctl", addr, 1, slavio_intctl_save, slavio_intctl_load, s); | |
295 | + qemu_register_reset(slavio_intctl_reset, s); | |
296 | + slavio_intctl_reset(s); | |
297 | + return s; | |
298 | +} | |
299 | + | ... | ... |
hw/slavio_serial.c
0 → 100644
1 | +/* | |
2 | + * QEMU Sparc SLAVIO serial port emulation | |
3 | + * | |
4 | + * Copyright (c) 2003-2004 Fabrice Bellard | |
5 | + * | |
6 | + * Permission is hereby granted, free of charge, to any person obtaining a copy | |
7 | + * of this software and associated documentation files (the "Software"), to deal | |
8 | + * in the Software without restriction, including without limitation the rights | |
9 | + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
10 | + * copies of the Software, and to permit persons to whom the Software is | |
11 | + * furnished to do so, subject to the following conditions: | |
12 | + * | |
13 | + * The above copyright notice and this permission notice shall be included in | |
14 | + * all copies or substantial portions of the Software. | |
15 | + * | |
16 | + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
17 | + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
18 | + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
19 | + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
20 | + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
21 | + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
22 | + * THE SOFTWARE. | |
23 | + */ | |
24 | +#include "vl.h" | |
25 | + | |
26 | +//#define DEBUG_SERIAL | |
27 | + | |
28 | +/* debug keyboard */ | |
29 | +//#define DEBUG_KBD | |
30 | + | |
31 | +/* debug keyboard : only mouse */ | |
32 | +//#define DEBUG_MOUSE | |
33 | + | |
34 | +/* | |
35 | + * This is the serial port, mouse and keyboard part of chip STP2001 | |
36 | + * (Slave I/O), also produced as NCR89C105. See | |
37 | + * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt | |
38 | + * | |
39 | + * The serial ports implement full AMD AM8530 or Zilog Z8530 chips, | |
40 | + * mouse and keyboard ports don't implement all functions and they are | |
41 | + * only asynchronous. There is no DMA. | |
42 | + * | |
43 | + */ | |
44 | + | |
45 | +typedef struct ChannelState { | |
46 | + int irq; | |
47 | + int reg; | |
48 | + int rxint, txint; | |
49 | + uint8_t rx, tx, wregs[16], rregs[16]; | |
50 | + CharDriverState *chr; | |
51 | +} ChannelState; | |
52 | + | |
53 | +struct SerialState { | |
54 | + struct ChannelState chn[2]; | |
55 | +}; | |
56 | + | |
57 | +#define SERIAL_MAXADDR 7 | |
58 | + | |
59 | +static void slavio_serial_update_irq(ChannelState *s) | |
60 | +{ | |
61 | + if ((s->wregs[1] & 1) && // interrupts enabled | |
62 | + (((s->wregs[1] & 2) && s->txint == 1) || // tx ints enabled, pending | |
63 | + ((((s->wregs[1] & 0x18) == 8) || ((s->wregs[1] & 0x18) == 0x10)) && | |
64 | + s->rxint == 1) || // rx ints enabled, pending | |
65 | + ((s->wregs[15] & 0x80) && (s->rregs[0] & 0x80)))) { // break int e&p | |
66 | + pic_set_irq(s->irq, 1); | |
67 | + } else { | |
68 | + pic_set_irq(s->irq, 0); | |
69 | + } | |
70 | +} | |
71 | + | |
72 | +static void slavio_serial_reset_chn(ChannelState *s) | |
73 | +{ | |
74 | + int i; | |
75 | + | |
76 | + s->reg = 0; | |
77 | + for (i = 0; i < SERIAL_MAXADDR; i++) { | |
78 | + s->rregs[i] = 0; | |
79 | + s->wregs[i] = 0; | |
80 | + } | |
81 | + s->wregs[4] = 4; | |
82 | + s->wregs[9] = 0xc0; | |
83 | + s->wregs[11] = 8; | |
84 | + s->wregs[14] = 0x30; | |
85 | + s->wregs[15] = 0xf8; | |
86 | + s->rregs[0] = 0x44; | |
87 | + s->rregs[1] = 6; | |
88 | + | |
89 | + s->rx = s->tx = 0; | |
90 | + s->rxint = s->txint = 0; | |
91 | +} | |
92 | + | |
93 | +static void slavio_serial_reset(void *opaque) | |
94 | +{ | |
95 | + SerialState *s = opaque; | |
96 | + slavio_serial_reset_chn(&s->chn[0]); | |
97 | + slavio_serial_reset_chn(&s->chn[1]); | |
98 | +} | |
99 | + | |
100 | +static void slavio_serial_mem_writeb(void *opaque, uint32_t addr, uint32_t val) | |
101 | +{ | |
102 | + SerialState *ser = opaque; | |
103 | + ChannelState *s; | |
104 | + uint32_t saddr; | |
105 | + int newreg, channel; | |
106 | + | |
107 | + val &= 0xff; | |
108 | + saddr = (addr & 3) >> 1; | |
109 | + channel = (addr & SERIAL_MAXADDR) >> 2; | |
110 | + s = &ser->chn[channel]; | |
111 | + switch (saddr) { | |
112 | + case 0: | |
113 | + newreg = 0; | |
114 | + switch (s->reg) { | |
115 | + case 0: | |
116 | + newreg = val & 7; | |
117 | + val &= 0x38; | |
118 | + switch (val) { | |
119 | + case 8: | |
120 | + s->reg |= 0x8; | |
121 | + break; | |
122 | + case 0x20: | |
123 | + s->rxint = 0; | |
124 | + break; | |
125 | + case 0x28: | |
126 | + s->txint = 0; | |
127 | + break; | |
128 | + default: | |
129 | + break; | |
130 | + } | |
131 | + break; | |
132 | + case 1 ... 8: | |
133 | + case 10 ... 15: | |
134 | + s->wregs[s->reg] = val; | |
135 | + break; | |
136 | + case 9: | |
137 | + switch (val & 0xc0) { | |
138 | + case 0: | |
139 | + default: | |
140 | + break; | |
141 | + case 0x40: | |
142 | + slavio_serial_reset_chn(&ser->chn[1]); | |
143 | + return; | |
144 | + case 0x80: | |
145 | + slavio_serial_reset_chn(&ser->chn[0]); | |
146 | + return; | |
147 | + case 0xc0: | |
148 | + slavio_serial_reset(ser); | |
149 | + return; | |
150 | + } | |
151 | + break; | |
152 | + default: | |
153 | + break; | |
154 | + } | |
155 | + if (s->reg == 0) | |
156 | + s->reg = newreg; | |
157 | + else | |
158 | + s->reg = 0; | |
159 | + break; | |
160 | + case 1: | |
161 | + if (s->wregs[5] & 8) { // tx enabled | |
162 | + s->tx = val; | |
163 | + if (s->chr) | |
164 | + qemu_chr_write(s->chr, &s->tx, 1); | |
165 | + s->txint = 1; | |
166 | + } | |
167 | + break; | |
168 | + default: | |
169 | + break; | |
170 | + } | |
171 | +} | |
172 | + | |
173 | +static uint32_t slavio_serial_mem_readb(void *opaque, uint32_t addr) | |
174 | +{ | |
175 | + SerialState *ser = opaque; | |
176 | + ChannelState *s; | |
177 | + uint32_t saddr; | |
178 | + uint32_t ret; | |
179 | + int channel; | |
180 | + | |
181 | + saddr = (addr & 3) >> 1; | |
182 | + channel = (addr & SERIAL_MAXADDR) >> 2; | |
183 | + s = &ser->chn[channel]; | |
184 | + switch (saddr) { | |
185 | + case 0: | |
186 | + ret = s->rregs[s->reg]; | |
187 | + s->reg = 0; | |
188 | + return ret; | |
189 | + case 1: | |
190 | + s->rregs[0] &= ~1; | |
191 | + return s->rx; | |
192 | + default: | |
193 | + break; | |
194 | + } | |
195 | + return 0; | |
196 | +} | |
197 | + | |
198 | +static int serial_can_receive(void *opaque) | |
199 | +{ | |
200 | + ChannelState *s = opaque; | |
201 | + if (((s->wregs[3] & 1) == 0) // Rx not enabled | |
202 | + || ((s->rregs[0] & 1) == 1)) // char already available | |
203 | + return 0; | |
204 | + else | |
205 | + return 1; | |
206 | +} | |
207 | + | |
208 | +static void serial_receive_byte(ChannelState *s, int ch) | |
209 | +{ | |
210 | + s->rregs[0] |= 1; | |
211 | + s->rx = ch; | |
212 | + s->rxint = 1; | |
213 | + slavio_serial_update_irq(s); | |
214 | +} | |
215 | + | |
216 | +static void serial_receive_break(ChannelState *s) | |
217 | +{ | |
218 | + s->rregs[0] |= 0x80; | |
219 | + slavio_serial_update_irq(s); | |
220 | +} | |
221 | + | |
222 | +static void serial_receive1(void *opaque, const uint8_t *buf, int size) | |
223 | +{ | |
224 | + ChannelState *s = opaque; | |
225 | + serial_receive_byte(s, buf[0]); | |
226 | +} | |
227 | + | |
228 | +static void serial_event(void *opaque, int event) | |
229 | +{ | |
230 | + ChannelState *s = opaque; | |
231 | + if (event == CHR_EVENT_BREAK) | |
232 | + serial_receive_break(s); | |
233 | +} | |
234 | + | |
235 | +static CPUReadMemoryFunc *slavio_serial_mem_read[3] = { | |
236 | + slavio_serial_mem_readb, | |
237 | + slavio_serial_mem_readb, | |
238 | + slavio_serial_mem_readb, | |
239 | +}; | |
240 | + | |
241 | +static CPUWriteMemoryFunc *slavio_serial_mem_write[3] = { | |
242 | + slavio_serial_mem_writeb, | |
243 | + slavio_serial_mem_writeb, | |
244 | + slavio_serial_mem_writeb, | |
245 | +}; | |
246 | + | |
247 | +static void slavio_serial_save_chn(QEMUFile *f, ChannelState *s) | |
248 | +{ | |
249 | + qemu_put_be32s(f, &s->irq); | |
250 | + qemu_put_be32s(f, &s->reg); | |
251 | + qemu_put_be32s(f, &s->rxint); | |
252 | + qemu_put_be32s(f, &s->txint); | |
253 | + qemu_put_8s(f, &s->rx); | |
254 | + qemu_put_8s(f, &s->tx); | |
255 | + qemu_put_buffer(f, s->wregs, 16); | |
256 | + qemu_put_buffer(f, s->rregs, 16); | |
257 | +} | |
258 | + | |
259 | +static void slavio_serial_save(QEMUFile *f, void *opaque) | |
260 | +{ | |
261 | + SerialState *s = opaque; | |
262 | + | |
263 | + slavio_serial_save_chn(f, &s->chn[0]); | |
264 | + slavio_serial_save_chn(f, &s->chn[1]); | |
265 | +} | |
266 | + | |
267 | +static int slavio_serial_load_chn(QEMUFile *f, ChannelState *s, int version_id) | |
268 | +{ | |
269 | + if (version_id != 1) | |
270 | + return -EINVAL; | |
271 | + | |
272 | + qemu_get_be32s(f, &s->irq); | |
273 | + qemu_get_be32s(f, &s->reg); | |
274 | + qemu_get_be32s(f, &s->rxint); | |
275 | + qemu_get_be32s(f, &s->txint); | |
276 | + qemu_get_8s(f, &s->rx); | |
277 | + qemu_get_8s(f, &s->tx); | |
278 | + qemu_get_buffer(f, s->wregs, 16); | |
279 | + qemu_get_buffer(f, s->rregs, 16); | |
280 | + return 0; | |
281 | +} | |
282 | + | |
283 | +static int slavio_serial_load(QEMUFile *f, void *opaque, int version_id) | |
284 | +{ | |
285 | + SerialState *s = opaque; | |
286 | + int ret; | |
287 | + | |
288 | + ret = slavio_serial_load_chn(f, &s->chn[0], version_id); | |
289 | + if (ret != 0) | |
290 | + return ret; | |
291 | + ret = slavio_serial_load_chn(f, &s->chn[1], version_id); | |
292 | + return ret; | |
293 | + | |
294 | +} | |
295 | + | |
296 | +SerialState *slavio_serial_init(int base, int irq, CharDriverState *chr1, CharDriverState *chr2) | |
297 | +{ | |
298 | + int slavio_serial_io_memory; | |
299 | + SerialState *s; | |
300 | + | |
301 | + s = qemu_mallocz(sizeof(SerialState)); | |
302 | + if (!s) | |
303 | + return NULL; | |
304 | + s->chn[0].irq = irq; | |
305 | + s->chn[1].irq = irq; | |
306 | + s->chn[0].chr = chr1; | |
307 | + s->chn[1].chr = chr2; | |
308 | + | |
309 | + slavio_serial_io_memory = cpu_register_io_memory(0, slavio_serial_mem_read, slavio_serial_mem_write, s); | |
310 | + cpu_register_physical_memory(base, SERIAL_MAXADDR, slavio_serial_io_memory); | |
311 | + | |
312 | + if (chr1) { | |
313 | + qemu_chr_add_read_handler(chr1, serial_can_receive, serial_receive1, &s->chn[0]); | |
314 | + qemu_chr_add_event_handler(chr1, serial_event); | |
315 | + } | |
316 | + if (chr2) { | |
317 | + qemu_chr_add_read_handler(chr2, serial_can_receive, serial_receive1, &s->chn[1]); | |
318 | + qemu_chr_add_event_handler(chr2, serial_event); | |
319 | + } | |
320 | + register_savevm("slavio_serial", base, 1, slavio_serial_save, slavio_serial_load, s); | |
321 | + qemu_register_reset(slavio_serial_reset, s); | |
322 | + slavio_serial_reset(s); | |
323 | + return s; | |
324 | +} | |
325 | + | |
326 | +static void sunkbd_event(void *opaque, int ch) | |
327 | +{ | |
328 | + ChannelState *s = opaque; | |
329 | + // XXX: PC -> Sun Type 5 translation? | |
330 | + serial_receive_byte(s, ch); | |
331 | +} | |
332 | + | |
333 | +static void sunmouse_event(void *opaque, | |
334 | + int dx, int dy, int dz, int buttons_state) | |
335 | +{ | |
336 | + ChannelState *s = opaque; | |
337 | + int ch; | |
338 | + | |
339 | + // XXX | |
340 | + ch = 0x42; | |
341 | + serial_receive_byte(s, ch); | |
342 | +} | |
343 | + | |
344 | +void slavio_serial_ms_kbd_init(int base, int irq) | |
345 | +{ | |
346 | + int slavio_serial_io_memory; | |
347 | + SerialState *s; | |
348 | + | |
349 | + s = qemu_mallocz(sizeof(SerialState)); | |
350 | + if (!s) | |
351 | + return; | |
352 | + s->chn[0].irq = irq; | |
353 | + s->chn[1].irq = irq; | |
354 | + s->chn[0].chr = NULL; | |
355 | + s->chn[1].chr = NULL; | |
356 | + | |
357 | + slavio_serial_io_memory = cpu_register_io_memory(0, slavio_serial_mem_read, slavio_serial_mem_write, s); | |
358 | + cpu_register_physical_memory(base, SERIAL_MAXADDR, slavio_serial_io_memory); | |
359 | + | |
360 | + qemu_add_kbd_event_handler(sunkbd_event, &s->chn[0]); | |
361 | + qemu_add_mouse_event_handler(sunmouse_event, &s->chn[1]); | |
362 | + qemu_register_reset(slavio_serial_reset, s); | |
363 | + slavio_serial_reset(s); | |
364 | +} | ... | ... |
hw/slavio_timer.c
0 → 100644
1 | +/* | |
2 | + * QEMU Sparc SLAVIO timer controller emulation | |
3 | + * | |
4 | + * Copyright (c) 2003-2004 Fabrice Bellard | |
5 | + * | |
6 | + * Permission is hereby granted, free of charge, to any person obtaining a copy | |
7 | + * of this software and associated documentation files (the "Software"), to deal | |
8 | + * in the Software without restriction, including without limitation the rights | |
9 | + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
10 | + * copies of the Software, and to permit persons to whom the Software is | |
11 | + * furnished to do so, subject to the following conditions: | |
12 | + * | |
13 | + * The above copyright notice and this permission notice shall be included in | |
14 | + * all copies or substantial portions of the Software. | |
15 | + * | |
16 | + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
17 | + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
18 | + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
19 | + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
20 | + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
21 | + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
22 | + * THE SOFTWARE. | |
23 | + */ | |
24 | +#include "vl.h" | |
25 | + | |
26 | +//#define DEBUG_TIMER | |
27 | + | |
28 | +/* | |
29 | + * Registers of hardware timer in sun4m. | |
30 | + * | |
31 | + * This is the timer/counter part of chip STP2001 (Slave I/O), also | |
32 | + * produced as NCR89C105. See | |
33 | + * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt | |
34 | + * | |
35 | + * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0 | |
36 | + * are zero. Bit 31 is 1 when count has been reached. | |
37 | + * | |
38 | + */ | |
39 | + | |
40 | +typedef struct SLAVIO_TIMERState { | |
41 | + uint32_t limit, count, counthigh; | |
42 | + int64_t count_load_time; | |
43 | + int64_t expire_time; | |
44 | + int64_t stop_time, tick_offset; | |
45 | + QEMUTimer *irq_timer; | |
46 | + int irq; | |
47 | + int reached, stopped; | |
48 | + int mode; // 0 = processor, 1 = user, 2 = system | |
49 | +} SLAVIO_TIMERState; | |
50 | + | |
51 | +#define TIMER_MAXADDR 0x1f | |
52 | +#define CNT_FREQ 2000000 | |
53 | +#define MAX_CPUS 16 | |
54 | + | |
55 | +// Update count, set irq, update expire_time | |
56 | +static void slavio_timer_get_out(SLAVIO_TIMERState *s) | |
57 | +{ | |
58 | + int out; | |
59 | + int64_t diff, ticks, count; | |
60 | + uint32_t limit; | |
61 | + | |
62 | + // There are three clock tick units: CPU ticks, register units | |
63 | + // (nanoseconds), and counter ticks (500 ns). | |
64 | + if (s->mode == 1 && s->stopped) | |
65 | + ticks = s->stop_time; | |
66 | + else | |
67 | + ticks = qemu_get_clock(vm_clock) - s->tick_offset; | |
68 | + | |
69 | + out = (ticks >= s->expire_time); | |
70 | + if (out) | |
71 | + s->reached = 0x80000000; | |
72 | + if (!s->limit) | |
73 | + limit = 0x7fffffff; | |
74 | + else | |
75 | + limit = s->limit; | |
76 | + | |
77 | + // Convert register units to counter ticks | |
78 | + limit = limit >> 9; | |
79 | + | |
80 | + // Convert cpu ticks to counter ticks | |
81 | + diff = muldiv64(ticks - s->count_load_time, CNT_FREQ, ticks_per_sec); | |
82 | + | |
83 | + // Calculate what the counter should be, convert to register | |
84 | + // units | |
85 | + count = diff % limit; | |
86 | + s->count = count << 9; | |
87 | + s->counthigh = count >> 22; | |
88 | + | |
89 | + // Expire time: CPU ticks left to next interrupt | |
90 | + // Convert remaining counter ticks to CPU ticks | |
91 | + s->expire_time = ticks + muldiv64(limit - count, ticks_per_sec, CNT_FREQ); | |
92 | + | |
93 | +#ifdef DEBUG_TIMER | |
94 | + term_printf("timer: irq %d limit %d reached %d d %lld count %d s->c %x diff %lld stopped %d mode %d\n", s->irq, limit, s->reached?1:0, (ticks-s->count_load_time), count, s->count, s->expire_time - ticks, s->stopped, s->mode); | |
95 | +#endif | |
96 | + if (s->mode != 1) | |
97 | + pic_set_irq(s->irq, out); | |
98 | +} | |
99 | + | |
100 | +// timer callback | |
101 | +static void slavio_timer_irq(void *opaque) | |
102 | +{ | |
103 | + SLAVIO_TIMERState *s = opaque; | |
104 | + | |
105 | + if (!s->irq_timer) | |
106 | + return; | |
107 | + slavio_timer_get_out(s); | |
108 | + if (s->mode != 1) | |
109 | + qemu_mod_timer(s->irq_timer, s->expire_time); | |
110 | +} | |
111 | + | |
112 | +static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr) | |
113 | +{ | |
114 | + SLAVIO_TIMERState *s = opaque; | |
115 | + uint32_t saddr; | |
116 | + | |
117 | + saddr = (addr & TIMER_MAXADDR) >> 2; | |
118 | + switch (saddr) { | |
119 | + case 0: | |
120 | + // read limit (system counter mode) or read most signifying | |
121 | + // part of counter (user mode) | |
122 | + if (s->mode != 1) { | |
123 | + // clear irq | |
124 | + pic_set_irq(s->irq, 0); | |
125 | + s->count_load_time = qemu_get_clock(vm_clock); | |
126 | + s->reached = 0; | |
127 | + return s->limit; | |
128 | + } | |
129 | + else { | |
130 | + slavio_timer_get_out(s); | |
131 | + return s->counthigh & 0x7fffffff; | |
132 | + } | |
133 | + case 1: | |
134 | + // read counter and reached bit (system mode) or read lsbits | |
135 | + // of counter (user mode) | |
136 | + slavio_timer_get_out(s); | |
137 | + if (s->mode != 1) | |
138 | + return (s->count & 0x7fffffff) | s->reached; | |
139 | + else | |
140 | + return s->count; | |
141 | + case 3: | |
142 | + // read start/stop status | |
143 | + return s->stopped; | |
144 | + case 4: | |
145 | + // read user/system mode | |
146 | + return s->mode & 1; | |
147 | + default: | |
148 | + return 0; | |
149 | + } | |
150 | +} | |
151 | + | |
152 | +static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val) | |
153 | +{ | |
154 | + SLAVIO_TIMERState *s = opaque; | |
155 | + uint32_t saddr; | |
156 | + | |
157 | + saddr = (addr & TIMER_MAXADDR) >> 2; | |
158 | + switch (saddr) { | |
159 | + case 0: | |
160 | + // set limit, reset counter | |
161 | + s->count_load_time = qemu_get_clock(vm_clock); | |
162 | + // fall through | |
163 | + case 2: | |
164 | + // set limit without resetting counter | |
165 | + if (!val) | |
166 | + s->limit = 0x7fffffff; | |
167 | + else | |
168 | + s->limit = val & 0x7fffffff; | |
169 | + slavio_timer_irq(s); | |
170 | + break; | |
171 | + case 3: | |
172 | + // start/stop user counter | |
173 | + if (s->mode == 1) { | |
174 | + if (val & 1) { | |
175 | + s->stop_time = qemu_get_clock(vm_clock); | |
176 | + s->stopped = 1; | |
177 | + } | |
178 | + else { | |
179 | + if (s->stopped) | |
180 | + s->tick_offset += qemu_get_clock(vm_clock) - s->stop_time; | |
181 | + s->stopped = 0; | |
182 | + } | |
183 | + } | |
184 | + break; | |
185 | + case 4: | |
186 | + // bit 0: user (1) or system (0) counter mode | |
187 | + if (s->mode == 0 || s->mode == 1) | |
188 | + s->mode = val & 1; | |
189 | + break; | |
190 | + default: | |
191 | + break; | |
192 | + } | |
193 | +} | |
194 | + | |
195 | +static CPUReadMemoryFunc *slavio_timer_mem_read[3] = { | |
196 | + slavio_timer_mem_readl, | |
197 | + slavio_timer_mem_readl, | |
198 | + slavio_timer_mem_readl, | |
199 | +}; | |
200 | + | |
201 | +static CPUWriteMemoryFunc *slavio_timer_mem_write[3] = { | |
202 | + slavio_timer_mem_writel, | |
203 | + slavio_timer_mem_writel, | |
204 | + slavio_timer_mem_writel, | |
205 | +}; | |
206 | + | |
207 | +static void slavio_timer_save(QEMUFile *f, void *opaque) | |
208 | +{ | |
209 | + SLAVIO_TIMERState *s = opaque; | |
210 | + | |
211 | + qemu_put_be32s(f, &s->limit); | |
212 | + qemu_put_be32s(f, &s->count); | |
213 | + qemu_put_be32s(f, &s->counthigh); | |
214 | + qemu_put_be64s(f, &s->count_load_time); | |
215 | + qemu_put_be64s(f, &s->expire_time); | |
216 | + qemu_put_be64s(f, &s->stop_time); | |
217 | + qemu_put_be64s(f, &s->tick_offset); | |
218 | + qemu_put_be32s(f, &s->irq); | |
219 | + qemu_put_be32s(f, &s->reached); | |
220 | + qemu_put_be32s(f, &s->stopped); | |
221 | + qemu_put_be32s(f, &s->mode); | |
222 | +} | |
223 | + | |
224 | +static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id) | |
225 | +{ | |
226 | + SLAVIO_TIMERState *s = opaque; | |
227 | + | |
228 | + if (version_id != 1) | |
229 | + return -EINVAL; | |
230 | + | |
231 | + qemu_get_be32s(f, &s->limit); | |
232 | + qemu_get_be32s(f, &s->count); | |
233 | + qemu_get_be32s(f, &s->counthigh); | |
234 | + qemu_get_be64s(f, &s->count_load_time); | |
235 | + qemu_get_be64s(f, &s->expire_time); | |
236 | + qemu_get_be64s(f, &s->stop_time); | |
237 | + qemu_get_be64s(f, &s->tick_offset); | |
238 | + qemu_get_be32s(f, &s->irq); | |
239 | + qemu_get_be32s(f, &s->reached); | |
240 | + qemu_get_be32s(f, &s->stopped); | |
241 | + qemu_get_be32s(f, &s->mode); | |
242 | + return 0; | |
243 | +} | |
244 | + | |
245 | +static void slavio_timer_reset(void *opaque) | |
246 | +{ | |
247 | + SLAVIO_TIMERState *s = opaque; | |
248 | + | |
249 | + s->limit = 0; | |
250 | + s->count = 0; | |
251 | + s->count_load_time = qemu_get_clock(vm_clock);; | |
252 | + s->stop_time = s->count_load_time; | |
253 | + s->tick_offset = 0; | |
254 | + s->reached = 0; | |
255 | + s->mode &= 2; | |
256 | + s->stopped = 1; | |
257 | + slavio_timer_get_out(s); | |
258 | +} | |
259 | + | |
260 | +static void slavio_timer_init_internal(uint32_t addr, int irq, int mode) | |
261 | +{ | |
262 | + int slavio_timer_io_memory; | |
263 | + SLAVIO_TIMERState *s; | |
264 | + | |
265 | + s = qemu_mallocz(sizeof(SLAVIO_TIMERState)); | |
266 | + if (!s) | |
267 | + return; | |
268 | + s->irq = irq; | |
269 | + s->mode = mode; | |
270 | + s->irq_timer = qemu_new_timer(vm_clock, slavio_timer_irq, s); | |
271 | + | |
272 | + slavio_timer_io_memory = cpu_register_io_memory(0, slavio_timer_mem_read, | |
273 | + slavio_timer_mem_write, s); | |
274 | + cpu_register_physical_memory(addr, TIMER_MAXADDR, slavio_timer_io_memory); | |
275 | + register_savevm("slavio_timer", addr, 1, slavio_timer_save, slavio_timer_load, s); | |
276 | + qemu_register_reset(slavio_timer_reset, s); | |
277 | + slavio_timer_reset(s); | |
278 | +} | |
279 | + | |
280 | +void slavio_timer_init(uint32_t addr1, int irq1, uint32_t addr2, int irq2) | |
281 | +{ | |
282 | + int i; | |
283 | + | |
284 | + for (i = 0; i < MAX_CPUS; i++) { | |
285 | + slavio_timer_init_internal(addr1 + i * TARGET_PAGE_SIZE, irq1, 0); | |
286 | + } | |
287 | + | |
288 | + slavio_timer_init_internal(addr2, irq2, 2); | |
289 | +} | ... | ... |
hw/sun4m.c
... | ... | @@ -25,29 +25,32 @@ |
25 | 25 | #include "m48t08.h" |
26 | 26 | |
27 | 27 | #define KERNEL_LOAD_ADDR 0x00004000 |
28 | -#define MMU_CONTEXT_TBL 0x00003000 | |
29 | -#define MMU_L1PTP (MMU_CONTEXT_TBL + 0x0400) | |
30 | -#define MMU_L2PTP (MMU_CONTEXT_TBL + 0x0800) | |
31 | -#define PROM_ADDR 0xffd04000 | |
28 | +#define PROM_ADDR 0xffd00000 | |
32 | 29 | #define PROM_FILENAMEB "proll.bin" |
33 | 30 | #define PROM_FILENAMEE "proll.elf" |
34 | -#define PROLL_MAGIC_ADDR 0x20000000 | |
35 | -#define PHYS_JJ_EEPROM 0x71200000 /* [2000] MK48T08 */ | |
31 | +#define PHYS_JJ_EEPROM 0x71200000 /* m48t08 */ | |
36 | 32 | #define PHYS_JJ_IDPROM_OFF 0x1FD8 |
37 | 33 | #define PHYS_JJ_EEPROM_SIZE 0x2000 |
38 | -#define PHYS_JJ_IOMMU 0x10000000 /* First page of sun4m IOMMU */ | |
34 | +// IRQs are not PIL ones, but master interrupt controller register | |
35 | +// bits | |
36 | +#define PHYS_JJ_IOMMU 0x10000000 /* I/O MMU */ | |
39 | 37 | #define PHYS_JJ_TCX_FB 0x50800000 /* Start address, frame buffer body */ |
40 | -#define PHYS_JJ_TCX_0E 0x5E000000 /* Top address, one byte used. */ | |
41 | -#define PHYS_JJ_IOMMU 0x10000000 /* First page of sun4m IOMMU */ | |
42 | -#define PHYS_JJ_LEDMA 0x78400010 /* ledma, off by 10 from unused SCSI */ | |
43 | -#define PHYS_JJ_LE 0x78C00000 /* LANCE, typical sun4m */ | |
44 | -#define PHYS_JJ_LE_IRQ 6 | |
45 | -#define PHYS_JJ_CLOCK 0x71D00000 | |
46 | -#define PHYS_JJ_CLOCK_IRQ 10 | |
47 | -#define PHYS_JJ_CLOCK1 0x71D10000 | |
48 | -#define PHYS_JJ_CLOCK1_IRQ 14 | |
49 | -#define PHYS_JJ_INTR0 0x71E00000 /* CPU0 interrupt control registers */ | |
38 | +#define PHYS_JJ_LEDMA 0x78400010 /* Lance DMA controller */ | |
39 | +#define PHYS_JJ_LE 0x78C00000 /* Lance ethernet */ | |
40 | +#define PHYS_JJ_LE_IRQ 16 | |
41 | +#define PHYS_JJ_CLOCK 0x71D00000 /* Per-CPU timer/counter, L14 */ | |
42 | +#define PHYS_JJ_CLOCK_IRQ 7 | |
43 | +#define PHYS_JJ_CLOCK1 0x71D10000 /* System timer/counter, L10 */ | |
44 | +#define PHYS_JJ_CLOCK1_IRQ 19 | |
45 | +#define PHYS_JJ_INTR0 0x71E00000 /* Per-CPU interrupt control registers */ | |
50 | 46 | #define PHYS_JJ_INTR_G 0x71E10000 /* Master interrupt control registers */ |
47 | +#define PHYS_JJ_MS_KBD 0x71000000 /* Mouse and keyboard */ | |
48 | +#define PHYS_JJ_MS_KBD_IRQ 14 | |
49 | +#define PHYS_JJ_SER 0x71100000 /* Serial */ | |
50 | +#define PHYS_JJ_SER_IRQ 15 | |
51 | +#define PHYS_JJ_SCSI_IRQ 18 | |
52 | +#define PHYS_JJ_FDC 0x71400000 /* Floppy */ | |
53 | +#define PHYS_JJ_FLOPPY_IRQ 22 | |
51 | 54 | |
52 | 55 | /* TSC handling */ |
53 | 56 | |
... | ... | @@ -57,13 +60,73 @@ uint64_t cpu_get_tsc() |
57 | 60 | } |
58 | 61 | |
59 | 62 | void DMA_run() {} |
60 | -void SB16_run() {} | |
61 | -int serial_can_receive(SerialState *s) { return 0; } | |
62 | -void serial_receive_byte(SerialState *s, int ch) {} | |
63 | -void serial_receive_break(SerialState *s) {} | |
64 | 63 | |
65 | 64 | static m48t08_t *nvram; |
66 | 65 | |
66 | +static void nvram_init(m48t08_t *nvram, uint8_t *macaddr) | |
67 | +{ | |
68 | + unsigned char tmp = 0; | |
69 | + int i, j; | |
70 | + | |
71 | + i = 0x1fd8; | |
72 | + m48t08_write(nvram, i++, 0x01); | |
73 | + m48t08_write(nvram, i++, 0x80); /* Sun4m OBP */ | |
74 | + j = 0; | |
75 | + m48t08_write(nvram, i++, macaddr[j++]); | |
76 | + m48t08_write(nvram, i++, macaddr[j++]); | |
77 | + m48t08_write(nvram, i++, macaddr[j++]); | |
78 | + m48t08_write(nvram, i++, macaddr[j++]); | |
79 | + m48t08_write(nvram, i++, macaddr[j++]); | |
80 | + m48t08_write(nvram, i, macaddr[j]); | |
81 | + | |
82 | + /* Calculate checksum */ | |
83 | + for (i = 0x1fd8; i < 0x1fe7; i++) { | |
84 | + tmp ^= m48t08_read(nvram, i); | |
85 | + } | |
86 | + m48t08_write(nvram, 0x1fe7, tmp); | |
87 | +} | |
88 | + | |
89 | +static void *slavio_intctl; | |
90 | + | |
91 | +void pic_info() | |
92 | +{ | |
93 | + slavio_pic_info(slavio_intctl); | |
94 | +} | |
95 | + | |
96 | +void irq_info() | |
97 | +{ | |
98 | + slavio_irq_info(slavio_intctl); | |
99 | +} | |
100 | + | |
101 | +void pic_set_irq(int irq, int level) | |
102 | +{ | |
103 | + slavio_pic_set_irq(slavio_intctl, irq, level); | |
104 | +} | |
105 | + | |
106 | +static void *tcx; | |
107 | + | |
108 | +void vga_update_display() | |
109 | +{ | |
110 | + tcx_update_display(tcx); | |
111 | +} | |
112 | + | |
113 | +void vga_invalidate_display() | |
114 | +{ | |
115 | + tcx_invalidate_display(tcx); | |
116 | +} | |
117 | + | |
118 | +void vga_screen_dump(const char *filename) | |
119 | +{ | |
120 | + tcx_screen_dump(tcx, filename); | |
121 | +} | |
122 | + | |
123 | +static void *iommu; | |
124 | + | |
125 | +uint32_t iommu_translate(uint32_t addr) | |
126 | +{ | |
127 | + return iommu_translate_local(iommu, addr); | |
128 | +} | |
129 | + | |
67 | 130 | /* Sun4m hardware initialisation */ |
68 | 131 | void sun4m_init(int ram_size, int vga_ram_size, int boot_device, |
69 | 132 | DisplayState *ds, const char **fd_filename, int snapshot, |
... | ... | @@ -72,42 +135,50 @@ void sun4m_init(int ram_size, int vga_ram_size, int boot_device, |
72 | 135 | { |
73 | 136 | char buf[1024]; |
74 | 137 | int ret, linux_boot; |
75 | - unsigned long bios_offset; | |
138 | + unsigned long vram_size = 0x100000, prom_offset; | |
76 | 139 | |
77 | 140 | linux_boot = (kernel_filename != NULL); |
78 | 141 | |
79 | 142 | /* allocate RAM */ |
80 | 143 | cpu_register_physical_memory(0, ram_size, 0); |
81 | - bios_offset = ram_size; | |
82 | 144 | |
83 | - iommu_init(PHYS_JJ_IOMMU); | |
84 | - sched_init(PHYS_JJ_INTR0, PHYS_JJ_INTR_G); | |
85 | - tcx_init(ds, PHYS_JJ_TCX_FB); | |
145 | + iommu = iommu_init(PHYS_JJ_IOMMU); | |
146 | + slavio_intctl = slavio_intctl_init(PHYS_JJ_INTR0, PHYS_JJ_INTR_G); | |
147 | + tcx = tcx_init(ds, PHYS_JJ_TCX_FB, phys_ram_base + ram_size, ram_size, vram_size); | |
86 | 148 | lance_init(&nd_table[0], PHYS_JJ_LE_IRQ, PHYS_JJ_LE, PHYS_JJ_LEDMA); |
87 | - nvram = m48t08_init(PHYS_JJ_EEPROM, PHYS_JJ_EEPROM_SIZE, &nd_table[0].macaddr); | |
88 | - timer_init(PHYS_JJ_CLOCK, PHYS_JJ_CLOCK_IRQ); | |
89 | - timer_init(PHYS_JJ_CLOCK1, PHYS_JJ_CLOCK1_IRQ); | |
90 | - magic_init(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR, PROLL_MAGIC_ADDR); | |
149 | + nvram = m48t08_init(PHYS_JJ_EEPROM, PHYS_JJ_EEPROM_SIZE); | |
150 | + nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr); | |
151 | + slavio_timer_init(PHYS_JJ_CLOCK, PHYS_JJ_CLOCK_IRQ, PHYS_JJ_CLOCK1, PHYS_JJ_CLOCK1_IRQ); | |
152 | + slavio_serial_ms_kbd_init(PHYS_JJ_MS_KBD, PHYS_JJ_MS_KBD_IRQ); | |
153 | + slavio_serial_init(PHYS_JJ_SER, PHYS_JJ_SER_IRQ, serial_hds[0], serial_hds[1]); | |
154 | + fdctrl_init(PHYS_JJ_FLOPPY_IRQ, 0, 1, PHYS_JJ_FDC, fd_table); | |
91 | 155 | |
92 | - /* We load Proll as the kernel and start it. It will issue a magic | |
93 | - IO to load the real kernel */ | |
94 | - if (linux_boot) { | |
156 | + prom_offset = ram_size + vram_size; | |
157 | + | |
158 | + snprintf(buf, sizeof(buf), "%s/%s", bios_dir, PROM_FILENAMEE); | |
159 | + ret = load_elf(buf, phys_ram_base + prom_offset); | |
160 | + if (ret < 0) { | |
95 | 161 | snprintf(buf, sizeof(buf), "%s/%s", bios_dir, PROM_FILENAMEB); |
96 | - ret = load_kernel(buf, | |
97 | - phys_ram_base + KERNEL_LOAD_ADDR); | |
162 | + ret = load_image(buf, phys_ram_base + prom_offset); | |
163 | + } | |
164 | + if (ret < 0) { | |
165 | + fprintf(stderr, "qemu: could not load prom '%s'\n", | |
166 | + buf); | |
167 | + exit(1); | |
168 | + } | |
169 | + cpu_register_physical_memory(PROM_ADDR, (ret + TARGET_PAGE_SIZE) & TARGET_PAGE_MASK, | |
170 | + prom_offset | IO_MEM_ROM); | |
171 | + | |
172 | + if (linux_boot) { | |
173 | + ret = load_elf(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR); | |
174 | + if (ret < 0) | |
175 | + ret = load_aout(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR); | |
176 | + if (ret < 0) | |
177 | + ret = load_image(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR); | |
98 | 178 | if (ret < 0) { |
99 | 179 | fprintf(stderr, "qemu: could not load kernel '%s'\n", |
100 | - buf); | |
101 | - exit(1); | |
180 | + kernel_filename); | |
181 | + exit(1); | |
102 | 182 | } |
103 | 183 | } |
104 | - /* Setup a MMU entry for entire address space */ | |
105 | - stl_raw(phys_ram_base + MMU_CONTEXT_TBL, (MMU_L1PTP >> 4) | 1); | |
106 | - stl_raw(phys_ram_base + MMU_L1PTP, (MMU_L2PTP >> 4) | 1); | |
107 | - stl_raw(phys_ram_base + MMU_L1PTP + (0x01 << 2), (MMU_L2PTP >> 4) | 1); // 01.. == 00.. | |
108 | - stl_raw(phys_ram_base + MMU_L1PTP + (0xff << 2), (MMU_L2PTP >> 4) | 1); // ff.. == 00.. | |
109 | - stl_raw(phys_ram_base + MMU_L1PTP + (0xf0 << 2), (MMU_L2PTP >> 4) | 1); // f0.. == 00.. | |
110 | - /* 3 = U:RWX S:RWX */ | |
111 | - stl_raw(phys_ram_base + MMU_L2PTP, (3 << PTE_ACCESS_SHIFT) | 2); | |
112 | - stl_raw(phys_ram_base + MMU_L2PTP, ((0x01 << PTE_PPN_SHIFT) >> 4 ) | (3 << PTE_ACCESS_SHIFT) | 2); | |
113 | 184 | } | ... | ... |
hw/tcx.c
... | ... | @@ -25,179 +25,254 @@ |
25 | 25 | |
26 | 26 | #define MAXX 1024 |
27 | 27 | #define MAXY 768 |
28 | +/* | |
29 | + * Proll uses only small part of display, we need to switch to full | |
30 | + * display when we get linux framebuffer console or X11 running. For | |
31 | + * now it's just slower and awkward. | |
32 | +*/ | |
33 | +#if 1 | |
28 | 34 | #define XSZ (8*80) |
29 | 35 | #define YSZ (24*11) |
30 | 36 | #define XOFF (MAXX-XSZ) |
31 | 37 | #define YOFF (MAXY-YSZ) |
38 | +#else | |
39 | +#define XSZ MAXX | |
40 | +#define YSZ MAXY | |
41 | +#define XOFF 0 | |
42 | +#define YOFF 0 | |
43 | +#endif | |
32 | 44 | |
33 | 45 | typedef struct TCXState { |
34 | 46 | uint32_t addr; |
35 | 47 | DisplayState *ds; |
36 | 48 | uint8_t *vram; |
49 | + unsigned long vram_offset; | |
50 | + uint8_t r[256], g[256], b[256]; | |
37 | 51 | } TCXState; |
38 | 52 | |
39 | -static TCXState *ts; | |
40 | - | |
41 | -void vga_update_display() | |
53 | +static void tcx_draw_line32(TCXState *s1, uint8_t *d, | |
54 | + const uint8_t *s, int width) | |
42 | 55 | { |
43 | - dpy_update(ts->ds, 0, 0, XSZ, YSZ); | |
56 | + int x; | |
57 | + uint8_t val; | |
58 | + | |
59 | + for(x = 0; x < width; x++) { | |
60 | + val = *s++; | |
61 | + *d++ = s1->r[val]; | |
62 | + *d++ = s1->g[val]; | |
63 | + *d++ = s1->b[val]; | |
64 | + d++; | |
65 | + } | |
44 | 66 | } |
45 | 67 | |
46 | -void vga_invalidate_display() {} | |
68 | +static void tcx_draw_line24(TCXState *s1, uint8_t *d, | |
69 | + const uint8_t *s, int width) | |
70 | +{ | |
71 | + int x; | |
72 | + uint8_t val; | |
47 | 73 | |
48 | -static uint32_t tcx_mem_readb(void *opaque, target_phys_addr_t addr) | |
74 | + for(x = 0; x < width; x++) { | |
75 | + val = *s++; | |
76 | + *d++ = s1->r[val]; | |
77 | + *d++ = s1->g[val]; | |
78 | + *d++ = s1->b[val]; | |
79 | + } | |
80 | +} | |
81 | + | |
82 | +static void tcx_draw_line8(TCXState *s1, uint8_t *d, | |
83 | + const uint8_t *s, int width) | |
49 | 84 | { |
50 | - TCXState *s = opaque; | |
51 | - uint32_t saddr; | |
52 | - unsigned int x, y; | |
53 | - | |
54 | - saddr = addr - s->addr - YOFF*MAXX - XOFF; | |
55 | - y = saddr / MAXX; | |
56 | - x = saddr - y * MAXX; | |
57 | - if (x < XSZ && y < YSZ) { | |
58 | - return s->vram[y * XSZ + x]; | |
85 | + int x; | |
86 | + uint8_t val; | |
87 | + | |
88 | + for(x = 0; x < width; x++) { | |
89 | + val = *s++; | |
90 | + /* XXX translate between palettes? */ | |
91 | + *d++ = val; | |
59 | 92 | } |
60 | - return 0; | |
61 | 93 | } |
62 | 94 | |
63 | -static uint32_t tcx_mem_readw(void *opaque, target_phys_addr_t addr) | |
95 | +/* Fixed line length 1024 allows us to do nice tricks not possible on | |
96 | + VGA... */ | |
97 | +void tcx_update_display(void *opaque) | |
64 | 98 | { |
65 | - uint32_t v; | |
66 | -#ifdef TARGET_WORDS_BIGENDIAN | |
67 | - v = tcx_mem_readb(opaque, addr) << 8; | |
68 | - v |= tcx_mem_readb(opaque, addr + 1); | |
99 | + TCXState *ts = opaque; | |
100 | + uint32_t page; | |
101 | + int y, page_min, page_max, y_start, dd, ds; | |
102 | + uint8_t *d, *s; | |
103 | + void (*f)(TCXState *s1, uint8_t *d, const uint8_t *s, int width); | |
104 | + | |
105 | + if (ts->ds->depth == 0) | |
106 | + return; | |
107 | +#ifdef LD_BYPASS_OK | |
108 | + page = ts->vram_offset + YOFF*MAXX; | |
69 | 109 | #else |
70 | - v = tcx_mem_readb(opaque, addr); | |
71 | - v |= tcx_mem_readb(opaque, addr + 1) << 8; | |
110 | + page = ts->addr + YOFF*MAXX; | |
72 | 111 | #endif |
73 | - return v; | |
112 | + y_start = -1; | |
113 | + page_min = 0x7fffffff; | |
114 | + page_max = -1; | |
115 | + d = ts->ds->data; | |
116 | + s = ts->vram + YOFF*MAXX + XOFF; | |
117 | + dd = ts->ds->linesize; | |
118 | + ds = 1024; | |
119 | + | |
120 | + switch (ts->ds->depth) { | |
121 | + case 32: | |
122 | + f = tcx_draw_line32; | |
123 | + break; | |
124 | + case 24: | |
125 | + f = tcx_draw_line24; | |
126 | + break; | |
127 | + default: | |
128 | + case 8: | |
129 | + f = tcx_draw_line8; | |
130 | + break; | |
131 | + case 0: | |
132 | + return; | |
133 | + } | |
134 | + | |
135 | + for(y = 0; y < YSZ; y += 4, page += TARGET_PAGE_SIZE) { | |
136 | + if (cpu_physical_memory_is_dirty(page)) { | |
137 | + if (y_start < 0) | |
138 | + y_start = y; | |
139 | + if (page < page_min) | |
140 | + page_min = page; | |
141 | + if (page > page_max) | |
142 | + page_max = page; | |
143 | + f(ts, d, s, XSZ); | |
144 | + d += dd; | |
145 | + s += ds; | |
146 | + f(ts, d, s, XSZ); | |
147 | + d += dd; | |
148 | + s += ds; | |
149 | + f(ts, d, s, XSZ); | |
150 | + d += dd; | |
151 | + s += ds; | |
152 | + f(ts, d, s, XSZ); | |
153 | + d += dd; | |
154 | + s += ds; | |
155 | + } else { | |
156 | + if (y_start >= 0) { | |
157 | + /* flush to display */ | |
158 | + dpy_update(ts->ds, 0, y_start, | |
159 | + XSZ, y - y_start); | |
160 | + y_start = -1; | |
161 | + } | |
162 | + d += dd * 4; | |
163 | + s += ds * 4; | |
164 | + } | |
165 | + } | |
166 | + if (y_start >= 0) { | |
167 | + /* flush to display */ | |
168 | + dpy_update(ts->ds, 0, y_start, | |
169 | + XSZ, y - y_start); | |
170 | + } | |
171 | + /* reset modified pages */ | |
172 | + if (page_max != -1) { | |
173 | + cpu_physical_memory_reset_dirty(page_min, page_max + TARGET_PAGE_SIZE); | |
174 | + } | |
74 | 175 | } |
75 | 176 | |
76 | -static uint32_t tcx_mem_readl(void *opaque, target_phys_addr_t addr) | |
177 | +void tcx_invalidate_display(void *opaque) | |
77 | 178 | { |
78 | - uint32_t v; | |
79 | -#ifdef TARGET_WORDS_BIGENDIAN | |
80 | - v = tcx_mem_readb(opaque, addr) << 24; | |
81 | - v |= tcx_mem_readb(opaque, addr + 1) << 16; | |
82 | - v |= tcx_mem_readb(opaque, addr + 2) << 8; | |
83 | - v |= tcx_mem_readb(opaque, addr + 3); | |
179 | + TCXState *s = opaque; | |
180 | + int i; | |
181 | + | |
182 | + for (i = 0; i < MAXX*MAXY; i += TARGET_PAGE_SIZE) { | |
183 | +#ifdef LD_BYPASS_OK | |
184 | + cpu_physical_memory_set_dirty(s->vram_offset + i); | |
84 | 185 | #else |
85 | - v = tcx_mem_readb(opaque, addr); | |
86 | - v |= tcx_mem_readb(opaque, addr + 1) << 8; | |
87 | - v |= tcx_mem_readb(opaque, addr + 2) << 16; | |
88 | - v |= tcx_mem_readb(opaque, addr + 3) << 24; | |
186 | + cpu_physical_memory_set_dirty(s->addr + i); | |
89 | 187 | #endif |
90 | - return v; | |
188 | + } | |
91 | 189 | } |
92 | 190 | |
93 | -static void tcx_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val) | |
191 | +static void tcx_save(QEMUFile *f, void *opaque) | |
94 | 192 | { |
95 | 193 | TCXState *s = opaque; |
96 | - uint32_t saddr; | |
97 | - unsigned int x, y; | |
98 | - char *sptr; | |
99 | - | |
100 | - saddr = addr - s->addr - YOFF*MAXX - XOFF; | |
101 | - y = saddr / MAXX; | |
102 | - x = saddr - y * MAXX; | |
103 | - if (x < XSZ && y < YSZ) { | |
104 | - sptr = s->ds->data; | |
105 | - if (sptr) { | |
106 | - if (s->ds->depth == 24 || s->ds->depth == 32) { | |
107 | - /* XXX need to do CLUT translation */ | |
108 | - sptr[y * s->ds->linesize + x*4] = val & 0xff; | |
109 | - sptr[y * s->ds->linesize + x*4+1] = val & 0xff; | |
110 | - sptr[y * s->ds->linesize + x*4+2] = val & 0xff; | |
111 | - } | |
112 | - else if (s->ds->depth == 8) { | |
113 | - sptr[y * s->ds->linesize + x] = val & 0xff; | |
114 | - } | |
115 | - } | |
116 | - cpu_physical_memory_set_dirty(addr); | |
117 | - s->vram[y * XSZ + x] = val & 0xff; | |
118 | - } | |
194 | + | |
195 | + qemu_put_be32s(f, (uint32_t *)&s->addr); | |
196 | + qemu_put_be32s(f, (uint32_t *)&s->vram); | |
197 | + qemu_put_buffer(f, s->r, 256); | |
198 | + qemu_put_buffer(f, s->g, 256); | |
199 | + qemu_put_buffer(f, s->b, 256); | |
119 | 200 | } |
120 | 201 | |
121 | -static void tcx_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val) | |
202 | +static int tcx_load(QEMUFile *f, void *opaque, int version_id) | |
122 | 203 | { |
123 | -#ifdef TARGET_WORDS_BIGENDIAN | |
124 | - tcx_mem_writeb(opaque, addr, (val >> 8) & 0xff); | |
125 | - tcx_mem_writeb(opaque, addr + 1, val & 0xff); | |
126 | -#else | |
127 | - tcx_mem_writeb(opaque, addr, val & 0xff); | |
128 | - tcx_mem_writeb(opaque, addr + 1, (val >> 8) & 0xff); | |
129 | -#endif | |
204 | + TCXState *s = opaque; | |
205 | + | |
206 | + if (version_id != 1) | |
207 | + return -EINVAL; | |
208 | + | |
209 | + qemu_get_be32s(f, (uint32_t *)&s->addr); | |
210 | + qemu_get_be32s(f, (uint32_t *)&s->vram); | |
211 | + qemu_get_buffer(f, s->r, 256); | |
212 | + qemu_get_buffer(f, s->g, 256); | |
213 | + qemu_get_buffer(f, s->b, 256); | |
214 | + return 0; | |
130 | 215 | } |
131 | 216 | |
132 | -static void tcx_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val) | |
217 | +static void tcx_reset(void *opaque) | |
133 | 218 | { |
134 | -#ifdef TARGET_WORDS_BIGENDIAN | |
135 | - tcx_mem_writeb(opaque, addr, (val >> 24) & 0xff); | |
136 | - tcx_mem_writeb(opaque, addr + 1, (val >> 16) & 0xff); | |
137 | - tcx_mem_writeb(opaque, addr + 2, (val >> 8) & 0xff); | |
138 | - tcx_mem_writeb(opaque, addr + 3, val & 0xff); | |
139 | -#else | |
140 | - tcx_mem_writeb(opaque, addr, val & 0xff); | |
141 | - tcx_mem_writeb(opaque, addr + 1, (val >> 8) & 0xff); | |
142 | - tcx_mem_writeb(opaque, addr + 2, (val >> 16) & 0xff); | |
143 | - tcx_mem_writeb(opaque, addr + 3, (val >> 24) & 0xff); | |
219 | + TCXState *s = opaque; | |
220 | + | |
221 | + /* Initialize palette */ | |
222 | + memset(s->r, 0, 256); | |
223 | + memset(s->g, 0, 256); | |
224 | + memset(s->b, 0, 256); | |
225 | + s->r[255] = s->g[255] = s->b[255] = 255; | |
226 | + memset(s->vram, 0, MAXX*MAXY); | |
227 | +#ifdef LD_BYPASS_OK | |
228 | + cpu_physical_memory_reset_dirty(s->vram_offset, s->vram_offset + MAXX*MAXY - 1); | |
144 | 229 | #endif |
145 | 230 | } |
146 | 231 | |
147 | -static CPUReadMemoryFunc *tcx_mem_read[3] = { | |
148 | - tcx_mem_readb, | |
149 | - tcx_mem_readw, | |
150 | - tcx_mem_readl, | |
151 | -}; | |
152 | - | |
153 | -static CPUWriteMemoryFunc *tcx_mem_write[3] = { | |
154 | - tcx_mem_writeb, | |
155 | - tcx_mem_writew, | |
156 | - tcx_mem_writel, | |
157 | -}; | |
158 | - | |
159 | -void tcx_init(DisplayState *ds, uint32_t addr) | |
232 | +void *tcx_init(DisplayState *ds, uint32_t addr, uint8_t *vram_base, | |
233 | + unsigned long vram_offset, int vram_size) | |
160 | 234 | { |
161 | 235 | TCXState *s; |
162 | - int tcx_io_memory; | |
163 | 236 | |
164 | 237 | s = qemu_mallocz(sizeof(TCXState)); |
165 | 238 | if (!s) |
166 | - return; | |
239 | + return NULL; | |
167 | 240 | s->ds = ds; |
168 | 241 | s->addr = addr; |
169 | - ts = s; | |
170 | - tcx_io_memory = cpu_register_io_memory(0, tcx_mem_read, tcx_mem_write, s); | |
171 | - cpu_register_physical_memory(addr, 0x100000, | |
172 | - tcx_io_memory); | |
173 | - s->vram = qemu_mallocz(XSZ*YSZ); | |
242 | + s->vram = vram_base; | |
243 | + s->vram_offset = vram_offset; | |
244 | + | |
245 | + cpu_register_physical_memory(addr, vram_size, vram_offset); | |
246 | + | |
247 | + register_savevm("tcx", addr, 1, tcx_save, tcx_load, s); | |
248 | + qemu_register_reset(tcx_reset, s); | |
249 | + tcx_reset(s); | |
174 | 250 | dpy_resize(s->ds, XSZ, YSZ); |
251 | + return s; | |
175 | 252 | } |
176 | 253 | |
177 | -void vga_screen_dump(const char *filename) | |
254 | +void tcx_screen_dump(void *opaque, const char *filename) | |
178 | 255 | { |
179 | - TCXState *s = ts; | |
256 | + TCXState *s = opaque; | |
180 | 257 | FILE *f; |
181 | - uint8_t *d, *d1; | |
182 | - unsigned int v; | |
258 | + uint8_t *d, *d1, v; | |
183 | 259 | int y, x; |
184 | 260 | |
185 | 261 | f = fopen(filename, "wb"); |
186 | 262 | if (!f) |
187 | - return -1; | |
188 | - fprintf(f, "P6\n%d %d\n%d\n", | |
189 | - XSZ, YSZ, 255); | |
190 | - d1 = s->vram; | |
263 | + return; | |
264 | + fprintf(f, "P6\n%d %d\n%d\n", XSZ, YSZ, 255); | |
265 | + d1 = s->vram + YOFF*MAXX + XOFF; | |
191 | 266 | for(y = 0; y < YSZ; y++) { |
192 | 267 | d = d1; |
193 | 268 | for(x = 0; x < XSZ; x++) { |
194 | 269 | v = *d; |
195 | - fputc((v) & 0xff, f); | |
196 | - fputc((v) & 0xff, f); | |
197 | - fputc((v) & 0xff, f); | |
270 | + fputc(s->r[v], f); | |
271 | + fputc(s->g[v], f); | |
272 | + fputc(s->b[v], f); | |
198 | 273 | d++; |
199 | 274 | } |
200 | - d1 += XSZ; | |
275 | + d1 += MAXX; | |
201 | 276 | } |
202 | 277 | fclose(f); |
203 | 278 | return; | ... | ... |
hw/timer.c deleted
100644 → 0
1 | -/* | |
2 | - * QEMU Sparc timer controller emulation | |
3 | - * | |
4 | - * Copyright (c) 2003-2004 Fabrice Bellard | |
5 | - * | |
6 | - * Permission is hereby granted, free of charge, to any person obtaining a copy | |
7 | - * of this software and associated documentation files (the "Software"), to deal | |
8 | - * in the Software without restriction, including without limitation the rights | |
9 | - * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
10 | - * copies of the Software, and to permit persons to whom the Software is | |
11 | - * furnished to do so, subject to the following conditions: | |
12 | - * | |
13 | - * The above copyright notice and this permission notice shall be included in | |
14 | - * all copies or substantial portions of the Software. | |
15 | - * | |
16 | - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
17 | - * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
18 | - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
19 | - * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
20 | - * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
21 | - * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
22 | - * THE SOFTWARE. | |
23 | - */ | |
24 | -#include "vl.h" | |
25 | - | |
26 | -/* | |
27 | - * Registers of hardware timer in sun4m. | |
28 | - */ | |
29 | -struct sun4m_timer_percpu { | |
30 | - volatile unsigned int l14_timer_limit; /* Initial value is 0x009c4000 */ | |
31 | - volatile unsigned int l14_cur_count; | |
32 | -}; | |
33 | - | |
34 | -struct sun4m_timer_global { | |
35 | - volatile unsigned int l10_timer_limit; | |
36 | - volatile unsigned int l10_cur_count; | |
37 | -}; | |
38 | - | |
39 | -typedef struct TIMERState { | |
40 | - uint32_t addr; | |
41 | - uint32_t timer_regs[2]; | |
42 | - int irq; | |
43 | -} TIMERState; | |
44 | - | |
45 | -static uint32_t timer_mem_readl(void *opaque, target_phys_addr_t addr) | |
46 | -{ | |
47 | - TIMERState *s = opaque; | |
48 | - uint32_t saddr; | |
49 | - | |
50 | - saddr = (addr - s->addr) >> 2; | |
51 | - switch (saddr) { | |
52 | - default: | |
53 | - return s->timer_regs[saddr]; | |
54 | - break; | |
55 | - } | |
56 | - return 0; | |
57 | -} | |
58 | - | |
59 | -static void timer_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val) | |
60 | -{ | |
61 | - TIMERState *s = opaque; | |
62 | - uint32_t saddr; | |
63 | - | |
64 | - saddr = (addr - s->addr) >> 2; | |
65 | - switch (saddr) { | |
66 | - default: | |
67 | - s->timer_regs[saddr] = val; | |
68 | - break; | |
69 | - } | |
70 | -} | |
71 | - | |
72 | -static CPUReadMemoryFunc *timer_mem_read[3] = { | |
73 | - timer_mem_readl, | |
74 | - timer_mem_readl, | |
75 | - timer_mem_readl, | |
76 | -}; | |
77 | - | |
78 | -static CPUWriteMemoryFunc *timer_mem_write[3] = { | |
79 | - timer_mem_writel, | |
80 | - timer_mem_writel, | |
81 | - timer_mem_writel, | |
82 | -}; | |
83 | - | |
84 | -void timer_init(uint32_t addr, int irq) | |
85 | -{ | |
86 | - int timer_io_memory; | |
87 | - TIMERState *s; | |
88 | - | |
89 | - s = qemu_mallocz(sizeof(TIMERState)); | |
90 | - if (!s) | |
91 | - return; | |
92 | - s->addr = addr; | |
93 | - s->irq = irq; | |
94 | - | |
95 | - timer_io_memory = cpu_register_io_memory(0, timer_mem_read, timer_mem_write, s); | |
96 | - cpu_register_physical_memory(addr, 2, timer_io_memory); | |
97 | -} |
linux-user/elfload.c
... | ... | @@ -841,6 +841,7 @@ static void load_symbols(struct elfhdr *hdr, int fd) |
841 | 841 | unsigned int i; |
842 | 842 | struct elf_shdr sechdr, symtab, strtab; |
843 | 843 | char *strings; |
844 | + struct syminfo *s; | |
844 | 845 | |
845 | 846 | lseek(fd, hdr->e_shoff, SEEK_SET); |
846 | 847 | for (i = 0; i < hdr->e_shnum; i++) { |
... | ... | @@ -866,24 +867,27 @@ static void load_symbols(struct elfhdr *hdr, int fd) |
866 | 867 | |
867 | 868 | found: |
868 | 869 | /* Now know where the strtab and symtab are. Snarf them. */ |
869 | - disas_symtab = malloc(symtab.sh_size); | |
870 | - disas_strtab = strings = malloc(strtab.sh_size); | |
871 | - if (!disas_symtab || !disas_strtab) | |
870 | + s = malloc(sizeof(*s)); | |
871 | + s->disas_symtab = malloc(symtab.sh_size); | |
872 | + s->disas_strtab = strings = malloc(strtab.sh_size); | |
873 | + if (!s->disas_symtab || !s->disas_strtab) | |
872 | 874 | return; |
873 | 875 | |
874 | 876 | lseek(fd, symtab.sh_offset, SEEK_SET); |
875 | - if (read(fd, disas_symtab, symtab.sh_size) != symtab.sh_size) | |
877 | + if (read(fd, s->disas_symtab, symtab.sh_size) != symtab.sh_size) | |
876 | 878 | return; |
877 | 879 | |
878 | 880 | #ifdef BSWAP_NEEDED |
879 | 881 | for (i = 0; i < symtab.sh_size / sizeof(struct elf_sym); i++) |
880 | - bswap_sym(disas_symtab + sizeof(struct elf_sym)*i); | |
882 | + bswap_sym(s->disas_symtab + sizeof(struct elf_sym)*i); | |
881 | 883 | #endif |
882 | 884 | |
883 | 885 | lseek(fd, strtab.sh_offset, SEEK_SET); |
884 | 886 | if (read(fd, strings, strtab.sh_size) != strtab.sh_size) |
885 | 887 | return; |
886 | - disas_num_syms = symtab.sh_size / sizeof(struct elf_sym); | |
888 | + s->disas_num_syms = symtab.sh_size / sizeof(struct elf_sym); | |
889 | + s->next = syminfos; | |
890 | + syminfos = s; | |
887 | 891 | } |
888 | 892 | |
889 | 893 | static int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs, | ... | ... |
linux-user/main.c
... | ... | @@ -497,6 +497,8 @@ void cpu_loop (CPUSPARCState *env) |
497 | 497 | case TT_WIN_UNF: /* window underflow */ |
498 | 498 | restore_window(env); |
499 | 499 | break; |
500 | + case 0x100: // XXX, why do we get these? | |
501 | + break; | |
500 | 502 | default: |
501 | 503 | printf ("Unhandled trap: 0x%x\n", trapnr); |
502 | 504 | cpu_dump_state(env, stderr, fprintf, 0); | ... | ... |
linux-user/signal.c
... | ... | @@ -1354,13 +1354,14 @@ struct target_rt_signal_frame { |
1354 | 1354 | __siginfo_fpu_t fpu_state; |
1355 | 1355 | }; |
1356 | 1356 | |
1357 | -#define UREG_O0 0 | |
1358 | -#define UREG_O6 6 | |
1359 | -#define UREG_I0 16 | |
1360 | -#define UREG_I1 17 | |
1361 | -#define UREG_I2 18 | |
1362 | -#define UREG_I6 22 | |
1363 | -#define UREG_I7 23 | |
1357 | +#define UREG_O0 16 | |
1358 | +#define UREG_O6 22 | |
1359 | +#define UREG_I0 0 | |
1360 | +#define UREG_I1 1 | |
1361 | +#define UREG_I2 2 | |
1362 | +#define UREG_I6 6 | |
1363 | +#define UREG_I7 7 | |
1364 | +#define UREG_L0 8 | |
1364 | 1365 | #define UREG_FP UREG_I6 |
1365 | 1366 | #define UREG_SP UREG_O6 |
1366 | 1367 | |
... | ... | @@ -1385,23 +1386,20 @@ setup___siginfo(__siginfo_t *si, CPUState *env, target_ulong mask) |
1385 | 1386 | { |
1386 | 1387 | int err = 0, i; |
1387 | 1388 | |
1388 | - fprintf(stderr, "2.a %lx psr: %lx regs: %lx\n", si, env->psr, si->si_regs.psr); | |
1389 | 1389 | err |= __put_user(env->psr, &si->si_regs.psr); |
1390 | - fprintf(stderr, "2.a1 pc:%lx\n", si->si_regs.pc); | |
1391 | 1390 | err |= __put_user(env->pc, &si->si_regs.pc); |
1392 | 1391 | err |= __put_user(env->npc, &si->si_regs.npc); |
1393 | 1392 | err |= __put_user(env->y, &si->si_regs.y); |
1394 | - fprintf(stderr, "2.b\n"); | |
1395 | 1393 | for (i=0; i < 7; i++) { |
1396 | 1394 | err |= __put_user(env->gregs[i], &si->si_regs.u_regs[i]); |
1397 | 1395 | } |
1398 | 1396 | for (i=0; i < 7; i++) { |
1399 | - err |= __put_user(env->regwptr[i+16], &si->si_regs.u_regs[i+8]); | |
1397 | + err |= __put_user(env->regwptr[UREG_I0 + i], &si->si_regs.u_regs[i+8]); | |
1400 | 1398 | } |
1401 | - fprintf(stderr, "2.c\n"); | |
1402 | 1399 | err |= __put_user(mask, &si->si_mask); |
1403 | 1400 | return err; |
1404 | 1401 | } |
1402 | + | |
1405 | 1403 | static int |
1406 | 1404 | setup_sigcontext(struct target_sigcontext *sc, /*struct _fpstate *fpstate,*/ |
1407 | 1405 | CPUState *env, unsigned long mask) |
... | ... | @@ -1434,6 +1432,7 @@ static void setup_frame(int sig, struct emulated_sigaction *ka, |
1434 | 1432 | sf = (struct target_signal_frame *) |
1435 | 1433 | get_sigframe(ka, env, sigframe_size); |
1436 | 1434 | |
1435 | + //fprintf(stderr, "sf: %x pc %x fp %x sp %x\n", sf, env->pc, env->regwptr[UREG_FP], env->regwptr[UREG_SP]); | |
1437 | 1436 | #if 0 |
1438 | 1437 | if (invalid_frame_pointer(sf, sigframe_size)) |
1439 | 1438 | goto sigill_and_return; |
... | ... | @@ -1451,13 +1450,11 @@ static void setup_frame(int sig, struct emulated_sigaction *ka, |
1451 | 1450 | } |
1452 | 1451 | |
1453 | 1452 | for (i = 0; i < 7; i++) { |
1454 | - err |= __put_user(env->regwptr[i + 8], &sf->ss.locals[i]); | |
1453 | + err |= __put_user(env->regwptr[i + UREG_L0], &sf->ss.locals[i]); | |
1455 | 1454 | } |
1456 | 1455 | for (i = 0; i < 7; i++) { |
1457 | - err |= __put_user(env->regwptr[i + 16], &sf->ss.ins[i]); | |
1456 | + err |= __put_user(env->regwptr[i + UREG_I0], &sf->ss.ins[i]); | |
1458 | 1457 | } |
1459 | - //err |= __copy_to_user(sf, (char *) regs->u_regs[UREG_FP], | |
1460 | - // sizeof(struct reg_window)); | |
1461 | 1458 | if (err) |
1462 | 1459 | goto sigsegv; |
1463 | 1460 | |
... | ... | @@ -1486,13 +1483,15 @@ static void setup_frame(int sig, struct emulated_sigaction *ka, |
1486 | 1483 | |
1487 | 1484 | /* Flush instruction space. */ |
1488 | 1485 | //flush_sig_insns(current->mm, (unsigned long) &(sf->insns[0])); |
1489 | - //tb_flush(env); | |
1486 | + tb_flush(env); | |
1490 | 1487 | } |
1488 | + //cpu_dump_state(env, stderr, fprintf, 0); | |
1491 | 1489 | return; |
1492 | 1490 | |
1493 | 1491 | sigill_and_return: |
1494 | 1492 | force_sig(TARGET_SIGILL); |
1495 | 1493 | sigsegv: |
1494 | + //fprintf(stderr, "force_sig\n"); | |
1496 | 1495 | force_sig(TARGET_SIGSEGV); |
1497 | 1496 | } |
1498 | 1497 | static inline int |
... | ... | @@ -1542,13 +1541,16 @@ static void setup_rt_frame(int sig, struct emulated_sigaction *ka, |
1542 | 1541 | long do_sigreturn(CPUState *env) |
1543 | 1542 | { |
1544 | 1543 | struct target_signal_frame *sf; |
1545 | - unsigned long up_psr, pc, npc; | |
1544 | + uint32_t up_psr, pc, npc; | |
1546 | 1545 | target_sigset_t set; |
1546 | + sigset_t host_set; | |
1547 | 1547 | __siginfo_fpu_t *fpu_save; |
1548 | - int err; | |
1548 | + int err, i; | |
1549 | 1549 | |
1550 | - sf = (struct new_signal_frame *) env->regwptr[UREG_FP]; | |
1551 | - fprintf(stderr, "sigreturn sf: %lx\n", &sf); | |
1550 | + sf = (struct target_signal_frame *) env->regwptr[UREG_FP]; | |
1551 | + fprintf(stderr, "sigreturn\n"); | |
1552 | + fprintf(stderr, "sf: %x pc %x fp %x sp %x\n", sf, env->pc, env->regwptr[UREG_FP], env->regwptr[UREG_SP]); | |
1553 | + //cpu_dump_state(env, stderr, fprintf, 0); | |
1552 | 1554 | |
1553 | 1555 | /* 1. Make sure we are not getting garbage from the user */ |
1554 | 1556 | #if 0 |
... | ... | @@ -1567,36 +1569,41 @@ long do_sigreturn(CPUState *env) |
1567 | 1569 | goto segv_and_exit; |
1568 | 1570 | |
1569 | 1571 | /* 2. Restore the state */ |
1570 | - up_psr = env->psr; | |
1571 | - //err |= __copy_from_user(regs, &sf->info.si_regs, sizeof (struct pt_regs) | |
1572 | - //); | |
1572 | + err |= __get_user(up_psr, &sf->info.si_regs.psr); | |
1573 | + | |
1573 | 1574 | /* User can only change condition codes and FPU enabling in %psr. */ |
1574 | 1575 | env->psr = (up_psr & ~(PSR_ICC /* | PSR_EF */)) |
1575 | 1576 | | (env->psr & (PSR_ICC /* | PSR_EF */)); |
1576 | - fprintf(stderr, "psr: %lx\n", env->psr); | |
1577 | + fprintf(stderr, "psr: %x\n", env->psr); | |
1578 | + env->pc = pc-4; | |
1579 | + env->npc = pc; | |
1580 | + err |= __get_user(env->y, &sf->info.si_regs.y); | |
1581 | + for (i=0; i < 7; i++) { | |
1582 | + err |= __get_user(env->gregs[i], &sf->info.si_regs.u_regs[i]); | |
1583 | + } | |
1584 | + for (i=0; i < 7; i++) { | |
1585 | + err |= __get_user(env->regwptr[i + UREG_I0], &sf->info.si_regs.u_regs[i+8]); | |
1586 | + } | |
1577 | 1587 | |
1578 | 1588 | err |= __get_user(fpu_save, &sf->fpu_save); |
1579 | 1589 | |
1580 | - if (fpu_save) | |
1581 | - err |= restore_fpu_state(env, fpu_save); | |
1590 | + //if (fpu_save) | |
1591 | + // err |= restore_fpu_state(env, fpu_save); | |
1582 | 1592 | |
1583 | 1593 | /* This is pretty much atomic, no amount locking would prevent |
1584 | 1594 | * the races which exist anyways. |
1585 | 1595 | */ |
1586 | 1596 | err |= __get_user(set.sig[0], &sf->info.si_mask); |
1587 | - //err |= __copy_from_user(&set.sig[1], &sf->extramask, | |
1588 | - // (_NSIG_WORDS-1) * sizeof(unsigned int)); | |
1597 | + for(i = 1; i < TARGET_NSIG_WORDS; i++) { | |
1598 | + err |= (__get_user(set.sig[i], &sf->extramask[i - 1])); | |
1599 | + } | |
1600 | + | |
1601 | + target_to_host_sigset_internal(&host_set, &set); | |
1602 | + sigprocmask(SIG_SETMASK, &host_set, NULL); | |
1589 | 1603 | |
1590 | 1604 | if (err) |
1591 | 1605 | goto segv_and_exit; |
1592 | 1606 | |
1593 | -#if 0 | |
1594 | - sigdelsetmask(&set, ~_BLOCKABLE); | |
1595 | - spin_lock_irq(¤t->sigmask_lock); | |
1596 | - current->blocked = set; | |
1597 | - recalc_sigpending(current); | |
1598 | - spin_unlock_irq(¤t->sigmask_lock); | |
1599 | -#endif | |
1600 | 1607 | fprintf(stderr, "returning %lx\n", env->regwptr[0]); |
1601 | 1608 | return env->regwptr[0]; |
1602 | 1609 | ... | ... |
pc-bios/proll.bin deleted
100644 → 0
No preview for this file type
pc-bios/proll.elf
0 → 100644
No preview for this file type