Blame view

gdbstub.c 52.8 KB
bellard authored
1
2
/*
 * gdb server stub
3
 *
bellard authored
4
 * Copyright (c) 2003-2005 Fabrice Bellard
bellard authored
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
20
#include "config.h"
21
#include "qemu-common.h"
22
23
24
25
26
27
28
#ifdef CONFIG_USER_ONLY
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
29
#include <fcntl.h>
30
31
32

#include "qemu.h"
#else
pbrook authored
33
34
35
#include "qemu-char.h"
#include "sysemu.h"
#include "gdbstub.h"
36
#endif
37
38
39
#define MAX_PACKET_LENGTH 4096
bellard authored
40
41
42
43
44
45
46
47
48
49
#include "qemu_socket.h"
#ifdef _WIN32
/* XXX: these constants may be independent of the host ones even for Unix */
#ifndef SIGTRAP
#define SIGTRAP 5
#endif
#ifndef SIGINT
#define SIGINT 2
#endif
#else
bellard authored
50
#include <signal.h>
bellard authored
51
#endif
bellard authored
52
bellard authored
53
//#define DEBUG_GDB
bellard authored
54
55
56
57
58
59
60
61
62
63
typedef struct GDBRegisterState {
    int base_reg;
    int num_regs;
    gdb_reg_cb get_reg;
    gdb_reg_cb set_reg;
    const char *xml;
    struct GDBRegisterState *next;
} GDBRegisterState;
64
65
66
67
68
enum RSState {
    RS_IDLE,
    RS_GETLINE,
    RS_CHKSUM1,
    RS_CHKSUM2,
pbrook authored
69
    RS_SYSCALL,
70
71
};
typedef struct GDBState {
72
73
74
    CPUState *c_cpu; /* current CPU for step/continue ops */
    CPUState *g_cpu; /* current CPU for other ops */
    CPUState *query_cpu; /* for q{f|s}ThreadInfo */
bellard authored
75
    enum RSState state; /* parsing state */
76
    char line_buf[MAX_PACKET_LENGTH];
77
78
    int line_buf_index;
    int line_csum;
79
    uint8_t last_packet[MAX_PACKET_LENGTH + 4];
80
    int last_packet_len;
81
    int signal;
bellard authored
82
#ifdef CONFIG_USER_ONLY
83
    int fd;
bellard authored
84
    int running_state;
85
86
#else
    CharDriverState *chr;
bellard authored
87
#endif
88
} GDBState;
bellard authored
89
90
91
92
93
94
/* By default use no IRQs and no timers while single stepping so as to
 * make single stepping like an ICE HW step.
 */
static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
95
96
static GDBState *gdbserver_state;
97
98
99
100
101
/* This is an ugly hack to cope with both new and old gdb.
   If gdb sends qXfer:features:read then assume we're talking to a newish
   gdb that understands target descriptions.  */
static int gdb_has_xml;
102
#ifdef CONFIG_USER_ONLY
103
104
105
/* XXX: This is not thread safe.  Do we care?  */
static int gdbserver_fd = -1;
106
static int get_char(GDBState *s)
bellard authored
107
108
109
110
111
{
    uint8_t ch;
    int ret;

    for(;;) {
bellard authored
112
        ret = recv(s->fd, &ch, 1, 0);
bellard authored
113
        if (ret < 0) {
114
115
            if (errno == ECONNRESET)
                s->fd = -1;
bellard authored
116
117
118
            if (errno != EINTR && errno != EAGAIN)
                return -1;
        } else if (ret == 0) {
119
120
            close(s->fd);
            s->fd = -1;
bellard authored
121
122
123
124
125
126
127
            return -1;
        } else {
            break;
        }
    }
    return ch;
}
128
#endif
bellard authored
129
pbrook authored
130
131
132
133
134
135
136
137
138
139
140
141
142
static gdb_syscall_complete_cb gdb_current_syscall_cb;

enum {
    GDB_SYS_UNKNOWN,
    GDB_SYS_ENABLED,
    GDB_SYS_DISABLED,
} gdb_syscall_mode;

/* If gdb is connected when the first semihosting syscall occurs then use
   remote gdb syscalls.  Otherwise use native file IO.  */
int use_gdb_syscalls(void)
{
    if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
143
144
        gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
                                            : GDB_SYS_DISABLED);
pbrook authored
145
146
147
148
    }
    return gdb_syscall_mode == GDB_SYS_ENABLED;
}
149
150
151
152
153
154
155
156
157
158
/* Resume execution.  */
static inline void gdb_continue(GDBState *s)
{
#ifdef CONFIG_USER_ONLY
    s->running_state = 1;
#else
    vm_start();
#endif
}
159
static void put_buffer(GDBState *s, const uint8_t *buf, int len)
bellard authored
160
{
161
#ifdef CONFIG_USER_ONLY
bellard authored
162
163
164
    int ret;

    while (len > 0) {
bellard authored
165
        ret = send(s->fd, buf, len, 0);
bellard authored
166
167
168
169
170
171
172
173
        if (ret < 0) {
            if (errno != EINTR && errno != EAGAIN)
                return;
        } else {
            buf += ret;
            len -= ret;
        }
    }
174
175
176
#else
    qemu_chr_write(s->chr, buf, len);
#endif
bellard authored
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
}

static inline int fromhex(int v)
{
    if (v >= '0' && v <= '9')
        return v - '0';
    else if (v >= 'A' && v <= 'F')
        return v - 'A' + 10;
    else if (v >= 'a' && v <= 'f')
        return v - 'a' + 10;
    else
        return 0;
}

static inline int tohex(int v)
{
    if (v < 10)
        return v + '0';
    else
        return v - 10 + 'a';
}

static void memtohex(char *buf, const uint8_t *mem, int len)
{
    int i, c;
    char *q;
    q = buf;
    for(i = 0; i < len; i++) {
        c = mem[i];
        *q++ = tohex(c >> 4);
        *q++ = tohex(c & 0xf);
    }
    *q = '\0';
}

static void hextomem(uint8_t *mem, const char *buf, int len)
{
    int i;

    for(i = 0; i < len; i++) {
        mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
        buf += 2;
    }
}

/* return -1 if error, 0 if OK */
223
static int put_packet_binary(GDBState *s, const char *buf, int len)
bellard authored
224
{
225
    int csum, i;
226
    uint8_t *p;
bellard authored
227
228

    for(;;) {
229
230
231
232
        p = s->last_packet;
        *(p++) = '$';
        memcpy(p, buf, len);
        p += len;
bellard authored
233
234
235
236
        csum = 0;
        for(i = 0; i < len; i++) {
            csum += buf[i];
        }
237
238
239
        *(p++) = '#';
        *(p++) = tohex((csum >> 4) & 0xf);
        *(p++) = tohex((csum) & 0xf);
bellard authored
240
241
        s->last_packet_len = p - s->last_packet;
242
        put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
bellard authored
243
244
245
246
#ifdef CONFIG_USER_ONLY
        i = get_char(s);
        if (i < 0)
bellard authored
247
            return -1;
248
        if (i == '+')
bellard authored
249
            break;
250
251
252
#else
        break;
#endif
bellard authored
253
254
255
256
    }
    return 0;
}
257
258
259
260
261
262
/* return -1 if error, 0 if OK */
static int put_packet(GDBState *s, const char *buf)
{
#ifdef DEBUG_GDB
    printf("reply='%s'\n", buf);
#endif
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
    return put_packet_binary(s, buf, strlen(buf));
}

/* The GDB remote protocol transfers values in target byte order.  This means
   we can use the raw memory access routines to access the value buffer.
   Conveniently, these also handle the case where the buffer is mis-aligned.
 */
#define GET_REG8(val) do { \
    stb_p(mem_buf, val); \
    return 1; \
    } while(0)
#define GET_REG16(val) do { \
    stw_p(mem_buf, val); \
    return 2; \
    } while(0)
#define GET_REG32(val) do { \
    stl_p(mem_buf, val); \
    return 4; \
    } while(0)
#define GET_REG64(val) do { \
    stq_p(mem_buf, val); \
    return 8; \
    } while(0)

#if TARGET_LONG_BITS == 64
#define GET_REGL(val) GET_REG64(val)
#define ldtul_p(addr) ldq_p(addr)
#else
#define GET_REGL(val) GET_REG32(val)
#define ldtul_p(addr) ldl_p(addr)
294
295
#endif
296
#if defined(TARGET_I386)
297
298

#ifdef TARGET_X86_64
299
300
301
302
static const int gpr_map[16] = {
    R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
    8, 9, 10, 11, 12, 13, 14, 15
};
303
#else
304
static const int gpr_map[8] = {0, 1, 2, 3, 4, 5, 6, 7};
305
306
#endif
307
308
309
#define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)

static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
310
{
311
312
313
314
315
316
    if (n < CPU_NB_REGS) {
        GET_REGL(env->regs[gpr_map[n]]);
    } else if (n >= CPU_NB_REGS + 8 && n < CPU_NB_REGS + 16) {
        /* FIXME: byteswap float values.  */
#ifdef USE_X86LDOUBLE
        memcpy(mem_buf, &env->fpregs[n - (CPU_NB_REGS + 8)], 10);
317
#else
318
        memset(mem_buf, 0, 10);
319
#endif
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
        return 10;
    } else if (n >= CPU_NB_REGS + 24) {
        n -= CPU_NB_REGS + 24;
        if (n < CPU_NB_REGS) {
            stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0));
            stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1));
            return 16;
        } else if (n == CPU_NB_REGS) {
            GET_REG32(env->mxcsr);
        } 
    } else {
        n -= CPU_NB_REGS;
        switch (n) {
        case 0: GET_REGL(env->eip);
        case 1: GET_REG32(env->eflags);
        case 2: GET_REG32(env->segs[R_CS].selector);
        case 3: GET_REG32(env->segs[R_SS].selector);
        case 4: GET_REG32(env->segs[R_DS].selector);
        case 5: GET_REG32(env->segs[R_ES].selector);
        case 6: GET_REG32(env->segs[R_FS].selector);
        case 7: GET_REG32(env->segs[R_GS].selector);
        /* 8...15 x87 regs.  */
        case 16: GET_REG32(env->fpuc);
        case 17: GET_REG32((env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11);
        case 18: GET_REG32(0); /* ftag */
        case 19: GET_REG32(0); /* fiseg */
        case 20: GET_REG32(0); /* fioff */
        case 21: GET_REG32(0); /* foseg */
        case 22: GET_REG32(0); /* fooff */
        case 23: GET_REG32(0); /* fop */
        /* 24+ xmm regs.  */
        }
352
    }
353
    return 0;
bellard authored
354
355
}
356
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int i)
bellard authored
357
{
358
    uint32_t tmp;
bellard authored
359
360
361
362
363
364
365
366
    if (i < CPU_NB_REGS) {
        env->regs[gpr_map[i]] = ldtul_p(mem_buf);
        return sizeof(target_ulong);
    } else if (i >= CPU_NB_REGS + 8 && i < CPU_NB_REGS + 16) {
        i -= CPU_NB_REGS + 8;
#ifdef USE_X86LDOUBLE
        memcpy(&env->fpregs[i], mem_buf, 10);
367
#endif
368
369
370
371
372
373
374
375
376
377
        return 10;
    } else if (i >= CPU_NB_REGS + 24) {
        i -= CPU_NB_REGS + 24;
        if (i < CPU_NB_REGS) {
            env->xmm_regs[i].XMM_Q(0) = ldq_p(mem_buf);
            env->xmm_regs[i].XMM_Q(1) = ldq_p(mem_buf + 8);
            return 16;
        } else if (i == CPU_NB_REGS) {
            env->mxcsr = ldl_p(mem_buf);
            return 4;
378
        }
379
380
381
382
383
384
385
386
387
388
389
390
391
392
    } else {
        i -= CPU_NB_REGS;
        switch (i) {
        case 0: env->eip = ldtul_p(mem_buf); return sizeof(target_ulong);
        case 1: env->eflags = ldl_p(mem_buf); return 4;
#if defined(CONFIG_USER_ONLY)
#define LOAD_SEG(index, sreg)\
            tmp = ldl_p(mem_buf);\
            if (tmp != env->segs[sreg].selector)\
                cpu_x86_load_seg(env, sreg, tmp);
#else
/* FIXME: Honor segment registers.  Needs to avoid raising an exception
   when the selector is invalid.  */
#define LOAD_SEG(index, sreg) do {} while(0)
bellard authored
393
#endif
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
        case 2: LOAD_SEG(10, R_CS); return 4;
        case 3: LOAD_SEG(11, R_SS); return 4;
        case 4: LOAD_SEG(12, R_DS); return 4;
        case 5: LOAD_SEG(13, R_ES); return 4;
        case 6: LOAD_SEG(14, R_FS); return 4;
        case 7: LOAD_SEG(15, R_GS); return 4;
        /* 8...15 x87 regs.  */
        case 16: env->fpuc = ldl_p(mem_buf); return 4;
        case 17:
                 tmp = ldl_p(mem_buf);
                 env->fpstt = (tmp >> 11) & 7;
                 env->fpus = tmp & ~0x3800;
                 return 4;
        case 18: /* ftag */ return 4;
        case 19: /* fiseg */ return 4;
        case 20: /* fioff */ return 4;
        case 21: /* foseg */ return 4;
        case 22: /* fooff */ return 4;
        case 23: /* fop */ return 4;
        /* 24+ xmm regs.  */
414
415
        }
    }
416
417
    /* Unrecognised register.  */
    return 0;
bellard authored
418
419
}
bellard authored
420
421
#elif defined (TARGET_PPC)
422
#define NUM_CORE_REGS 71
bellard authored
423
424
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
bellard authored
425
{
426
427
428
429
430
    if (n < 32) {
        /* gprs */
        GET_REGL(env->gpr[n]);
    } else if (n < 64) {
        /* fprs */
431
        stfq_p(mem_buf, env->fpr[n-32]);
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
        return 8;
    } else {
        switch (n) {
        case 64: GET_REGL(env->nip);
        case 65: GET_REGL(env->msr);
        case 66:
            {
                uint32_t cr = 0;
                int i;
                for (i = 0; i < 8; i++)
                    cr |= env->crf[i] << (32 - ((i + 1) * 4));
                GET_REG32(cr);
            }
        case 67: GET_REGL(env->lr);
        case 68: GET_REGL(env->ctr);
447
        case 69: GET_REGL(env->xer);
448
449
450
451
452
        case 70: GET_REG32(0); /* fpscr */
        }
    }
    return 0;
}
bellard authored
453
454
455
456
457
458
459
460
461
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
{
    if (n < 32) {
        /* gprs */
        env->gpr[n] = ldtul_p(mem_buf);
        return sizeof(target_ulong);
    } else if (n < 64) {
        /* fprs */
462
        env->fpr[n-32] = ldfq_p(mem_buf);
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
        return 8;
    } else {
        switch (n) {
        case 64:
            env->nip = ldtul_p(mem_buf);
            return sizeof(target_ulong);
        case 65:
            ppc_store_msr(env, ldtul_p(mem_buf));
            return sizeof(target_ulong);
        case 66:
            {
                uint32_t cr = ldl_p(mem_buf);
                int i;
                for (i = 0; i < 8; i++)
                    env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
                return 4;
            }
        case 67:
            env->lr = ldtul_p(mem_buf);
            return sizeof(target_ulong);
        case 68:
            env->ctr = ldtul_p(mem_buf);
            return sizeof(target_ulong);
        case 69:
487
488
            env->xer = ldtul_p(mem_buf);
            return sizeof(target_ulong);
489
490
491
492
493
494
        case 70:
            /* fpscr */
            return 4;
        }
    }
    return 0;
495
}
496
497
#elif defined (TARGET_SPARC)
498
499
500

#if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
#define NUM_CORE_REGS 86
501
#else
502
#define NUM_CORE_REGS 73
503
#endif
504
505
#ifdef TARGET_ABI32
506
#define GET_REGA(val) GET_REG32(val)
507
#else
508
#define GET_REGA(val) GET_REGL(val)
509
#endif
510
511
512
513
514
515
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
{
    if (n < 8) {
        /* g0..g7 */
        GET_REGA(env->gregs[n]);
516
    }
517
518
519
    if (n < 32) {
        /* register window */
        GET_REGA(env->regwptr[n - 8]);
520
    }
521
522
523
524
#if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
    if (n < 64) {
        /* fprs */
        GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
525
526
    }
    /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
527
528
529
530
531
532
533
534
535
536
537
    switch (n) {
    case 64: GET_REGA(env->y);
    case 65: GET_REGA(GET_PSR(env));
    case 66: GET_REGA(env->wim);
    case 67: GET_REGA(env->tbr);
    case 68: GET_REGA(env->pc);
    case 69: GET_REGA(env->npc);
    case 70: GET_REGA(env->fsr);
    case 71: GET_REGA(0); /* csr */
    case 72: GET_REGA(0);
    }
bellard authored
538
#else
539
540
541
542
543
544
545
    if (n < 64) {
        /* f0-f31 */
        GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
    }
    if (n < 80) {
        /* f32-f62 (double width, even numbers only) */
        uint64_t val;
546
547
548
549
        val = (uint64_t)*((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) << 32;
        val |= *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]);
        GET_REG64(val);
bellard authored
550
    }
551
552
553
554
    switch (n) {
    case 80: GET_REGL(env->pc);
    case 81: GET_REGL(env->npc);
    case 82: GET_REGL(((uint64_t)GET_CCR(env) << 32) |
555
556
557
                           ((env->asi & 0xff) << 24) |
                           ((env->pstate & 0xfff) << 8) |
                           GET_CWP64(env));
558
559
560
561
    case 83: GET_REGL(env->fsr);
    case 84: GET_REGL(env->fprs);
    case 85: GET_REGL(env->y);
    }
bellard authored
562
#endif
563
    return 0;
564
565
}
566
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
567
{
568
569
570
571
#if defined(TARGET_ABI32)
    abi_ulong tmp;

    tmp = ldl_p(mem_buf);
572
#else
573
574
575
    target_ulong tmp;

    tmp = ldtul_p(mem_buf);
576
#endif
577
578
579
580
581
582
583
    if (n < 8) {
        /* g0..g7 */
        env->gregs[n] = tmp;
    } else if (n < 32) {
        /* register window */
        env->regwptr[n - 8] = tmp;
584
    }
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
#if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
    else if (n < 64) {
        /* fprs */
        *((uint32_t *)&env->fpr[n - 32]) = tmp;
    } else {
        /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
        switch (n) {
        case 64: env->y = tmp; break;
        case 65: PUT_PSR(env, tmp); break;
        case 66: env->wim = tmp; break;
        case 67: env->tbr = tmp; break;
        case 68: env->pc = tmp; break;
        case 69: env->npc = tmp; break;
        case 70: env->fsr = tmp; break;
        default: return 0;
        }
601
    }
602
    return 4;
bellard authored
603
#else
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
    else if (n < 64) {
        /* f0-f31 */
        env->fpr[n] = ldfl_p(mem_buf);
        return 4;
    } else if (n < 80) {
        /* f32-f62 (double width, even numbers only) */
        *((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) = tmp >> 32;
        *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]) = tmp;
    } else {
        switch (n) {
        case 80: env->pc = tmp; break;
        case 81: env->npc = tmp; break;
        case 82:
	    PUT_CCR(env, tmp >> 32);
	    env->asi = (tmp >> 24) & 0xff;
	    env->pstate = (tmp >> 8) & 0xfff;
	    PUT_CWP64(env, tmp & 0xff);
	    break;
        case 83: env->fsr = tmp; break;
        case 84: env->fprs = tmp; break;
        case 85: env->y = tmp; break;
        default: return 0;
        }
627
    }
628
    return 8;
bellard authored
629
#endif
bellard authored
630
}
631
#elif defined (TARGET_ARM)
bellard authored
632
633
634
635
636
637
638
639
/* Old gdb always expect FPA registers.  Newer (xml-aware) gdb only expect
   whatever the target description contains.  Due to a historical mishap
   the FPA registers appear in between core integer regs and the CPSR.
   We hack round this by giving the FPA regs zero size when talking to a
   newer gdb.  */
#define NUM_CORE_REGS 26
#define GDB_CORE_XML "arm-core.xml"
pbrook authored
640
641
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
pbrook authored
642
{
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
    if (n < 16) {
        /* Core integer register.  */
        GET_REG32(env->regs[n]);
    }
    if (n < 24) {
        /* FPA registers.  */
        if (gdb_has_xml)
            return 0;
        memset(mem_buf, 0, 12);
        return 12;
    }
    switch (n) {
    case 24:
        /* FPA status register.  */
        if (gdb_has_xml)
            return 0;
        GET_REG32(0);
    case 25:
        /* CPSR */
        GET_REG32(cpsr_read(env));
    }
    /* Unknown register.  */
    return 0;
pbrook authored
666
}
667
668
669
670
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
{
    uint32_t tmp;
671
672
    tmp = ldl_p(mem_buf);
673
674
675
676
677
    /* Mask out low bit of PC to workaround gdb bugs.  This will probably
       cause problems if we ever implement the Jazelle DBX extensions.  */
    if (n == 15)
        tmp &= ~1;
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
    if (n < 16) {
        /* Core integer register.  */
        env->regs[n] = tmp;
        return 4;
    }
    if (n < 24) { /* 16-23 */
        /* FPA registers (ignored).  */
        if (gdb_has_xml)
            return 0;
        return 12;
    }
    switch (n) {
    case 24:
        /* FPA status register (ignored).  */
        if (gdb_has_xml)
            return 0;
        return 4;
    case 25:
        /* CPSR */
        cpsr_write (env, tmp, 0xffffffff);
        return 4;
    }
    /* Unknown register.  */
    return 0;
}
704
705
#elif defined (TARGET_M68K)
706
707
#define NUM_CORE_REGS 18
708
709
#define GDB_CORE_XML "cf-core.xml"
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
{
    if (n < 8) {
        /* D0-D7 */
        GET_REG32(env->dregs[n]);
    } else if (n < 16) {
        /* A0-A7 */
        GET_REG32(env->aregs[n - 8]);
    } else {
	switch (n) {
        case 16: GET_REG32(env->sr);
        case 17: GET_REG32(env->pc);
        }
    }
    /* FP registers not included here because they vary between
       ColdFire and m68k.  Use XML bits for these.  */
    return 0;
}
729
730
731
732
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
{
    uint32_t tmp;
733
734
    tmp = ldl_p(mem_buf);
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
    if (n < 8) {
        /* D0-D7 */
        env->dregs[n] = tmp;
    } else if (n < 8) {
        /* A0-A7 */
        env->aregs[n - 8] = tmp;
    } else {
        switch (n) {
        case 16: env->sr = tmp; break;
        case 17: env->pc = tmp; break;
        default: return 0;
        }
    }
    return 4;
}
#elif defined (TARGET_MIPS)
ths authored
752
753
#define NUM_CORE_REGS 73
ths authored
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
{
    if (n < 32) {
        GET_REGL(env->active_tc.gpr[n]);
    }
    if (env->CP0_Config1 & (1 << CP0C1_FP)) {
        if (n >= 38 && n < 70) {
            if (env->CP0_Status & (1 << CP0St_FR))
		GET_REGL(env->active_fpu.fpr[n - 38].d);
            else
		GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]);
        }
        switch (n) {
        case 70: GET_REGL((int32_t)env->active_fpu.fcr31);
        case 71: GET_REGL((int32_t)env->active_fpu.fcr0);
        }
    }
    switch (n) {
    case 32: GET_REGL((int32_t)env->CP0_Status);
    case 33: GET_REGL(env->active_tc.LO[0]);
    case 34: GET_REGL(env->active_tc.HI[0]);
    case 35: GET_REGL(env->CP0_BadVAddr);
    case 36: GET_REGL((int32_t)env->CP0_Cause);
    case 37: GET_REGL(env->active_tc.PC);
    case 72: GET_REGL(0); /* fp */
    case 89: GET_REGL((int32_t)env->CP0_PRid);
    }
    if (n >= 73 && n <= 88) {
	/* 16 embedded regs.  */
	GET_REGL(0);
    }
786
787
    return 0;
788
789
}
790
791
792
793
794
795
796
797
798
/* convert MIPS rounding mode in FCR31 to IEEE library */
static unsigned int ieee_rm[] =
  {
    float_round_nearest_even,
    float_round_to_zero,
    float_round_up,
    float_round_down
  };
#define RESTORE_ROUNDING_MODE \
799
    set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
800
801
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
802
{
803
    target_ulong tmp;
804
805
    tmp = ldtul_p(mem_buf);
806
807
808
809
810
811
812
813
    if (n < 32) {
        env->active_tc.gpr[n] = tmp;
        return sizeof(target_ulong);
    }
    if (env->CP0_Config1 & (1 << CP0C1_FP)
            && n >= 38 && n < 73) {
        if (n < 70) {
ths authored
814
            if (env->CP0_Status & (1 << CP0St_FR))
815
              env->active_fpu.fpr[n - 38].d = tmp;
ths authored
816
            else
817
818
819
820
821
822
823
              env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp;
        }
        switch (n) {
        case 70:
            env->active_fpu.fcr31 = tmp & 0xFF83FFFF;
            /* set rounding mode */
            RESTORE_ROUNDING_MODE;
824
#ifndef CONFIG_SOFTFLOAT
825
826
            /* no floating point exception for native float */
            SET_FP_ENABLE(env->active_fpu.fcr31, 0);
827
#endif
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
            break;
        case 71: env->active_fpu.fcr0 = tmp; break;
        }
        return sizeof(target_ulong);
    }
    switch (n) {
    case 32: env->CP0_Status = tmp; break;
    case 33: env->active_tc.LO[0] = tmp; break;
    case 34: env->active_tc.HI[0] = tmp; break;
    case 35: env->CP0_BadVAddr = tmp; break;
    case 36: env->CP0_Cause = tmp; break;
    case 37: env->active_tc.PC = tmp; break;
    case 72: /* fp, ignored */ break;
    default: 
	if (n > 89)
	    return 0;
	/* Other registers are readonly.  Ignore writes.  */
	break;
    }

    return sizeof(target_ulong);
849
}
bellard authored
850
#elif defined (TARGET_SH4)
851
852

/* Hint: Use "set architecture sh4" in GDB to see fpu registers */
853
854
855
/* FIXME: We should use XML for this.  */

#define NUM_CORE_REGS 59
856
857
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
bellard authored
858
{
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
    if (n < 8) {
        if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
            GET_REGL(env->gregs[n + 16]);
        } else {
            GET_REGL(env->gregs[n]);
        }
    } else if (n < 16) {
        GET_REGL(env->gregs[n - 8]);
    } else if (n >= 25 && n < 41) {
	GET_REGL(env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
    } else if (n >= 43 && n < 51) {
	GET_REGL(env->gregs[n - 43]);
    } else if (n >= 51 && n < 59) {
	GET_REGL(env->gregs[n - (51 - 16)]);
    }
    switch (n) {
    case 16: GET_REGL(env->pc);
    case 17: GET_REGL(env->pr);
    case 18: GET_REGL(env->gbr);
    case 19: GET_REGL(env->vbr);
    case 20: GET_REGL(env->mach);
    case 21: GET_REGL(env->macl);
    case 22: GET_REGL(env->sr);
    case 23: GET_REGL(env->fpul);
    case 24: GET_REGL(env->fpscr);
    case 41: GET_REGL(env->ssr);
    case 42: GET_REGL(env->spc);
    }

    return 0;
bellard authored
889
890
}
891
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
bellard authored
892
{
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
    uint32_t tmp;

    tmp = ldl_p(mem_buf);

    if (n < 8) {
        if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
            env->gregs[n + 16] = tmp;
        } else {
            env->gregs[n] = tmp;
        }
	return 4;
    } else if (n < 16) {
        env->gregs[n - 8] = tmp;
	return 4;
    } else if (n >= 25 && n < 41) {
	env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)] = tmp;
    } else if (n >= 43 && n < 51) {
	env->gregs[n - 43] = tmp;
	return 4;
    } else if (n >= 51 && n < 59) {
	env->gregs[n - (51 - 16)] = tmp;
	return 4;
    }
    switch (n) {
    case 16: env->pc = tmp;
    case 17: env->pr = tmp;
    case 18: env->gbr = tmp;
    case 19: env->vbr = tmp;
    case 20: env->mach = tmp;
    case 21: env->macl = tmp;
    case 22: env->sr = tmp;
    case 23: env->fpul = tmp;
    case 24: env->fpscr = tmp;
    case 41: env->ssr = tmp;
    case 42: env->spc = tmp;
    default: return 0;
    }

    return 4;
bellard authored
932
}
933
934
#elif defined (TARGET_CRIS)
935
936
937
#define NUM_CORE_REGS 49

static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
938
{
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
    uint8_t srs;

    srs = env->pregs[PR_SRS];
    if (n < 16) {
	GET_REG32(env->regs[n]);
    }

    if (n >= 21 && n < 32) {
	GET_REG32(env->pregs[n - 16]);
    }
    if (n >= 33 && n < 49) {
	GET_REG32(env->sregs[srs][n - 33]);
    }
    switch (n) {
    case 16: GET_REG8(env->pregs[0]);
    case 17: GET_REG8(env->pregs[1]);
    case 18: GET_REG32(env->pregs[2]);
    case 19: GET_REG8(srs);
    case 20: GET_REG16(env->pregs[4]);
    case 32: GET_REG32(env->pc);
    }

    return 0;
962
}
963
964

static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
965
{
966
967
968
969
970
971
972
973
974
975
976
    uint32_t tmp;

    if (n > 49)
	return 0;

    tmp = ldl_p(mem_buf);

    if (n < 16) {
	env->regs[n] = tmp;
    }
977
978
979
980
981
    if (n >= 21 && n < 32) {
	env->pregs[n - 16] = tmp;
    }

    /* FIXME: Should support function regs be writable?  */
982
983
984
    switch (n) {
    case 16: return 1;
    case 17: return 1;
985
    case 18: env->pregs[PR_PID] = tmp; break;
986
987
988
989
990
991
    case 19: return 1;
    case 20: return 2;
    case 32: env->pc = tmp; break;
    }

    return 4;
992
}
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
#elif defined (TARGET_ALPHA)

#define NUM_CORE_REGS 65

static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
{
    if (n < 31) {
       GET_REGL(env->ir[n]);
    }
    else if (n == 31) {
       GET_REGL(0);
    }
    else if (n<63) {
       uint64_t val;

       val=*((uint64_t *)&env->fir[n-32]);
       GET_REGL(val);
    }
    else if (n==63) {
       GET_REGL(env->fpcr);
    }
    else if (n==64) {
       GET_REGL(env->pc);
    }
    else {
       GET_REGL(0);
    }

    return 0;
}

static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
{
    target_ulong tmp;
    tmp = ldtul_p(mem_buf);

    if (n < 31) {
        env->ir[n] = tmp;
    }

    if (n > 31 && n < 63) {
        env->fir[n - 32] = ldfl_p(mem_buf);
    }

    if (n == 64 ) {
       env->pc=tmp;
    }

    return 8;
}
1043
1044
1045
1046
1047
#else

#define NUM_CORE_REGS 0

static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1048
{
1049
    return 0;
1050
1051
}
1052
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1053
{
1054
1055
    return 0;
}
1056
1057
#endif
1058
1059
static int num_g_regs = NUM_CORE_REGS;
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
#ifdef GDB_CORE_XML
/* Encode data using the encoding for 'x' packets.  */
static int memtox(char *buf, const char *mem, int len)
{
    char *p = buf;
    char c;

    while (len--) {
        c = *(mem++);
        switch (c) {
        case '#': case '$': case '*': case '}':
            *(p++) = '}';
            *(p++) = c ^ 0x20;
            break;
        default:
            *(p++) = c;
            break;
        }
    }
    return p - buf;
}
1082
aurel32 authored
1083
static const char *get_feature_xml(const char *p, const char **newp)
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
{
    extern const char *const xml_builtin[][2];
    size_t len;
    int i;
    const char *name;
    static char target_xml[1024];

    len = 0;
    while (p[len] && p[len] != ':')
        len++;
    *newp = p + len;

    name = NULL;
    if (strncmp(p, "target.xml", len) == 0) {
        /* Generate the XML description for this CPU.  */
        if (!target_xml[0]) {
            GDBRegisterState *r;
1102
1103
1104
1105
1106
1107
            snprintf(target_xml, sizeof(target_xml),
                     "<?xml version=\"1.0\"?>"
                     "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
                     "<target>"
                     "<xi:include href=\"%s\"/>",
                     GDB_CORE_XML);
1108
1109
            for (r = first_cpu->gdb_regs; r; r = r->next) {
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
                strcat(target_xml, "<xi:include href=\"");
                strcat(target_xml, r->xml);
                strcat(target_xml, "\"/>");
            }
            strcat(target_xml, "</target>");
        }
        return target_xml;
    }
    for (i = 0; ; i++) {
        name = xml_builtin[i][0];
        if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
            break;
    }
    return name ? xml_builtin[i][1] : NULL;
}
#endif
1126
1127
1128
1129
static int gdb_read_register(CPUState *env, uint8_t *mem_buf, int reg)
{
    GDBRegisterState *r;
1130
1131
1132
    if (reg < NUM_CORE_REGS)
        return cpu_gdb_read_register(env, mem_buf, reg);
1133
1134
1135
1136
1137
1138
1139
    for (r = env->gdb_regs; r; r = r->next) {
        if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
            return r->get_reg(env, mem_buf, reg - r->base_reg);
        }
    }
    return 0;
1140
1141
}
1142
static int gdb_write_register(CPUState *env, uint8_t *mem_buf, int reg)
1143
{
1144
    GDBRegisterState *r;
1145
1146
1147
1148
1149
1150
1151
1152
1153
    if (reg < NUM_CORE_REGS)
        return cpu_gdb_write_register(env, mem_buf, reg);

    for (r = env->gdb_regs; r; r = r->next) {
        if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
            return r->set_reg(env, mem_buf, reg - r->base_reg);
        }
    }
bellard authored
1154
1155
1156
    return 0;
}
1157
1158
1159
1160
1161
1162
1163
1164
1165
/* Register a supplemental set of CPU registers.  If g_pos is nonzero it
   specifies the first register number and these registers are included in
   a standard "g" packet.  Direction is relative to gdb, i.e. get_reg is
   gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
 */

void gdb_register_coprocessor(CPUState * env,
                             gdb_reg_cb get_reg, gdb_reg_cb set_reg,
                             int num_regs, const char *xml, int g_pos)
bellard authored
1166
{
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
    GDBRegisterState *s;
    GDBRegisterState **p;
    static int last_reg = NUM_CORE_REGS;

    s = (GDBRegisterState *)qemu_mallocz(sizeof(GDBRegisterState));
    s->base_reg = last_reg;
    s->num_regs = num_regs;
    s->get_reg = get_reg;
    s->set_reg = set_reg;
    s->xml = xml;
    p = &env->gdb_regs;
    while (*p) {
        /* Check for duplicates.  */
        if (strcmp((*p)->xml, xml) == 0)
            return;
        p = &(*p)->next;
    }
    /* Add to end of list.  */
    last_reg += num_regs;
    *p = s;
    if (g_pos) {
        if (g_pos != s->base_reg) {
            fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n"
                    "Expected %d got %d\n", xml, g_pos, s->base_reg);
        } else {
            num_g_regs = last_reg;
        }
    }
bellard authored
1195
1196
}
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
/* GDB breakpoint/watchpoint types */
#define GDB_BREAKPOINT_SW        0
#define GDB_BREAKPOINT_HW        1
#define GDB_WATCHPOINT_WRITE     2
#define GDB_WATCHPOINT_READ      3
#define GDB_WATCHPOINT_ACCESS    4

#ifndef CONFIG_USER_ONLY
static const int xlat_gdb_type[] = {
    [GDB_WATCHPOINT_WRITE]  = BP_GDB | BP_MEM_WRITE,
    [GDB_WATCHPOINT_READ]   = BP_GDB | BP_MEM_READ,
    [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
};
#endif
1212
static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
1213
{
1214
1215
1216
    CPUState *env;
    int err = 0;
1217
1218
1219
    switch (type) {
    case GDB_BREAKPOINT_SW:
    case GDB_BREAKPOINT_HW:
1220
1221
1222
1223
1224
1225
        for (env = first_cpu; env != NULL; env = env->next_cpu) {
            err = cpu_breakpoint_insert(env, addr, BP_GDB, NULL);
            if (err)
                break;
        }
        return err;
1226
1227
1228
1229
#ifndef CONFIG_USER_ONLY
    case GDB_WATCHPOINT_WRITE:
    case GDB_WATCHPOINT_READ:
    case GDB_WATCHPOINT_ACCESS:
1230
1231
1232
1233
1234
1235
1236
        for (env = first_cpu; env != NULL; env = env->next_cpu) {
            err = cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type],
                                        NULL);
            if (err)
                break;
        }
        return err;
1237
1238
1239
1240
1241
1242
#endif
    default:
        return -ENOSYS;
    }
}
1243
static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
1244
{
1245
1246
1247
    CPUState *env;
    int err = 0;
1248
1249
1250
    switch (type) {
    case GDB_BREAKPOINT_SW:
    case GDB_BREAKPOINT_HW:
1251
1252
1253
1254
1255
1256
        for (env = first_cpu; env != NULL; env = env->next_cpu) {
            err = cpu_breakpoint_remove(env, addr, BP_GDB);
            if (err)
                break;
        }
        return err;
1257
1258
1259
1260
#ifndef CONFIG_USER_ONLY
    case GDB_WATCHPOINT_WRITE:
    case GDB_WATCHPOINT_READ:
    case GDB_WATCHPOINT_ACCESS:
1261
1262
1263
1264
1265
1266
        for (env = first_cpu; env != NULL; env = env->next_cpu) {
            err = cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]);
            if (err)
                break;
        }
        return err;
1267
1268
1269
1270
1271
1272
#endif
    default:
        return -ENOSYS;
    }
}
1273
static void gdb_breakpoint_remove_all(void)
1274
{
1275
1276
1277
1278
    CPUState *env;

    for (env = first_cpu; env != NULL; env = env->next_cpu) {
        cpu_breakpoint_remove_all(env, BP_GDB);
1279
#ifndef CONFIG_USER_ONLY
1280
        cpu_watchpoint_remove_all(env, BP_GDB);
1281
#endif
1282
    }
1283
1284
}
1285
static int gdb_handle_packet(GDBState *s, const char *line_buf)
bellard authored
1286
{
1287
    CPUState *env;
bellard authored
1288
    const char *p;
1289
    int ch, reg_size, type, res, thread;
1290
1291
1292
    char buf[MAX_PACKET_LENGTH];
    uint8_t mem_buf[MAX_PACKET_LENGTH];
    uint8_t *registers;
1293
    target_ulong addr, len;
1294
1295
1296
1297
1298
1299
1300
1301
#ifdef DEBUG_GDB
    printf("command='%s'\n", line_buf);
#endif
    p = line_buf;
    ch = *p++;
    switch(ch) {
    case '?':
1302
        /* TODO: Make this return the correct value for user-mode.  */
1303
1304
        snprintf(buf, sizeof(buf), "T%02xthread:%02x;", SIGTRAP,
                 s->c_cpu->cpu_index+1);
1305
        put_packet(s, buf);
1306
1307
1308
1309
        /* Remove all the breakpoints when this query is issued,
         * because gdb is doing and initial connect and the state
         * should be cleaned up.
         */
1310
        gdb_breakpoint_remove_all();
1311
1312
1313
        break;
    case 'c':
        if (*p != '\0') {
1314
            addr = strtoull(p, (char **)&p, 16);
bellard authored
1315
#if defined(TARGET_I386)
1316
            s->c_cpu->eip = addr;
bellard authored
1317
#elif defined (TARGET_PPC)
1318
            s->c_cpu->nip = addr;
bellard authored
1319
#elif defined (TARGET_SPARC)
1320
1321
            s->c_cpu->pc = addr;
            s->c_cpu->npc = addr + 4;
1322
#elif defined (TARGET_ARM)
1323
            s->c_cpu->regs[15] = addr;
bellard authored
1324
#elif defined (TARGET_SH4)
1325
            s->c_cpu->pc = addr;
1326
#elif defined (TARGET_MIPS)
1327
            s->c_cpu->active_tc.PC = addr;
1328
#elif defined (TARGET_CRIS)
1329
            s->c_cpu->pc = addr;
1330
1331
#elif defined (TARGET_ALPHA)
            s->c_cpu->pc = addr;
bellard authored
1332
#endif
1333
        }
1334
        gdb_continue(s);
bellard authored
1335
	return RS_IDLE;
1336
1337
1338
1339
    case 'C':
        s->signal = strtoul(p, (char **)&p, 16);
        gdb_continue(s);
        return RS_IDLE;
1340
1341
1342
1343
1344
1345
    case 'k':
        /* Kill the target */
        fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
        exit(0);
    case 'D':
        /* Detach packet */
1346
        gdb_breakpoint_remove_all();
1347
1348
1349
        gdb_continue(s);
        put_packet(s, "OK");
        break;
1350
1351
    case 's':
        if (*p != '\0') {
1352
            addr = strtoull(p, (char **)&p, 16);
1353
#if defined(TARGET_I386)
1354
            s->c_cpu->eip = addr;
bellard authored
1355
#elif defined (TARGET_PPC)
1356
            s->c_cpu->nip = addr;
bellard authored
1357
#elif defined (TARGET_SPARC)
1358
1359
            s->c_cpu->pc = addr;
            s->c_cpu->npc = addr + 4;
1360
#elif defined (TARGET_ARM)
1361
            s->c_cpu->regs[15] = addr;
bellard authored
1362
#elif defined (TARGET_SH4)
1363
            s->c_cpu->pc = addr;
1364
#elif defined (TARGET_MIPS)
1365
            s->c_cpu->active_tc.PC = addr;
1366
#elif defined (TARGET_CRIS)
1367
            s->c_cpu->pc = addr;
1368
1369
#elif defined (TARGET_ALPHA)
            s->c_cpu->pc = addr;
1370
#endif
1371
        }
1372
        cpu_single_step(s->c_cpu, sstep_flags);
1373
        gdb_continue(s);
bellard authored
1374
	return RS_IDLE;
pbrook authored
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
    case 'F':
        {
            target_ulong ret;
            target_ulong err;

            ret = strtoull(p, (char **)&p, 16);
            if (*p == ',') {
                p++;
                err = strtoull(p, (char **)&p, 16);
            } else {
                err = 0;
            }
            if (*p == ',')
                p++;
            type = *p;
            if (gdb_current_syscall_cb)
1391
                gdb_current_syscall_cb(s->c_cpu, ret, err);
pbrook authored
1392
1393
1394
            if (type == 'C') {
                put_packet(s, "T02");
            } else {
1395
                gdb_continue(s);
pbrook authored
1396
1397
1398
            }
        }
        break;
1399
    case 'g':
1400
1401
        len = 0;
        for (addr = 0; addr < num_g_regs; addr++) {
1402
            reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr);
1403
1404
1405
            len += reg_size;
        }
        memtohex(buf, mem_buf, len);
1406
1407
1408
        put_packet(s, buf);
        break;
    case 'G':
1409
        registers = mem_buf;
1410
1411
        len = strlen(p) / 2;
        hextomem((uint8_t *)registers, p, len);
1412
        for (addr = 0; addr < num_g_regs && len > 0; addr++) {
1413
            reg_size = gdb_write_register(s->g_cpu, registers, addr);
1414
1415
1416
            len -= reg_size;
            registers += reg_size;
        }
1417
1418
1419
        put_packet(s, "OK");
        break;
    case 'm':
1420
        addr = strtoull(p, (char **)&p, 16);
1421
1422
        if (*p == ',')
            p++;
1423
        len = strtoull(p, NULL, 16);
1424
        if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 0) != 0) {
1425
1426
1427
1428
1429
            put_packet (s, "E14");
        } else {
            memtohex(buf, mem_buf, len);
            put_packet(s, buf);
        }
1430
1431
        break;
    case 'M':
1432
        addr = strtoull(p, (char **)&p, 16);
1433
1434
        if (*p == ',')
            p++;
1435
        len = strtoull(p, (char **)&p, 16);
1436
        if (*p == ':')
1437
1438
            p++;
        hextomem(mem_buf, p, len);
1439
        if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 1) != 0)
1440
            put_packet(s, "E14");
1441
1442
1443
        else
            put_packet(s, "OK");
        break;
1444
1445
1446
1447
1448
1449
1450
    case 'p':
        /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
           This works, but can be very slow.  Anything new enough to
           understand XML also knows how to use this properly.  */
        if (!gdb_has_xml)
            goto unknown_command;
        addr = strtoull(p, (char **)&p, 16);
1451
        reg_size = gdb_read_register(s->g_cpu, mem_buf, addr);
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
        if (reg_size) {
            memtohex(buf, mem_buf, reg_size);
            put_packet(s, buf);
        } else {
            put_packet(s, "E14");
        }
        break;
    case 'P':
        if (!gdb_has_xml)
            goto unknown_command;
        addr = strtoull(p, (char **)&p, 16);
        if (*p == '=')
            p++;
        reg_size = strlen(p) / 2;
        hextomem(mem_buf, p, reg_size);
1467
        gdb_write_register(s->g_cpu, mem_buf, addr);
1468
1469
        put_packet(s, "OK");
        break;
1470
1471
1472
1473
1474
    case 'Z':
    case 'z':
        type = strtoul(p, (char **)&p, 16);
        if (*p == ',')
            p++;
1475
        addr = strtoull(p, (char **)&p, 16);
1476
1477
        if (*p == ',')
            p++;
1478
        len = strtoull(p, (char **)&p, 16);
1479
        if (ch == 'Z')
1480
            res = gdb_breakpoint_insert(addr, len, type);
1481
        else
1482
            res = gdb_breakpoint_remove(addr, len, type);
1483
1484
1485
        if (res >= 0)
             put_packet(s, "OK");
        else if (res == -ENOSYS)
pbrook authored
1486
            put_packet(s, "");
1487
1488
        else
            put_packet(s, "E22");
1489
        break;
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
    case 'H':
        type = *p++;
        thread = strtoull(p, (char **)&p, 16);
        if (thread == -1 || thread == 0) {
            put_packet(s, "OK");
            break;
        }
        for (env = first_cpu; env != NULL; env = env->next_cpu)
            if (env->cpu_index + 1 == thread)
                break;
        if (env == NULL) {
            put_packet(s, "E22");
            break;
        }
        switch (type) {
        case 'c':
            s->c_cpu = env;
            put_packet(s, "OK");
            break;
        case 'g':
            s->g_cpu = env;
            put_packet(s, "OK");
            break;
        default:
             put_packet(s, "E22");
             break;
        }
        break;
    case 'T':
        thread = strtoull(p, (char **)&p, 16);
#ifndef CONFIG_USER_ONLY
        if (thread > 0 && thread < smp_cpus + 1)
#else
        if (thread == 1)
#endif
             put_packet(s, "OK");
        else
            put_packet(s, "E22");
        break;
1529
    case 'q':
1530
1531
1532
1533
    case 'Q':
        /* parse any 'q' packets here */
        if (!strcmp(p,"qemu.sstepbits")) {
            /* Query Breakpoint bit definitions */
1534
1535
1536
1537
            snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
                     SSTEP_ENABLE,
                     SSTEP_NOIRQ,
                     SSTEP_NOTIMER);
1538
1539
1540
1541
1542
1543
1544
            put_packet(s, buf);
            break;
        } else if (strncmp(p,"qemu.sstep",10) == 0) {
            /* Display or change the sstep_flags */
            p += 10;
            if (*p != '=') {
                /* Display current setting */
1545
                snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
1546
1547
1548
1549
1550
1551
1552
1553
                put_packet(s, buf);
                break;
            }
            p++;
            type = strtoul(p, (char **)&p, 16);
            sstep_flags = type;
            put_packet(s, "OK");
            break;
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
        } else if (strcmp(p,"C") == 0) {
            /* "Current thread" remains vague in the spec, so always return
             *  the first CPU (gdb returns the first thread). */
            put_packet(s, "QC1");
            break;
        } else if (strcmp(p,"fThreadInfo") == 0) {
            s->query_cpu = first_cpu;
            goto report_cpuinfo;
        } else if (strcmp(p,"sThreadInfo") == 0) {
        report_cpuinfo:
            if (s->query_cpu) {
                snprintf(buf, sizeof(buf), "m%x", s->query_cpu->cpu_index+1);
                put_packet(s, buf);
                s->query_cpu = s->query_cpu->next_cpu;
            } else
                put_packet(s, "l");
            break;
        } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
            thread = strtoull(p+16, (char **)&p, 16);
            for (env = first_cpu; env != NULL; env = env->next_cpu)
                if (env->cpu_index + 1 == thread) {
                    len = snprintf((char *)mem_buf, sizeof(mem_buf),
                                   "CPU#%d [%s]", env->cpu_index,
                                   env->halted ? "halted " : "running");
                    memtohex(buf, mem_buf, len);
                    put_packet(s, buf);
                    break;
                }
            break;
1583
1584
1585
        }
#ifdef CONFIG_LINUX_USER
        else if (strncmp(p, "Offsets", 7) == 0) {
1586
            TaskState *ts = s->c_cpu->opaque;
1587
1588
1589
1590
1591
1592
1593
            snprintf(buf, sizeof(buf),
                     "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
                     ";Bss=" TARGET_ABI_FMT_lx,
                     ts->info->code_offset,
                     ts->info->data_offset,
                     ts->info->data_offset);
1594
1595
1596
1597
            put_packet(s, buf);
            break;
        }
#endif
1598
        if (strncmp(p, "Supported", 9) == 0) {
1599
            snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
#ifdef GDB_CORE_XML
            strcat(buf, ";qXfer:features:read+");
#endif
            put_packet(s, buf);
            break;
        }
#ifdef GDB_CORE_XML
        if (strncmp(p, "Xfer:features:read:", 19) == 0) {
            const char *xml;
            target_ulong total_len;

            gdb_has_xml = 1;
            p += 19;
1613
            xml = get_feature_xml(p, &p);
1614
            if (!xml) {
1615
                snprintf(buf, sizeof(buf), "E00");
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
                put_packet(s, buf);
                break;
            }

            if (*p == ':')
                p++;
            addr = strtoul(p, (char **)&p, 16);
            if (*p == ',')
                p++;
            len = strtoul(p, (char **)&p, 16);

            total_len = strlen(xml);
            if (addr > total_len) {
1629
                snprintf(buf, sizeof(buf), "E00");
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
                put_packet(s, buf);
                break;
            }
            if (len > (MAX_PACKET_LENGTH - 5) / 2)
                len = (MAX_PACKET_LENGTH - 5) / 2;
            if (len < total_len - addr) {
                buf[0] = 'm';
                len = memtox(buf + 1, xml + addr, len);
            } else {
                buf[0] = 'l';
                len = memtox(buf + 1, xml + addr, total_len - addr);
            }
            put_packet_binary(s, buf, len + 1);
            break;
        }
#endif
        /* Unrecognised 'q' command.  */
        goto unknown_command;
1649
    default:
1650
    unknown_command:
1651
1652
1653
1654
1655
1656
1657
1658
        /* put empty packet */
        buf[0] = '\0';
        put_packet(s, buf);
        break;
    }
    return RS_IDLE;
}
1659
1660
1661
1662
1663
1664
void gdb_set_stop_cpu(CPUState *env)
{
    gdbserver_state->c_cpu = env;
    gdbserver_state->g_cpu = env;
}
1665
#ifndef CONFIG_USER_ONLY
1666
1667
static void gdb_vm_stopped(void *opaque, int reason)
{
1668
1669
    GDBState *s = gdbserver_state;
    CPUState *env = s->c_cpu;
1670
    char buf[256];
1671
    const char *type;
1672
1673
    int ret;
pbrook authored
1674
1675
1676
    if (s->state == RS_SYSCALL)
        return;
1677
    /* disable single step if it was enable */
1678
    cpu_single_step(env, 0);
1679
bellard authored
1680
    if (reason == EXCP_DEBUG) {
1681
1682
        if (env->watchpoint_hit) {
            switch (env->watchpoint_hit->flags & BP_MEM_ACCESS) {
1683
            case BP_MEM_READ:
1684
1685
                type = "r";
                break;
1686
            case BP_MEM_ACCESS:
1687
1688
1689
1690
1691
1692
                type = "a";
                break;
            default:
                type = "";
                break;
            }
1693
1694
1695
1696
            snprintf(buf, sizeof(buf),
                     "T%02xthread:%02x;%swatch:" TARGET_FMT_lx ";",
                     SIGTRAP, env->cpu_index+1, type,
                     env->watchpoint_hit->vaddr);
1697
            put_packet(s, buf);
1698
            env->watchpoint_hit = NULL;
1699
1700
            return;
        }
1701
	tb_flush(env);
1702
        ret = SIGTRAP;
1703
1704
1705
    } else if (reason == EXCP_INTERRUPT) {
        ret = SIGINT;
    } else {
1706
        ret = 0;
1707
    }
1708
    snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, env->cpu_index+1);
1709
1710
    put_packet(s, buf);
}
1711
#endif
1712
pbrook authored
1713
1714
/* Send a gdb syscall request.
   This accepts limited printf-style format specifiers, specifically:
pbrook authored
1715
1716
1717
    %x  - target_ulong argument printed in hex.
    %lx - 64-bit argument printed in hex.
    %s  - string pointer (target_ulong) and length (int) pair.  */
1718
void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
pbrook authored
1719
1720
1721
1722
1723
{
    va_list va;
    char buf[256];
    char *p;
    target_ulong addr;
pbrook authored
1724
    uint64_t i64;
pbrook authored
1725
1726
    GDBState *s;
1727
    s = gdbserver_state;
pbrook authored
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
    if (!s)
        return;
    gdb_current_syscall_cb = cb;
    s->state = RS_SYSCALL;
#ifndef CONFIG_USER_ONLY
    vm_stop(EXCP_DEBUG);
#endif
    s->state = RS_IDLE;
    va_start(va, fmt);
    p = buf;
    *(p++) = 'F';
    while (*fmt) {
        if (*fmt == '%') {
            fmt++;
            switch (*fmt++) {
            case 'x':
                addr = va_arg(va, target_ulong);
1745
                p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx, addr);
pbrook authored
1746
                break;
pbrook authored
1747
1748
1749
1750
            case 'l':
                if (*(fmt++) != 'x')
                    goto bad_format;
                i64 = va_arg(va, uint64_t);
1751
                p += snprintf(p, &buf[sizeof(buf)] - p, "%" PRIx64, i64);
pbrook authored
1752
                break;
pbrook authored
1753
1754
            case 's':
                addr = va_arg(va, target_ulong);
1755
1756
                p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx "/%x",
                              addr, va_arg(va, int));
pbrook authored
1757
1758
                break;
            default:
pbrook authored
1759
            bad_format:
pbrook authored
1760
1761
1762
1763
1764
1765
1766
1767
                fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
                        fmt - 1);
                break;
            }
        } else {
            *(p++) = *(fmt++);
        }
    }
1768
    *p = 0;
pbrook authored
1769
1770
1771
    va_end(va);
    put_packet(s, buf);
#ifdef CONFIG_USER_ONLY
1772
    gdb_handlesig(s->c_cpu, 0);
pbrook authored
1773
#else
1774
    cpu_interrupt(s->c_cpu, CPU_INTERRUPT_EXIT);
pbrook authored
1775
1776
1777
#endif
}
bellard authored
1778
static void gdb_read_byte(GDBState *s, int ch)
1779
1780
{
    int i, csum;
1781
    uint8_t reply;
1782
1783
#ifndef CONFIG_USER_ONLY
1784
1785
1786
1787
1788
1789
1790
    if (s->last_packet_len) {
        /* Waiting for a response to the last packet.  If we see the start
           of a new command then abandon the previous response.  */
        if (ch == '-') {
#ifdef DEBUG_GDB
            printf("Got NACK, retransmitting\n");
#endif
1791
            put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
        }
#ifdef DEBUG_GDB
        else if (ch == '+')
            printf("Got ACK\n");
        else
            printf("Got '%c' when expecting ACK/NACK\n", ch);
#endif
        if (ch == '+' || ch == '$')
            s->last_packet_len = 0;
        if (ch != '$')
            return;
    }
1804
1805
1806
1807
    if (vm_running) {
        /* when the CPU is running, we cannot do anything except stop
           it when receiving a char */
        vm_stop(EXCP_INTERRUPT);
1808
    } else
1809
#endif
bellard authored
1810
    {
1811
1812
1813
1814
1815
        switch(s->state) {
        case RS_IDLE:
            if (ch == '$') {
                s->line_buf_index = 0;
                s->state = RS_GETLINE;
1816
            }
bellard authored
1817
            break;
1818
1819
1820
1821
1822
        case RS_GETLINE:
            if (ch == '#') {
            s->state = RS_CHKSUM1;
            } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
                s->state = RS_IDLE;
bellard authored
1823
            } else {
1824
            s->line_buf[s->line_buf_index++] = ch;
bellard authored
1825
1826
            }
            break;
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
        case RS_CHKSUM1:
            s->line_buf[s->line_buf_index] = '\0';
            s->line_csum = fromhex(ch) << 4;
            s->state = RS_CHKSUM2;
            break;
        case RS_CHKSUM2:
            s->line_csum |= fromhex(ch);
            csum = 0;
            for(i = 0; i < s->line_buf_index; i++) {
                csum += s->line_buf[i];
            }
            if (s->line_csum != (csum & 0xff)) {
1839
1840
                reply = '-';
                put_buffer(s, &reply, 1);
1841
                s->state = RS_IDLE;
bellard authored
1842
            } else {
1843
1844
                reply = '+';
                put_buffer(s, &reply, 1);
1845
                s->state = gdb_handle_packet(s, s->line_buf);
bellard authored
1846
1847
            }
            break;
pbrook authored
1848
1849
        default:
            abort();
1850
1851
1852
1853
        }
    }
}
1854
1855
1856
1857
1858
1859
1860
1861
#ifdef CONFIG_USER_ONLY
int
gdb_handlesig (CPUState *env, int sig)
{
  GDBState *s;
  char buf[256];
  int n;
1862
  s = gdbserver_state;
1863
1864
  if (gdbserver_fd < 0 || s->fd < 0)
    return sig;
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874

  /* disable single step if it was enabled */
  cpu_single_step(env, 0);
  tb_flush(env);

  if (sig != 0)
    {
      snprintf(buf, sizeof(buf), "S%02x", sig);
      put_packet(s, buf);
    }
1875
1876
1877
1878
  /* put_packet() might have detected that the peer terminated the 
     connection.  */
  if (s->fd < 0)
      return sig;
1879
1880
1881

  sig = 0;
  s->state = RS_IDLE;
bellard authored
1882
1883
  s->running_state = 0;
  while (s->running_state == 0) {
1884
1885
1886
1887
1888
1889
      n = read (s->fd, buf, 256);
      if (n > 0)
        {
          int i;

          for (i = 0; i < n; i++)
bellard authored
1890
            gdb_read_byte (s, buf[i]);
1891
1892
1893
1894
1895
1896
1897
        }
      else if (n == 0 || errno != EAGAIN)
        {
          /* XXX: Connection closed.  Should probably wait for annother
             connection before continuing.  */
          return sig;
        }
bellard authored
1898
  }
1899
1900
  sig = s->signal;
  s->signal = 0;
1901
1902
  return sig;
}
1903
1904
1905
1906
1907
1908
1909

/* Tell the remote gdb that the process has exited.  */
void gdb_exit(CPUState *env, int code)
{
  GDBState *s;
  char buf[4];
1910
  s = gdbserver_state;
1911
1912
  if (gdbserver_fd < 0 || s->fd < 0)
    return;
1913
1914
1915
1916
1917

  snprintf(buf, sizeof(buf), "W%02x", code);
  put_packet(s, buf);
}
1918
1919
static void gdb_accept(void)
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
{
    GDBState *s;
    struct sockaddr_in sockaddr;
    socklen_t len;
    int val, fd;

    for(;;) {
        len = sizeof(sockaddr);
        fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
        if (fd < 0 && errno != EINTR) {
            perror("accept");
            return;
        } else if (fd >= 0) {
bellard authored
1933
1934
1935
            break;
        }
    }
1936
1937
1938

    /* set short latency */
    val = 1;
bellard authored
1939
    setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
1940
1941
1942
1943
1944
1945
1946
1947
    s = qemu_mallocz(sizeof(GDBState));
    if (!s) {
        errno = ENOMEM;
        perror("accept");
        return;
    }
1948
    memset (s, 0, sizeof (GDBState));
1949
1950
    s->c_cpu = first_cpu;
    s->g_cpu = first_cpu;
1951
    s->fd = fd;
1952
    gdb_has_xml = 0;
1953
1954
    gdbserver_state = s;
pbrook authored
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
    fcntl(fd, F_SETFL, O_NONBLOCK);
}

static int gdbserver_open(int port)
{
    struct sockaddr_in sockaddr;
    int fd, val, ret;

    fd = socket(PF_INET, SOCK_STREAM, 0);
    if (fd < 0) {
        perror("socket");
        return -1;
    }

    /* allow fast reuse */
    val = 1;
bellard authored
1972
    setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995

    sockaddr.sin_family = AF_INET;
    sockaddr.sin_port = htons(port);
    sockaddr.sin_addr.s_addr = 0;
    ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
    if (ret < 0) {
        perror("bind");
        return -1;
    }
    ret = listen(fd, 0);
    if (ret < 0) {
        perror("listen");
        return -1;
    }
    return fd;
}

int gdbserver_start(int port)
{
    gdbserver_fd = gdbserver_open(port);
    if (gdbserver_fd < 0)
        return -1;
    /* accept connections */
1996
    gdb_accept();
1997
1998
    return 0;
}
1999
#else
ths authored
2000
static int gdb_chr_can_receive(void *opaque)
2001
{
2002
2003
2004
  /* We can handle an arbitrarily large amount of data.
   Pick the maximum packet size, which is as good as anything.  */
  return MAX_PACKET_LENGTH;
2005
2006
}
ths authored
2007
static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
2008
2009
2010
2011
{
    int i;

    for (i = 0; i < size; i++) {
2012
        gdb_read_byte(gdbserver_state, buf[i]);
2013
2014
2015
2016
2017
2018
2019
2020
    }
}

static void gdb_chr_event(void *opaque, int event)
{
    switch (event) {
    case CHR_EVENT_RESET:
        vm_stop(EXCP_INTERRUPT);
2021
        gdb_has_xml = 0;
2022
2023
2024
2025
2026
2027
        break;
    default:
        break;
    }
}
2028
int gdbserver_start(const char *port)
2029
2030
{
    GDBState *s;
2031
2032
2033
2034
2035
2036
2037
    char gdbstub_port_name[128];
    int port_num;
    char *p;
    CharDriverState *chr;

    if (!port || !*port)
      return -1;
2038
2039
2040
2041
2042
2043
2044
2045
2046
    port_num = strtol(port, &p, 10);
    if (*p == 0) {
        /* A numeric value is interpreted as a port number.  */
        snprintf(gdbstub_port_name, sizeof(gdbstub_port_name),
                 "tcp::%d,nowait,nodelay,server", port_num);
        port = gdbstub_port_name;
    }
2047
    chr = qemu_chr_open("gdb", port);
2048
2049
2050
2051
2052
2053
2054
    if (!chr)
        return -1;

    s = qemu_mallocz(sizeof(GDBState));
    if (!s) {
        return -1;
    }
2055
2056
    s->c_cpu = first_cpu;
    s->g_cpu = first_cpu;
2057
    s->chr = chr;
2058
    gdbserver_state = s;
ths authored
2059
    qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
2060
2061
                          gdb_chr_event, NULL);
    qemu_add_vm_stop_handler(gdb_vm_stopped, NULL);
bellard authored
2062
2063
    return 0;
}
2064
#endif