Commit 8d5f07fa3bd3433e779d13eb1cda4fbb07acb67f

Authored by bellard
1 parent 023fcb95

sparc merge (Blue Swirl)


git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@1098 c046a42c-6fe2-441c-8c8c-71466251a162
Makefile
1   -include config-host.mak
  1 +-include config-host.mak
2 2  
3 3 CFLAGS=-Wall -O2 -g -fno-strict-aliasing
4 4 ifdef CONFIG_DARWIN
... ... @@ -14,8 +14,9 @@ TOOLS=qemu-img
14 14 ifdef CONFIG_STATIC
15 15 LDFLAGS+=-static
16 16 endif
  17 +DOCS=qemu-doc.html qemu-tech.html qemu.1
17 18  
18   -all: dyngen$(EXESUF) $(TOOLS) qemu-doc.html qemu-tech.html qemu.1
  19 +all: dyngen$(EXESUF) $(TOOLS) $(DOCS)
19 20 for d in $(TARGET_DIRS); do \
20 21 $(MAKE) -C $$d $@ || exit 1 ; \
21 22 done
... ... @@ -29,14 +30,14 @@ dyngen$(EXESUF): dyngen.c
29 30 clean:
30 31 # avoid old build problems by removing potentially incorrect old files
31 32 rm -f config.mak config.h op-i386.h opc-i386.h gen-op-i386.h op-arm.h opc-arm.h gen-op-arm.h
32   - rm -f *.o *.a $(TOOLS) dyngen$(EXESUF) TAGS qemu.pod
  33 + rm -f *.o *.a $(TOOLS) dyngen$(EXESUF) TAGS qemu.pod *~ */*~
33 34 $(MAKE) -C tests clean
34 35 for d in $(TARGET_DIRS); do \
35 36 $(MAKE) -C $$d $@ || exit 1 ; \
36 37 done
37 38  
38 39 distclean: clean
39   - rm -f config-host.mak config-host.h
  40 + rm -f config-host.mak config-host.h $(DOCS)
40 41 for d in $(TARGET_DIRS); do \
41 42 rm -rf $$d || exit 1 ; \
42 43 done
... ... @@ -50,6 +51,7 @@ endif
50 51 install -m 644 pc-bios/bios.bin pc-bios/vgabios.bin \
51 52 pc-bios/vgabios-cirrus.bin \
52 53 pc-bios/ppc_rom.bin \
  54 + pc-bios/proll.bin \
53 55 pc-bios/linux_boot.bin "$(datadir)"
54 56 mkdir -p "$(docdir)"
55 57 install -m 644 qemu-doc.html qemu-tech.html "$(docdir)"
... ... @@ -99,6 +101,7 @@ tarbin:
99 101 $(datadir)/vgabios.bin \
100 102 $(datadir)/vgabios-cirrus.bin \
101 103 $(datadir)/ppc_rom.bin \
  104 + $(datadir)/proll.bin \
102 105 $(datadir)/linux_boot.bin \
103 106 $(docdir)/qemu-doc.html \
104 107 $(docdir)/qemu-tech.html \
... ...
Makefile.target
... ... @@ -279,7 +279,7 @@ VL_OBJS+= mc146818rtc.o serial.o i8259.o i8254.o fdc.o m48t59.o
279 279 VL_OBJS+= ppc_prep.o ppc_chrp.o cuda.o adb.o openpic.o
280 280 endif
281 281 ifeq ($(TARGET_ARCH), sparc)
282   -VL_OBJS+= sun4m.o tcx.o lance.o iommu.o sched.o m48t08.o magic-load.o
  282 +VL_OBJS+= sun4m.o tcx.o lance.o iommu.o sched.o m48t08.o magic-load.o timer.o
283 283 endif
284 284 ifdef CONFIG_GDBSTUB
285 285 VL_OBJS+=gdbstub.o
... ...
gdbstub.c
... ... @@ -387,6 +387,9 @@ static int gdb_handle_packet(GDBState *s, const char *line_buf)
387 387 env->eip = addr;
388 388 #elif defined (TARGET_PPC)
389 389 env->nip = addr;
  390 +#elif defined (TARGET_SPARC)
  391 + env->pc = addr;
  392 + env->npc = addr + 4;
390 393 #endif
391 394 }
392 395 vm_start();
... ... @@ -398,6 +401,9 @@ static int gdb_handle_packet(GDBState *s, const char *line_buf)
398 401 env->eip = addr;
399 402 #elif defined (TARGET_PPC)
400 403 env->nip = addr;
  404 +#elif defined (TARGET_SPARC)
  405 + env->pc = addr;
  406 + env->npc = addr + 4;
401 407 #endif
402 408 }
403 409 cpu_single_step(env, 1);
... ...
hw/iommu.c
... ... @@ -107,29 +107,24 @@ struct iommu_regs {
107 107 #define IOPTE_VALID 0x00000002 /* IOPTE is valid */
108 108 #define IOPTE_WAZ 0x00000001 /* Write as zeros */
109 109  
110   -#define PHYS_JJ_IOMMU 0x10000000 /* First page of sun4m IOMMU */
111 110 #define PAGE_SHIFT 12
112 111 #define PAGE_SIZE (1 << PAGE_SHIFT)
113 112 #define PAGE_MASK (PAGE_SIZE - 1)
114 113  
115 114 typedef struct IOMMUState {
  115 + uint32_t addr;
116 116 uint32_t regs[sizeof(struct iommu_regs)];
  117 + uint32_t iostart;
117 118 } IOMMUState;
118 119  
119 120 static IOMMUState *ps;
120 121  
121   -static int iommu_io_memory;
122   -
123   -static void iommu_reset(IOMMUState *s)
124   -{
125   -}
126   -
127 122 static uint32_t iommu_mem_readw(void *opaque, target_phys_addr_t addr)
128 123 {
129 124 IOMMUState *s = opaque;
130 125 uint32_t saddr;
131 126  
132   - saddr = (addr - PHYS_JJ_IOMMU) >> 2;
  127 + saddr = (addr - s->addr) >> 2;
133 128 switch (saddr) {
134 129 default:
135 130 return s->regs[saddr];
... ... @@ -143,8 +138,37 @@ static void iommu_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val
143 138 IOMMUState *s = opaque;
144 139 uint32_t saddr;
145 140  
146   - saddr = (addr - PHYS_JJ_IOMMU) >> 2;
  141 + saddr = (addr - s->addr) >> 2;
147 142 switch (saddr) {
  143 + case 0:
  144 + switch (val & IOMMU_CTRL_RNGE) {
  145 + case IOMMU_RNGE_16MB:
  146 + s->iostart = 0xff000000;
  147 + break;
  148 + case IOMMU_RNGE_32MB:
  149 + s->iostart = 0xfe000000;
  150 + break;
  151 + case IOMMU_RNGE_64MB:
  152 + s->iostart = 0xfc000000;
  153 + break;
  154 + case IOMMU_RNGE_128MB:
  155 + s->iostart = 0xf8000000;
  156 + break;
  157 + case IOMMU_RNGE_256MB:
  158 + s->iostart = 0xf0000000;
  159 + break;
  160 + case IOMMU_RNGE_512MB:
  161 + s->iostart = 0xe0000000;
  162 + break;
  163 + case IOMMU_RNGE_1GB:
  164 + s->iostart = 0xc0000000;
  165 + break;
  166 + default:
  167 + case IOMMU_RNGE_2GB:
  168 + s->iostart = 0x80000000;
  169 + break;
  170 + }
  171 + /* Fall through */
148 172 default:
149 173 s->regs[saddr] = val;
150 174 break;
... ... @@ -165,57 +189,30 @@ static CPUWriteMemoryFunc *iommu_mem_write[3] = {
165 189  
166 190 uint32_t iommu_translate(uint32_t addr)
167 191 {
168   - uint32_t *iopte = (void *)(ps->regs[1] << 4), pa, iostart;
169   -
170   - switch (ps->regs[0] & IOMMU_CTRL_RNGE) {
171   - case IOMMU_RNGE_16MB:
172   - iostart = 0xff000000;
173   - break;
174   - case IOMMU_RNGE_32MB:
175   - iostart = 0xfe000000;
176   - break;
177   - case IOMMU_RNGE_64MB:
178   - iostart = 0xfc000000;
179   - break;
180   - case IOMMU_RNGE_128MB:
181   - iostart = 0xf8000000;
182   - break;
183   - case IOMMU_RNGE_256MB:
184   - iostart = 0xf0000000;
185   - break;
186   - case IOMMU_RNGE_512MB:
187   - iostart = 0xe0000000;
188   - break;
189   - case IOMMU_RNGE_1GB:
190   - iostart = 0xc0000000;
191   - break;
192   - default:
193   - case IOMMU_RNGE_2GB:
194   - iostart = 0x80000000;
195   - break;
196   - }
  192 + uint32_t *iopte = (void *)(ps->regs[1] << 4), pa;
197 193  
198   - iopte += ((addr - iostart) >> PAGE_SHIFT);
  194 + iopte += ((addr - ps->iostart) >> PAGE_SHIFT);
199 195 cpu_physical_memory_rw((uint32_t)iopte, (void *) &pa, 4, 0);
200 196 bswap32s(&pa);
201 197 pa = (pa & IOPTE_PAGE) << 4; /* Loose higher bits of 36 */
202   - //return pa + PAGE_SIZE;
203 198 return pa + (addr & PAGE_MASK);
204 199 }
205 200  
206   -void iommu_init()
  201 +void iommu_init(uint32_t addr)
207 202 {
208 203 IOMMUState *s;
  204 + int iommu_io_memory;
209 205  
210 206 s = qemu_mallocz(sizeof(IOMMUState));
211 207 if (!s)
212 208 return;
213 209  
  210 + s->addr = addr;
  211 +
214 212 iommu_io_memory = cpu_register_io_memory(0, iommu_mem_read, iommu_mem_write, s);
215   - cpu_register_physical_memory(PHYS_JJ_IOMMU, sizeof(struct iommu_regs),
  213 + cpu_register_physical_memory(addr, sizeof(struct iommu_regs),
216 214 iommu_io_memory);
217 215  
218   - iommu_reset(s);
219 216 ps = s;
220 217 }
221 218  
... ...
hw/lance.c
... ... @@ -24,11 +24,7 @@
24 24 #include "vl.h"
25 25  
26 26 /* debug LANCE card */
27   -#define DEBUG_LANCE
28   -
29   -#define PHYS_JJ_IOMMU 0x10000000 /* First page of sun4m IOMMU */
30   -#define PHYS_JJ_LEDMA 0x78400010 /* ledma, off by 10 from unused SCSI */
31   -#define PHYS_JJ_LE 0x78C00000 /* LANCE, typical sun4m */
  27 +//#define DEBUG_LANCE
32 28  
33 29 #ifndef LANCE_LOG_TX_BUFFERS
34 30 #define LANCE_LOG_TX_BUFFERS 4
... ... @@ -162,10 +158,12 @@ struct sparc_dma_registers {
162 158 #endif
163 159  
164 160 typedef struct LEDMAState {
  161 + uint32_t addr;
165 162 uint32_t regs[LEDMA_REGS];
166 163 } LEDMAState;
167 164  
168 165 typedef struct LANCEState {
  166 + uint32_t paddr;
169 167 NetDriverState *nd;
170 168 uint32_t leptr;
171 169 uint16_t addr;
... ... @@ -175,8 +173,6 @@ typedef struct LANCEState {
175 173 LEDMAState *ledma;
176 174 } LANCEState;
177 175  
178   -static int lance_io_memory;
179   -
180 176 static unsigned int rxptr, txptr;
181 177  
182 178 static void lance_send(void *opaque);
... ... @@ -194,7 +190,7 @@ static uint32_t lance_mem_readw(void *opaque, target_phys_addr_t addr)
194 190 LANCEState *s = opaque;
195 191 uint32_t saddr;
196 192  
197   - saddr = addr - PHYS_JJ_LE;
  193 + saddr = addr - s->paddr;
198 194 switch (saddr >> 1) {
199 195 case LE_RDP:
200 196 return s->regs[s->addr];
... ... @@ -210,9 +206,9 @@ static void lance_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val
210 206 {
211 207 LANCEState *s = opaque;
212 208 uint32_t saddr;
213   - uint16_t clear, reg;
  209 + uint16_t reg;
214 210  
215   - saddr = addr - PHYS_JJ_LE;
  211 + saddr = addr - s->paddr;
216 212 switch (saddr >> 1) {
217 213 case LE_RDP:
218 214 switch(s->addr) {
... ... @@ -406,14 +402,12 @@ static void lance_send(void *opaque)
406 402 }
407 403 }
408 404  
409   -static int ledma_io_memory;
410   -
411 405 static uint32_t ledma_mem_readl(void *opaque, target_phys_addr_t addr)
412 406 {
413 407 LEDMAState *s = opaque;
414 408 uint32_t saddr;
415 409  
416   - saddr = (addr - PHYS_JJ_LEDMA) >> 2;
  410 + saddr = (addr - s->addr) >> 2;
417 411 if (saddr < LEDMA_REGS)
418 412 return s->regs[saddr];
419 413 else
... ... @@ -425,7 +419,7 @@ static void ledma_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val
425 419 LEDMAState *s = opaque;
426 420 uint32_t saddr;
427 421  
428   - saddr = (addr - PHYS_JJ_LEDMA) >> 2;
  422 + saddr = (addr - s->addr) >> 2;
429 423 if (saddr < LEDMA_REGS)
430 424 s->regs[saddr] = val;
431 425 }
... ... @@ -442,29 +436,31 @@ static CPUWriteMemoryFunc *ledma_mem_write[3] = {
442 436 ledma_mem_writel,
443 437 };
444 438  
445   -void lance_init(NetDriverState *nd, int irq)
  439 +void lance_init(NetDriverState *nd, int irq, uint32_t leaddr, uint32_t ledaddr)
446 440 {
447 441 LANCEState *s;
448 442 LEDMAState *led;
  443 + int lance_io_memory, ledma_io_memory;
449 444  
450 445 s = qemu_mallocz(sizeof(LANCEState));
451 446 if (!s)
452 447 return;
453 448  
  449 + s->paddr = leaddr;
  450 + s->nd = nd;
  451 + s->irq = irq;
  452 +
454 453 lance_io_memory = cpu_register_io_memory(0, lance_mem_read, lance_mem_write, s);
455   - cpu_register_physical_memory(PHYS_JJ_LE, 8,
456   - lance_io_memory);
  454 + cpu_register_physical_memory(leaddr, 8, lance_io_memory);
  455 +
457 456 led = qemu_mallocz(sizeof(LEDMAState));
458 457 if (!led)
459 458 return;
460 459  
461   - ledma_io_memory = cpu_register_io_memory(0, ledma_mem_read, ledma_mem_write, led);
462   - cpu_register_physical_memory(PHYS_JJ_LEDMA, 16,
463   - ledma_io_memory);
464   -
465   - s->nd = nd;
466 460 s->ledma = led;
467   - s->irq = irq;
  461 + led->addr = ledaddr;
  462 + ledma_io_memory = cpu_register_io_memory(0, ledma_mem_read, ledma_mem_write, led);
  463 + cpu_register_physical_memory(ledaddr, 16, ledma_io_memory);
468 464  
469 465 lance_reset(s);
470 466 qemu_add_read_packet(nd, lance_can_receive, lance_receive, s);
... ...
hw/m48t08.c
... ... @@ -341,7 +341,7 @@ static CPUReadMemoryFunc *nvram_read[] = {
341 341 };
342 342  
343 343 /* Initialisation routine */
344   -m48t08_t *m48t08_init(uint32_t mem_base, uint16_t size)
  344 +m48t08_t *m48t08_init(uint32_t mem_base, uint16_t size, uint8_t *macaddr)
345 345 {
346 346 m48t08_t *s;
347 347 int i;
... ... @@ -367,7 +367,7 @@ m48t08_t *m48t08_init(uint32_t mem_base, uint16_t size)
367 367 i = 0x1fd8;
368 368 s->buffer[i++] = 0x01;
369 369 s->buffer[i++] = 0x80; /* Sun4m OBP */
370   - /* XXX: Ethernet address, etc */
  370 + memcpy(&s->buffer[i], macaddr, 6);
371 371  
372 372 /* Calculate checksum */
373 373 for (i = 0x1fd8; i < 0x1fe7; i++) {
... ...
hw/m48t08.h
... ... @@ -7,6 +7,6 @@ void m48t08_write (m48t08_t *NVRAM, uint32_t val);
7 7 uint32_t m48t08_read (m48t08_t *NVRAM);
8 8 void m48t08_set_addr (m48t08_t *NVRAM, uint32_t addr);
9 9 void m48t08_toggle_lock (m48t08_t *NVRAM, int lock);
10   -m48t08_t *m48t08_init(uint32_t mem_base, uint16_t size);
  10 +m48t08_t *m48t08_init(uint32_t mem_base, uint16_t size, uint8_t *macaddr);
11 11  
12 12 #endif /* !defined (__M48T08_H__) */
... ...
hw/magic-load.c
1   -/* This is the Linux kernel elf-loading code, ported into user space */
2 1 #include "vl.h"
3 2 #include "disas.h"
4 3  
5   -/* XXX: this code is not used as it is under the GPL license. Please
6   - remove or recode it */
7   -//#define USE_ELF_LOADER
8   -
9   -#ifdef USE_ELF_LOADER
10   -/* should probably go in elf.h */
11   -#ifndef ELIBBAD
12   -#define ELIBBAD 80
13   -#endif
14   -
15   -
16   -#define ELF_START_MMAP 0x80000000
17   -
18   -#define elf_check_arch(x) ( (x) == EM_SPARC )
19   -
20 4 #define ELF_CLASS ELFCLASS32
21 5 #define ELF_DATA ELFDATA2MSB
22 6 #define ELF_ARCH EM_SPARC
23 7  
24 8 #include "elf.h"
25 9  
26   -/*
27   - * This structure is used to hold the arguments that are
28   - * used when loading binaries.
29   - */
30   -struct linux_binprm {
31   - char buf[128];
32   - int fd;
33   -};
34   -
35   -#define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
36   -#define TARGET_ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE-1))
37   -#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
38   -
39 10 #ifdef BSWAP_NEEDED
40 11 static void bswap_ehdr(Elf32_Ehdr *ehdr)
41 12 {
... ... @@ -87,186 +58,192 @@ static void bswap_sym(Elf32_Sym *sym)
87 58 bswap32s(&sym->st_size);
88 59 bswap16s(&sym->st_shndx);
89 60 }
  61 +#else
  62 +#define bswap_ehdr(e) do { } while (0)
  63 +#define bswap_phdr(e) do { } while (0)
  64 +#define bswap_shdr(e) do { } while (0)
  65 +#define bswap_sym(e) do { } while (0)
90 66 #endif
91 67  
92   -static int prepare_binprm(struct linux_binprm *bprm)
  68 +static int find_phdr(struct elfhdr *ehdr, int fd, struct elf_phdr *phdr, uint32_t type)
93 69 {
94   - int retval;
95   -
96   - memset(bprm->buf, 0, sizeof(bprm->buf));
97   - retval = lseek(bprm->fd, 0L, SEEK_SET);
98   - if(retval >= 0) {
99   - retval = read(bprm->fd, bprm->buf, 128);
100   - }
101   - if(retval < 0) {
102   - perror("prepare_binprm");
103   - exit(-1);
104   - /* return(-errno); */
105   - }
106   - else {
107   - return(retval);
  70 + int i, retval;
  71 +
  72 + retval = lseek(fd, ehdr->e_phoff, SEEK_SET);
  73 + if (retval < 0)
  74 + return -1;
  75 +
  76 + for (i = 0; i < ehdr->e_phnum; i++) {
  77 + retval = read(fd, phdr, sizeof(*phdr));
  78 + if (retval < 0)
  79 + return -1;
  80 + bswap_phdr(phdr);
  81 + if (phdr->p_type == type)
  82 + return 0;
108 83 }
  84 + return -1;
109 85 }
110 86  
111   -/* Best attempt to load symbols from this ELF object. */
112   -static void load_symbols(struct elfhdr *hdr, int fd)
  87 +static void *find_shdr(struct elfhdr *ehdr, int fd, struct elf_shdr *shdr, uint32_t type)
113 88 {
114   - unsigned int i;
115   - struct elf_shdr sechdr, symtab, strtab;
116   - char *strings;
117   -
118   - lseek(fd, hdr->e_shoff, SEEK_SET);
119   - for (i = 0; i < hdr->e_shnum; i++) {
120   - if (read(fd, &sechdr, sizeof(sechdr)) != sizeof(sechdr))
121   - return;
122   -#ifdef BSWAP_NEEDED
123   - bswap_shdr(&sechdr);
124   -#endif
125   - if (sechdr.sh_type == SHT_SYMTAB) {
126   - symtab = sechdr;
127   - lseek(fd, hdr->e_shoff
128   - + sizeof(sechdr) * sechdr.sh_link, SEEK_SET);
129   - if (read(fd, &strtab, sizeof(strtab))
130   - != sizeof(strtab))
131   - return;
132   -#ifdef BSWAP_NEEDED
133   - bswap_shdr(&strtab);
134   -#endif
135   - goto found;
136   - }
  89 + int i, retval;
  90 +
  91 + retval = lseek(fd, ehdr->e_shoff, SEEK_SET);
  92 + if (retval < 0)
  93 + return NULL;
  94 +
  95 + for (i = 0; i < ehdr->e_shnum; i++) {
  96 + retval = read(fd, shdr, sizeof(*shdr));
  97 + if (retval < 0)
  98 + return NULL;
  99 + bswap_shdr(shdr);
  100 + if (shdr->sh_type == type)
  101 + return qemu_malloc(shdr->sh_size);
137 102 }
138   - return; /* Shouldn't happen... */
139   -
140   - found:
141   - /* Now know where the strtab and symtab are. Snarf them. */
142   - disas_symtab = qemu_malloc(symtab.sh_size);
143   - disas_strtab = strings = qemu_malloc(strtab.sh_size);
144   - if (!disas_symtab || !disas_strtab)
145   - return;
146   -
147   - lseek(fd, symtab.sh_offset, SEEK_SET);
148   - if (read(fd, disas_symtab, symtab.sh_size) != symtab.sh_size)
149   - return;
  103 + return NULL;
  104 +}
150 105  
151   -#ifdef BSWAP_NEEDED
152   - for (i = 0; i < symtab.sh_size / sizeof(struct elf_sym); i++)
153   - bswap_sym(disas_symtab + sizeof(struct elf_sym)*i);
154   -#endif
  106 +static int find_strtab(struct elfhdr *ehdr, int fd, struct elf_shdr *shdr, struct elf_shdr *symtab)
  107 +{
  108 + int retval;
155 109  
156   - lseek(fd, strtab.sh_offset, SEEK_SET);
157   - if (read(fd, strings, strtab.sh_size) != strtab.sh_size)
158   - return;
159   - disas_num_syms = symtab.sh_size / sizeof(struct elf_sym);
  110 + retval = lseek(fd, ehdr->e_shoff + sizeof(struct elf_shdr) * symtab->sh_link, SEEK_SET);
  111 + if (retval < 0)
  112 + return -1;
  113 +
  114 + retval = read(fd, shdr, sizeof(*shdr));
  115 + if (retval < 0)
  116 + return -1;
  117 + bswap_shdr(shdr);
  118 + if (shdr->sh_type == SHT_STRTAB)
  119 + return qemu_malloc(shdr->sh_size);;
  120 + return 0;
160 121 }
161 122  
162   -static int load_elf_binary(struct linux_binprm * bprm, uint8_t *addr)
  123 +static int read_program(int fd, struct elf_phdr *phdr, void *dst)
163 124 {
164   - struct elfhdr elf_ex;
165   - unsigned long startaddr = addr;
166   - int i;
167   - struct elf_phdr * elf_ppnt;
168   - struct elf_phdr *elf_phdata;
169 125 int retval;
  126 + retval = lseek(fd, 0x4000, SEEK_SET);
  127 + if (retval < 0)
  128 + return -1;
  129 + return read(fd, dst, phdr->p_filesz);
  130 +}
170 131  
171   - elf_ex = *((struct elfhdr *) bprm->buf); /* exec-header */
172   -#ifdef BSWAP_NEEDED
173   - bswap_ehdr(&elf_ex);
174   -#endif
  132 +static int read_section(int fd, struct elf_shdr *s, void *dst)
  133 +{
  134 + int retval;
175 135  
176   - if (elf_ex.e_ident[0] != 0x7f ||
177   - strncmp(&elf_ex.e_ident[1], "ELF",3) != 0) {
178   - return -ENOEXEC;
179   - }
  136 + retval = lseek(fd, s->sh_offset, SEEK_SET);
  137 + if (retval < 0)
  138 + return -1;
  139 + retval = read(fd, dst, s->sh_size);
  140 + if (retval < 0)
  141 + return -1;
  142 + return 0;
  143 +}
180 144  
181   - /* First of all, some simple consistency checks */
182   - if (! elf_check_arch(elf_ex.e_machine)) {
183   - return -ENOEXEC;
184   - }
  145 +static void *process_section(struct elfhdr *ehdr, int fd, struct elf_shdr *shdr, uint32_t type)
  146 +{
  147 + void *dst;
  148 +
  149 + dst = find_shdr(ehdr, fd, shdr, type);
  150 + if (!dst)
  151 + goto error;
  152 +
  153 + if (read_section(fd, shdr, dst))
  154 + goto error;
  155 + return dst;
  156 + error:
  157 + qemu_free(dst);
  158 + return NULL;
  159 +}
185 160  
186   - /* Now read in all of the header information */
187   - elf_phdata = (struct elf_phdr *)qemu_malloc(elf_ex.e_phentsize*elf_ex.e_phnum);
188   - if (elf_phdata == NULL) {
189   - return -ENOMEM;
190   - }
  161 +static void *process_strtab(struct elfhdr *ehdr, int fd, struct elf_shdr *shdr, struct elf_shdr *symtab)
  162 +{
  163 + void *dst;
  164 +
  165 + dst = find_strtab(ehdr, fd, shdr, symtab);
  166 + if (!dst)
  167 + goto error;
  168 +
  169 + if (read_section(fd, shdr, dst))
  170 + goto error;
  171 + return dst;
  172 + error:
  173 + qemu_free(dst);
  174 + return NULL;
  175 +}
191 176  
192   - retval = lseek(bprm->fd, elf_ex.e_phoff, SEEK_SET);
193   - if(retval > 0) {
194   - retval = read(bprm->fd, (char *) elf_phdata,
195   - elf_ex.e_phentsize * elf_ex.e_phnum);
196   - }
  177 +static void load_symbols(struct elfhdr *ehdr, int fd)
  178 +{
  179 + struct elf_shdr symtab, strtab;
  180 + struct elf_sym *syms;
  181 + int nsyms, i;
  182 + char *str;
  183 +
  184 + /* Symbol table */
  185 + syms = process_section(ehdr, fd, &symtab, SHT_SYMTAB);
  186 + if (!syms)
  187 + return;
197 188  
198   - if (retval < 0) {
199   - perror("load_elf_binary");
200   - exit(-1);
201   - qemu_free (elf_phdata);
202   - return -errno;
203   - }
  189 + nsyms = symtab.sh_size / sizeof(struct elf_sym);
  190 + for (i = 0; i < nsyms; i++)
  191 + bswap_sym(&syms[i]);
  192 +
  193 + /* String table */
  194 + str = process_strtab(ehdr, fd, &strtab, &symtab);
  195 + if (!str)
  196 + goto error_freesyms;
  197 +
  198 + /* Commit */
  199 + if (disas_symtab)
  200 + qemu_free(disas_symtab); /* XXX Merge with old symbols? */
  201 + if (disas_strtab)
  202 + qemu_free(disas_strtab);
  203 + disas_symtab = syms;
  204 + disas_num_syms = nsyms;
  205 + disas_strtab = str;
  206 + return;
  207 + error_freesyms:
  208 + qemu_free(syms);
  209 + return;
  210 +}
204 211  
205   -#ifdef BSWAP_NEEDED
206   - elf_ppnt = elf_phdata;
207   - for (i=0; i<elf_ex.e_phnum; i++, elf_ppnt++) {
208   - bswap_phdr(elf_ppnt);
209   - }
210   -#endif
211   - elf_ppnt = elf_phdata;
212   -
213   - /* Now we do a little grungy work by mmaping the ELF image into
214   - * the correct location in memory. At this point, we assume that
215   - * the image should be loaded at fixed address, not at a variable
216   - * address.
217   - */
218   -
219   - for(i = 0, elf_ppnt = elf_phdata; i < elf_ex.e_phnum; i++, elf_ppnt++) {
220   - unsigned long error, offset, len;
221   -
222   - if (elf_ppnt->p_type != PT_LOAD)
223   - continue;
224   -#if 0
225   - error = target_mmap(TARGET_ELF_PAGESTART(load_bias + elf_ppnt->p_vaddr),
226   - elf_prot,
227   - (MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE),
228   - bprm->fd,
229   - (elf_ppnt->p_offset -
230   - TARGET_ELF_PAGEOFFSET(elf_ppnt->p_vaddr)));
231   -#endif
232   - //offset = elf_ppnt->p_offset - TARGET_ELF_PAGEOFFSET(elf_ppnt->p_vaddr);
233   - offset = 0x4000;
234   - lseek(bprm->fd, offset, SEEK_SET);
235   - len = elf_ppnt->p_filesz + TARGET_ELF_PAGEOFFSET(elf_ppnt->p_vaddr);
236   - error = read(bprm->fd, addr, len);
237   -
238   - if (error == -1) {
239   - perror("mmap");
240   - exit(-1);
241   - }
242   - addr += len;
243   - }
  212 +int load_elf(const char * filename, uint8_t *addr)
  213 +{
  214 + struct elfhdr ehdr;
  215 + struct elf_phdr phdr;
  216 + int retval, fd;
244 217  
245   - qemu_free(elf_phdata);
  218 + fd = open(filename, O_RDONLY | O_BINARY);
  219 + if (fd < 0)
  220 + goto error;
246 221  
247   - load_symbols(&elf_ex, bprm->fd);
  222 + retval = read(fd, &ehdr, sizeof(ehdr));
  223 + if (retval < 0)
  224 + goto error;
248 225  
249   - return addr-startaddr;
250   -}
  226 + bswap_ehdr(&ehdr);
251 227  
252   -int elf_exec(const char * filename, uint8_t *addr)
253   -{
254   - struct linux_binprm bprm;
255   - int retval;
  228 + if (ehdr.e_ident[0] != 0x7f || ehdr.e_ident[1] != 'E'
  229 + || ehdr.e_ident[2] != 'L' || ehdr.e_ident[3] != 'F'
  230 + || ehdr.e_machine != EM_SPARC)
  231 + goto error;
256 232  
257   - retval = open(filename, O_RDONLY);
258   - if (retval < 0)
259   - return retval;
260   - bprm.fd = retval;
  233 + if (find_phdr(&ehdr, fd, &phdr, PT_LOAD))
  234 + goto error;
  235 + retval = read_program(fd, &phdr, addr);
  236 + if (retval < 0)
  237 + goto error;
261 238  
262   - retval = prepare_binprm(&bprm);
  239 + load_symbols(&ehdr, fd);
263 240  
264   - if(retval>=0) {
265   - retval = load_elf_binary(&bprm, addr);
266   - }
267   - return retval;
  241 + close(fd);
  242 + return retval;
  243 + error:
  244 + close(fd);
  245 + return -1;
268 246 }
269   -#endif
270 247  
271 248 int load_kernel(const char *filename, uint8_t *addr)
272 249 {
... ... @@ -286,28 +263,31 @@ int load_kernel(const char *filename, uint8_t *addr)
286 263 return -1;
287 264 }
288 265  
289   -static char saved_kfn[1024];
290   -static uint32_t saved_addr;
291   -static int magic_state;
  266 +typedef struct MAGICState {
  267 + uint32_t addr;
  268 + uint32_t saved_addr;
  269 + int magic_state;
  270 + char saved_kfn[1024];
  271 +} MAGICState;
292 272  
293 273 static uint32_t magic_mem_readl(void *opaque, target_phys_addr_t addr)
294 274 {
295 275 int ret;
  276 + MAGICState *s = opaque;
296 277  
297   - if (magic_state == 0) {
298   -#ifdef USE_ELF_LOADER
299   - ret = elf_exec(saved_kfn, saved_addr);
300   -#else
301   - ret = load_kernel(saved_kfn, (uint8_t *)saved_addr);
302   -#endif
  278 + if (s->magic_state == 0) {
  279 + ret = load_elf(s->saved_kfn, (uint8_t *)s->saved_addr);
  280 + if (ret < 0)
  281 + ret = load_kernel(s->saved_kfn, (uint8_t *)s->saved_addr);
303 282 if (ret < 0) {
304 283 fprintf(stderr, "qemu: could not load kernel '%s'\n",
305   - saved_kfn);
  284 + s->saved_kfn);
306 285 }
307   - magic_state = 1; /* No more magic */
  286 + s->magic_state = 1; /* No more magic */
308 287 tb_flush();
  288 + return bswap32(ret);
309 289 }
310   - return ret;
  290 + return 0;
311 291 }
312 292  
313 293 static void magic_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
... ... @@ -327,15 +307,20 @@ static CPUWriteMemoryFunc *magic_mem_write[3] = {
327 307 magic_mem_writel,
328 308 };
329 309  
330   -void magic_init(const char *kfn, int kloadaddr)
  310 +void magic_init(const char *kfn, int kloadaddr, uint32_t addr)
331 311 {
332 312 int magic_io_memory;
333   -
334   - strcpy(saved_kfn, kfn);
335   - saved_addr = kloadaddr;
336   - magic_state = 0;
337   - magic_io_memory = cpu_register_io_memory(0, magic_mem_read, magic_mem_write, 0);
338   - cpu_register_physical_memory(0x20000000, 4,
339   - magic_io_memory);
  313 + MAGICState *s;
  314 +
  315 + s = qemu_mallocz(sizeof(MAGICState));
  316 + if (!s)
  317 + return;
  318 +
  319 + strcpy(s->saved_kfn, kfn);
  320 + s->saved_addr = kloadaddr;
  321 + s->magic_state = 0;
  322 + s->addr = addr;
  323 + magic_io_memory = cpu_register_io_memory(0, magic_mem_read, magic_mem_write, s);
  324 + cpu_register_physical_memory(addr, 4, magic_io_memory);
340 325 }
341 326  
... ...
hw/sched.c
1 1 /*
2   - * QEMU interrupt controller & timer emulation
  2 + * QEMU interrupt controller emulation
3 3 *
4 4 * Copyright (c) 2003-2004 Fabrice Bellard
5 5 *
... ... @@ -22,11 +22,7 @@
22 22 * THE SOFTWARE.
23 23 */
24 24 #include "vl.h"
25   -
26   -#define PHYS_JJ_CLOCK 0x71D00000
27   -#define PHYS_JJ_CLOCK1 0x71D10000
28   -#define PHYS_JJ_INTR0 0x71E00000 /* CPU0 interrupt control registers */
29   -#define PHYS_JJ_INTR_G 0x71E10000 /* Master interrupt control registers */
  25 +//#define DEBUG_IRQ_COUNT
30 26  
31 27 /* These registers are used for sending/receiving irqs from/to
32 28 * different cpu's.
... ... @@ -63,18 +59,6 @@ struct sun4m_intreg_master {
63 59 /* This register is both READ and WRITE. */
64 60 unsigned int undirected_target; /* Which cpu gets undirected irqs. */
65 61 };
66   -/*
67   - * Registers of hardware timer in sun4m.
68   - */
69   -struct sun4m_timer_percpu {
70   - volatile unsigned int l14_timer_limit; /* Initial value is 0x009c4000 */
71   - volatile unsigned int l14_cur_count;
72   -};
73   -
74   -struct sun4m_timer_global {
75   - volatile unsigned int l10_timer_limit;
76   - volatile unsigned int l10_cur_count;
77   -};
78 62  
79 63 #define SUN4M_INT_ENABLE 0x80000000
80 64 #define SUN4M_INT_E14 0x00000080
... ... @@ -101,29 +85,25 @@ struct sun4m_timer_global {
101 85 #define SUN4M_INT_VME(x) (1 << (x))
102 86  
103 87 typedef struct SCHEDState {
  88 + uint32_t addr, addrg;
104 89 uint32_t intreg_pending;
105 90 uint32_t intreg_enabled;
106 91 uint32_t intregm_pending;
107 92 uint32_t intregm_enabled;
108   - uint32_t timer_regs[2];
109   - uint32_t timerm_regs[2];
110 93 } SCHEDState;
111 94  
112 95 static SCHEDState *ps;
113 96  
114   -static int intreg_io_memory, intregm_io_memory,
115   - timer_io_memory, timerm_io_memory;
116   -
117   -static void sched_reset(SCHEDState *s)
118   -{
119   -}
  97 +#ifdef DEBUG_IRQ_COUNT
  98 +static uint64_t irq_count[32];
  99 +#endif
120 100  
121 101 static uint32_t intreg_mem_readl(void *opaque, target_phys_addr_t addr)
122 102 {
123 103 SCHEDState *s = opaque;
124 104 uint32_t saddr;
125 105  
126   - saddr = (addr - PHYS_JJ_INTR0) >> 2;
  106 + saddr = (addr - s->addr) >> 2;
127 107 switch (saddr) {
128 108 case 0:
129 109 return s->intreg_pending;
... ... @@ -139,7 +119,7 @@ static void intreg_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t va
139 119 SCHEDState *s = opaque;
140 120 uint32_t saddr;
141 121  
142   - saddr = (addr - PHYS_JJ_INTR0) >> 2;
  122 + saddr = (addr - s->addr) >> 2;
143 123 switch (saddr) {
144 124 case 0:
145 125 s->intreg_pending = val;
... ... @@ -172,7 +152,7 @@ static uint32_t intregm_mem_readl(void *opaque, target_phys_addr_t addr)
172 152 SCHEDState *s = opaque;
173 153 uint32_t saddr;
174 154  
175   - saddr = (addr - PHYS_JJ_INTR_G) >> 2;
  155 + saddr = (addr - s->addrg) >> 2;
176 156 switch (saddr) {
177 157 case 0:
178 158 return s->intregm_pending;
... ... @@ -191,7 +171,7 @@ static void intregm_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t v
191 171 SCHEDState *s = opaque;
192 172 uint32_t saddr;
193 173  
194   - saddr = (addr - PHYS_JJ_INTR_G) >> 2;
  174 + saddr = (addr - s->addrg) >> 2;
195 175 switch (saddr) {
196 176 case 0:
197 177 s->intregm_pending = val;
... ... @@ -222,87 +202,29 @@ static CPUWriteMemoryFunc *intregm_mem_write[3] = {
222 202 intregm_mem_writel,
223 203 };
224 204  
225   -static uint32_t timer_mem_readl(void *opaque, target_phys_addr_t addr)
  205 +void pic_info(void)
226 206 {
227   - SCHEDState *s = opaque;
228   - uint32_t saddr;
229   -
230   - saddr = (addr - PHYS_JJ_CLOCK) >> 2;
231   - switch (saddr) {
232   - default:
233   - return s->timer_regs[saddr];
234   - break;
235   - }
236   - return 0;
  207 + term_printf("per-cpu: pending 0x%08x, enabled 0x%08x\n", ps->intreg_pending, ps->intreg_enabled);
  208 + term_printf("master: pending 0x%08x, enabled 0x%08x\n", ps->intregm_pending, ps->intregm_enabled);
237 209 }
238 210  
239   -static void timer_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
  211 +void irq_info(void)
240 212 {
241   - SCHEDState *s = opaque;
242   - uint32_t saddr;
243   -
244   - saddr = (addr - PHYS_JJ_CLOCK) >> 2;
245   - switch (saddr) {
246   - default:
247   - s->timer_regs[saddr] = val;
248   - break;
  213 +#ifndef DEBUG_IRQ_COUNT
  214 + term_printf("irq statistic code not compiled.\n");
  215 +#else
  216 + int i;
  217 + int64_t count;
  218 +
  219 + term_printf("IRQ statistics:\n");
  220 + for (i = 0; i < 32; i++) {
  221 + count = irq_count[i];
  222 + if (count > 0)
  223 + term_printf("%2d: %lld\n", i, count);
249 224 }
  225 +#endif
250 226 }
251 227  
252   -static CPUReadMemoryFunc *timer_mem_read[3] = {
253   - timer_mem_readl,
254   - timer_mem_readl,
255   - timer_mem_readl,
256   -};
257   -
258   -static CPUWriteMemoryFunc *timer_mem_write[3] = {
259   - timer_mem_writel,
260   - timer_mem_writel,
261   - timer_mem_writel,
262   -};
263   -
264   -static uint32_t timerm_mem_readl(void *opaque, target_phys_addr_t addr)
265   -{
266   - SCHEDState *s = opaque;
267   - uint32_t saddr;
268   -
269   - saddr = (addr - PHYS_JJ_CLOCK1) >> 2;
270   - switch (saddr) {
271   - default:
272   - return s->timerm_regs[saddr];
273   - break;
274   - }
275   - return 0;
276   -}
277   -
278   -static void timerm_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
279   -{
280   - SCHEDState *s = opaque;
281   - uint32_t saddr;
282   -
283   - saddr = (addr - PHYS_JJ_CLOCK1) >> 2;
284   - switch (saddr) {
285   - default:
286   - s->timerm_regs[saddr] = val;
287   - break;
288   - }
289   -}
290   -
291   -static CPUReadMemoryFunc *timerm_mem_read[3] = {
292   - timerm_mem_readl,
293   - timerm_mem_readl,
294   - timerm_mem_readl,
295   -};
296   -
297   -static CPUWriteMemoryFunc *timerm_mem_write[3] = {
298   - timerm_mem_writel,
299   - timerm_mem_writel,
300   - timerm_mem_writel,
301   -};
302   -
303   -void pic_info() {}
304   -void irq_info() {}
305   -
306 228 static const unsigned int intr_to_mask[16] = {
307 229 0, 0, 0, 0, 0, 0, SUN4M_INT_ETHERNET, 0,
308 230 0, 0, 0, 0, 0, 0, 0, 0,
... ... @@ -318,29 +240,29 @@ void pic_set_irq(int irq, int level)
318 240 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
319 241 }
320 242 }
  243 +#ifdef DEBUG_IRQ_COUNT
  244 + if (level == 1)
  245 + irq_count[irq]++;
  246 +#endif
321 247 }
322 248  
323   -void sched_init()
  249 +void sched_init(uint32_t addr, uint32_t addrg)
324 250 {
  251 + int intreg_io_memory, intregm_io_memory;
325 252 SCHEDState *s;
326 253  
327 254 s = qemu_mallocz(sizeof(SCHEDState));
328 255 if (!s)
329 256 return;
  257 + s->addr = addr;
  258 + s->addrg = addrg;
330 259  
331 260 intreg_io_memory = cpu_register_io_memory(0, intreg_mem_read, intreg_mem_write, s);
332   - cpu_register_physical_memory(PHYS_JJ_INTR0, 3, intreg_io_memory);
  261 + cpu_register_physical_memory(addr, 3, intreg_io_memory);
333 262  
334 263 intregm_io_memory = cpu_register_io_memory(0, intregm_mem_read, intregm_mem_write, s);
335   - cpu_register_physical_memory(PHYS_JJ_INTR_G, 5, intregm_io_memory);
336   -
337   - timer_io_memory = cpu_register_io_memory(0, timer_mem_read, timer_mem_write, s);
338   - cpu_register_physical_memory(PHYS_JJ_CLOCK, 2, timer_io_memory);
339   -
340   - timerm_io_memory = cpu_register_io_memory(0, timerm_mem_read, timerm_mem_write, s);
341   - cpu_register_physical_memory(PHYS_JJ_CLOCK1, 2, timerm_io_memory);
  264 + cpu_register_physical_memory(addrg, 5, intregm_io_memory);
342 265  
343   - sched_reset(s);
344 266 ps = s;
345 267 }
346 268  
... ...
hw/sun4m.c
... ... @@ -28,12 +28,26 @@
28 28 #define MMU_CONTEXT_TBL 0x00003000
29 29 #define MMU_L1PTP (MMU_CONTEXT_TBL + 0x0400)
30 30 #define MMU_L2PTP (MMU_CONTEXT_TBL + 0x0800)
31   -#define ROMVEC_DATA (MMU_CONTEXT_TBL + 0x1800)
32 31 #define PROM_ADDR 0xffd04000
33   -#define PROM_FILENAME "proll.bin"
  32 +#define PROM_FILENAMEB "proll.bin"
  33 +#define PROM_FILENAMEE "proll.elf"
  34 +#define PROLL_MAGIC_ADDR 0x20000000
34 35 #define PHYS_JJ_EEPROM 0x71200000 /* [2000] MK48T08 */
35 36 #define PHYS_JJ_IDPROM_OFF 0x1FD8
36 37 #define PHYS_JJ_EEPROM_SIZE 0x2000
  38 +#define PHYS_JJ_IOMMU 0x10000000 /* First page of sun4m IOMMU */
  39 +#define PHYS_JJ_TCX_FB 0x50800000 /* Start address, frame buffer body */
  40 +#define PHYS_JJ_TCX_0E 0x5E000000 /* Top address, one byte used. */
  41 +#define PHYS_JJ_IOMMU 0x10000000 /* First page of sun4m IOMMU */
  42 +#define PHYS_JJ_LEDMA 0x78400010 /* ledma, off by 10 from unused SCSI */
  43 +#define PHYS_JJ_LE 0x78C00000 /* LANCE, typical sun4m */
  44 +#define PHYS_JJ_LE_IRQ 6
  45 +#define PHYS_JJ_CLOCK 0x71D00000
  46 +#define PHYS_JJ_CLOCK_IRQ 10
  47 +#define PHYS_JJ_CLOCK1 0x71D10000
  48 +#define PHYS_JJ_CLOCK1_IRQ 14
  49 +#define PHYS_JJ_INTR0 0x71E00000 /* CPU0 interrupt control registers */
  50 +#define PHYS_JJ_INTR_G 0x71E10000 /* Master interrupt control registers */
37 51  
38 52 /* TSC handling */
39 53  
... ... @@ -44,8 +58,6 @@ uint64_t cpu_get_tsc()
44 58  
45 59 void DMA_run() {}
46 60 void SB16_run() {}
47   -void vga_invalidate_display() {}
48   -void vga_screen_dump(const char *filename) {}
49 61 int serial_can_receive(SerialState *s) { return 0; }
50 62 void serial_receive_byte(SerialState *s, int ch) {}
51 63 void serial_receive_break(SerialState *s) {}
... ... @@ -59,7 +71,7 @@ void sun4m_init(int ram_size, int vga_ram_size, int boot_device,
59 71 const char *initrd_filename)
60 72 {
61 73 char buf[1024];
62   - int ret, linux_boot, bios_size;
  74 + int ret, linux_boot;
63 75 unsigned long bios_offset;
64 76  
65 77 linux_boot = (kernel_filename != NULL);
... ... @@ -68,32 +80,21 @@ void sun4m_init(int ram_size, int vga_ram_size, int boot_device,
68 80 cpu_register_physical_memory(0, ram_size, 0);
69 81 bios_offset = ram_size;
70 82  
71   - iommu_init();
72   - sched_init();
73   - tcx_init(ds);
74   - lance_init(&nd_table[0], 6);
75   - nvram = m48t08_init(PHYS_JJ_EEPROM, PHYS_JJ_EEPROM_SIZE);
76   -
77   - magic_init(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
78   -
79   -#if 0
80   - snprintf(buf, sizeof(buf), "%s/%s", bios_dir, PROM_FILENAME);
81   - bios_size = get_image_size(buf);
82   - ret = load_image(buf, phys_ram_base + bios_offset);
83   - if (ret != bios_size) {
84   - fprintf(stderr, "qemu: could not load prom '%s'\n", buf);
85   - exit(1);
86   - }
87   - cpu_register_physical_memory(PROM_ADDR,
88   - bios_size, bios_offset | IO_MEM_ROM);
89   -#endif
  83 + iommu_init(PHYS_JJ_IOMMU);
  84 + sched_init(PHYS_JJ_INTR0, PHYS_JJ_INTR_G);
  85 + tcx_init(ds, PHYS_JJ_TCX_FB);
  86 + lance_init(&nd_table[0], PHYS_JJ_LE_IRQ, PHYS_JJ_LE, PHYS_JJ_LEDMA);
  87 + nvram = m48t08_init(PHYS_JJ_EEPROM, PHYS_JJ_EEPROM_SIZE, &nd_table[0].macaddr);
  88 + timer_init(PHYS_JJ_CLOCK, PHYS_JJ_CLOCK_IRQ);
  89 + timer_init(PHYS_JJ_CLOCK1, PHYS_JJ_CLOCK1_IRQ);
  90 + magic_init(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR, PROLL_MAGIC_ADDR);
90 91  
91 92 /* We load Proll as the kernel and start it. It will issue a magic
92 93 IO to load the real kernel */
93 94 if (linux_boot) {
94   - snprintf(buf, sizeof(buf), "%s/%s", bios_dir, PROM_FILENAME);
  95 + snprintf(buf, sizeof(buf), "%s/%s", bios_dir, PROM_FILENAMEB);
95 96 ret = load_kernel(buf,
96   - phys_ram_base + KERNEL_LOAD_ADDR);
  97 + phys_ram_base + KERNEL_LOAD_ADDR);
97 98 if (ret < 0) {
98 99 fprintf(stderr, "qemu: could not load kernel '%s'\n",
99 100 buf);
... ... @@ -103,28 +104,10 @@ void sun4m_init(int ram_size, int vga_ram_size, int boot_device,
103 104 /* Setup a MMU entry for entire address space */
104 105 stl_raw(phys_ram_base + MMU_CONTEXT_TBL, (MMU_L1PTP >> 4) | 1);
105 106 stl_raw(phys_ram_base + MMU_L1PTP, (MMU_L2PTP >> 4) | 1);
106   -#if 0
107   - stl_raw(phys_ram_base + MMU_L1PTP + (0x50 << 2), (MMU_L2PTP >> 4) | 1); // frame buffer at 50..
108   -#endif
  107 + stl_raw(phys_ram_base + MMU_L1PTP + (0x01 << 2), (MMU_L2PTP >> 4) | 1); // 01.. == 00..
109 108 stl_raw(phys_ram_base + MMU_L1PTP + (0xff << 2), (MMU_L2PTP >> 4) | 1); // ff.. == 00..
  109 + stl_raw(phys_ram_base + MMU_L1PTP + (0xf0 << 2), (MMU_L2PTP >> 4) | 1); // f0.. == 00..
110 110 /* 3 = U:RWX S:RWX */
111 111 stl_raw(phys_ram_base + MMU_L2PTP, (3 << PTE_ACCESS_SHIFT) | 2);
112   -#if 0
113   - stl_raw(phys_ram_base + MMU_L2PTP + 0x84, (PHYS_JJ_TCX_FB >> 4) \
114   - | (3 << PTE_ACCESS_SHIFT) | 2); // frame buf
115   - stl_raw(phys_ram_base + MMU_L2PTP + 0x88, (PHYS_JJ_TCX_FB >> 4) \
116   - | (3 << PTE_ACCESS_SHIFT) | 2); // frame buf
117   - stl_raw(phys_ram_base + MMU_L2PTP + 0x140, (PHYS_JJ_TCX_FB >> 4) \
118   - | (3 << PTE_ACCESS_SHIFT) | 2); // frame buf
119   - // "Empirical constant"
120   - stl_raw(phys_ram_base + ROMVEC_DATA, 0x10010407);
121   -
122   - // Version: V3 prom
123   - stl_raw(phys_ram_base + ROMVEC_DATA + 4, 3);
124   -
125   - stl_raw(phys_ram_base + ROMVEC_DATA + 0x1c, ROMVEC_DATA+0x400);
126   - stl_raw(phys_ram_base + ROMVEC_DATA + 0x400, ROMVEC_DATA+0x404);
127   - stl_raw(phys_ram_base + ROMVEC_DATA + 0x404, 0x81c3e008); // retl
128   - stl_raw(phys_ram_base + ROMVEC_DATA + 0x408, 0x01000000); // nop
129   -#endif
  112 + stl_raw(phys_ram_base + MMU_L2PTP, ((0x01 << PTE_PPN_SHIFT) >> 4 ) | (3 << PTE_ACCESS_SHIFT) | 2);
130 113 }
... ...
hw/tcx.c
... ... @@ -23,9 +23,6 @@
23 23 */
24 24 #include "vl.h"
25 25  
26   -#define PHYS_JJ_TCX_FB 0x50800000 /* Start address, frame buffer body */
27   -#define PHYS_JJ_TCX_0E 0x5E000000 /* Top address, one byte used. */
28   -
29 26 #define MAXX 1024
30 27 #define MAXY 768
31 28 #define XSZ (8*80)
... ... @@ -33,38 +30,32 @@
33 30 #define XOFF (MAXX-XSZ)
34 31 #define YOFF (MAXY-YSZ)
35 32  
36   -#define DEBUG_VGA_MEM
37   -
38 33 typedef struct TCXState {
39   - uint8_t *vram_ptr;
40   - unsigned long vram_offset;
41   - unsigned int vram_size;
  34 + uint32_t addr;
42 35 DisplayState *ds;
  36 + uint8_t *vram;
43 37 } TCXState;
44 38  
45 39 static TCXState *ts;
46 40  
47   -static int tcx_io_memory;
48   -
49 41 void vga_update_display()
50 42 {
51 43 dpy_update(ts->ds, 0, 0, XSZ, YSZ);
52 44 }
53 45  
  46 +void vga_invalidate_display() {}
  47 +
54 48 static uint32_t tcx_mem_readb(void *opaque, target_phys_addr_t addr)
55 49 {
56 50 TCXState *s = opaque;
57 51 uint32_t saddr;
58 52 unsigned int x, y;
59   - char *sptr;
60 53  
61   - saddr = addr - PHYS_JJ_TCX_FB - YOFF*MAXX - XOFF;
  54 + saddr = addr - s->addr - YOFF*MAXX - XOFF;
62 55 y = saddr / MAXX;
63 56 x = saddr - y * MAXX;
64   - if (x < MAXX && y < MAXY) {
65   - sptr = s->ds->data;
66   - if (sptr)
67   - return sptr[y * s->ds->linesize + x*4];
  57 + if (x < XSZ && y < YSZ) {
  58 + return s->vram[y * XSZ + x];
68 59 }
69 60 return 0;
70 61 }
... ... @@ -99,7 +90,6 @@ static uint32_t tcx_mem_readl(void *opaque, target_phys_addr_t addr)
99 90 return v;
100 91 }
101 92  
102   -/* called for accesses between 0xa0000 and 0xc0000 */
103 93 static void tcx_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
104 94 {
105 95 TCXState *s = opaque;
... ... @@ -107,17 +97,24 @@ static void tcx_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
107 97 unsigned int x, y;
108 98 char *sptr;
109 99  
110   - saddr = addr - PHYS_JJ_TCX_FB - YOFF*MAXX - XOFF;
  100 + saddr = addr - s->addr - YOFF*MAXX - XOFF;
111 101 y = saddr / MAXX;
112 102 x = saddr - y * MAXX;
113   - if (x < MAXX && y < MAXY) {
  103 + if (x < XSZ && y < YSZ) {
114 104 sptr = s->ds->data;
115 105 if (sptr) {
116   - sptr[y * s->ds->linesize + x*4] = val;
117   - sptr[y * s->ds->linesize + x*4+1] = val;
118   - sptr[y * s->ds->linesize + x*4+2] = val;
119   - cpu_physical_memory_set_dirty(addr);
  106 + if (s->ds->depth == 24 || s->ds->depth == 32) {
  107 + /* XXX need to do CLUT translation */
  108 + sptr[y * s->ds->linesize + x*4] = val & 0xff;
  109 + sptr[y * s->ds->linesize + x*4+1] = val & 0xff;
  110 + sptr[y * s->ds->linesize + x*4+2] = val & 0xff;
  111 + }
  112 + else if (s->ds->depth == 8) {
  113 + sptr[y * s->ds->linesize + x] = val & 0xff;
  114 + }
120 115 }
  116 + cpu_physical_memory_set_dirty(addr);
  117 + s->vram[y * XSZ + x] = val & 0xff;
121 118 }
122 119 }
123 120  
... ... @@ -159,18 +156,52 @@ static CPUWriteMemoryFunc *tcx_mem_write[3] = {
159 156 tcx_mem_writel,
160 157 };
161 158  
162   -void tcx_init(DisplayState *ds)
  159 +void tcx_init(DisplayState *ds, uint32_t addr)
163 160 {
164 161 TCXState *s;
  162 + int tcx_io_memory;
165 163  
166 164 s = qemu_mallocz(sizeof(TCXState));
167 165 if (!s)
168 166 return;
169 167 s->ds = ds;
  168 + s->addr = addr;
170 169 ts = s;
171 170 tcx_io_memory = cpu_register_io_memory(0, tcx_mem_read, tcx_mem_write, s);
172   - cpu_register_physical_memory(PHYS_JJ_TCX_FB, 0x100000,
  171 + cpu_register_physical_memory(addr, 0x100000,
173 172 tcx_io_memory);
  173 + s->vram = qemu_mallocz(XSZ*YSZ);
174 174 dpy_resize(s->ds, XSZ, YSZ);
175 175 }
176 176  
  177 +void vga_screen_dump(const char *filename)
  178 +{
  179 + TCXState *s = ts;
  180 + FILE *f;
  181 + uint8_t *d, *d1;
  182 + unsigned int v;
  183 + int y, x;
  184 +
  185 + f = fopen(filename, "wb");
  186 + if (!f)
  187 + return -1;
  188 + fprintf(f, "P6\n%d %d\n%d\n",
  189 + XSZ, YSZ, 255);
  190 + d1 = s->vram;
  191 + for(y = 0; y < YSZ; y++) {
  192 + d = d1;
  193 + for(x = 0; x < XSZ; x++) {
  194 + v = *d;
  195 + fputc((v) & 0xff, f);
  196 + fputc((v) & 0xff, f);
  197 + fputc((v) & 0xff, f);
  198 + d++;
  199 + }
  200 + d1 += XSZ;
  201 + }
  202 + fclose(f);
  203 + return;
  204 +}
  205 +
  206 +
  207 +
... ...
monitor.c
... ... @@ -952,11 +952,7 @@ static int monitor_get_tbl (struct MonitorDef *md, int val)
952 952 #if defined(TARGET_SPARC)
953 953 static int monitor_get_psr (struct MonitorDef *md, int val)
954 954 {
955   - return (0<<28) | (4<<24) | cpu_single_env->psr \
956   - | (cpu_single_env->psrs? PSR_S : 0) \
957   - | (cpu_single_env->psrs? PSR_PS : 0) \
958   - | (cpu_single_env->psret? PSR_ET : 0) \
959   - | cpu_single_env->cwp;
  955 + return GET_PSR(cpu_single_env);
960 956 }
961 957  
962 958 static int monitor_get_reg(struct MonitorDef *md, int val)
... ...
pc-bios/README
... ... @@ -6,3 +6,8 @@
6 6  
7 7 - The PowerPC Open Hack'Ware Open Firmware Compatible BIOS is
8 8 available at http://site.voila.fr/jmayer/OpenHackWare/index.htm.
  9 +
  10 +- Proll is a GPL'd boot PROM for Sparc JavaStations
  11 + (http://people.redhat.com/zaitcev/linux/).
  12 + Applying proll.patch allows circumventing some bugs and enables
  13 + faster kernel load through a hack.
... ...
pc-bios/proll.bin 0 โ†’ 100644
No preview for this file type
pc-bios/proll.patch 0 โ†’ 100644
  1 +diff -ru proll_18.orig/mrcoffee/main.c proll_18/mrcoffee/main.c
  2 +--- proll_18.orig/mrcoffee/main.c 2002-09-13 16:16:59.000000000 +0200
  3 ++++ proll_18/mrcoffee/main.c 2004-09-26 11:52:23.000000000 +0200
  4 +@@ -101,6 +101,7 @@
  5 + le_probe();
  6 + init_net();
  7 +
  8 ++#ifdef ORIG
  9 + #if 0 /* RARP */
  10 + if (rarp() != 0) fatal();
  11 + /* printrarp(); */
  12 +@@ -117,13 +118,20 @@
  13 + xtoa(myipaddr, fname, 8);
  14 + if (load(boot_rec.bp_siaddr, fname) != 0) fatal();
  15 + #endif
  16 ++#endif
  17 +
  18 + romvec = init_openprom(bb.nbanks, bb.bankv, hiphybas);
  19 +
  20 + printk("Memory used: virt 0x%x:0x%x[%dK] iomap 0x%x:0x%x\n",
  21 + PROLBASE, (int)cmem.curp, ((unsigned) cmem.curp - PROLBASE)/1024,
  22 + (int)cio.start, (int)cio.curp);
  23 ++#ifdef ORIG
  24 + set_timeout(5); while (!chk_timeout()) { } /* P3: let me read */
  25 ++#else
  26 ++ printk("loading kernel:");
  27 ++ i = ld_bypass(0x20000000);
  28 ++ printk(" done, size %d\n", i);
  29 ++#endif
  30 +
  31 + {
  32 + void (*entry)(void *, int) = (void (*)(void*, int)) LOADBASE;
  33 +diff -ru proll_18.orig/mrcoffee/openprom.c proll_18/mrcoffee/openprom.c
  34 +--- proll_18.orig/mrcoffee/openprom.c 2002-09-13 16:17:03.000000000 +0200
  35 ++++ proll_18/mrcoffee/openprom.c 2004-09-21 21:27:16.000000000 +0200
  36 +@@ -144,10 +144,14 @@
  37 + };
  38 +
  39 + static int cpu_nctx = NCTX_SWIFT;
  40 ++static int cpu_cache_line_size = 0x20;
  41 ++static int cpu_cache_nlines = 0x200;
  42 + static struct property propv_cpu[] = {
  43 + {"name", "STP1012PGA", sizeof("STP1012PGA") },
  44 + {"device_type", "cpu", 4 },
  45 + {"mmu-nctx", (char*)&cpu_nctx, sizeof(int)},
  46 ++ {"cache-line-size", (char*)&cpu_cache_line_size, sizeof(int)},
  47 ++ {"cache-nlines", (char*)&cpu_cache_nlines, sizeof(int)},
  48 + {NULL, NULL, -1}
  49 + };
  50 +
... ...
target-sparc/cpu.h
... ... @@ -76,6 +76,7 @@
76 76 #define PTE_ENTRYTYPE_MASK 3
77 77 #define PTE_ACCESS_MASK 0x1c
78 78 #define PTE_ACCESS_SHIFT 2
  79 +#define PTE_PPN_SHIFT 7
79 80 #define PTE_ADDR_MASK 0xffffff00
80 81  
81 82 #define PG_ACCESSED_BIT 5
... ...
target-sparc/exec.h
... ... @@ -23,13 +23,16 @@ void helper_flush(target_ulong addr);
23 23 void helper_ld_asi(int asi, int size, int sign);
24 24 void helper_st_asi(int asi, int size, int sign);
25 25 void helper_rett(void);
26   -void helper_stfsr(void);
  26 +void helper_ldfsr(void);
27 27 void set_cwp(int new_cwp);
28 28 void do_fabss(void);
29 29 void do_fsqrts(void);
30 30 void do_fsqrtd(void);
31 31 void do_fcmps(void);
32 32 void do_fcmpd(void);
  33 +void do_ldd_kernel(uint32_t addr);
  34 +void do_ldd_user(uint32_t addr);
  35 +void do_ldd_raw(uint32_t addr);
33 36 void do_interrupt(int intno, int is_int, int error_code,
34 37 unsigned int next_eip, int is_hw);
35 38 void raise_exception_err(int exception_index, int error_code);
... ...
target-sparc/helper.c
... ... @@ -21,19 +21,10 @@
21 21  
22 22 #define DEBUG_PCALL
23 23  
24   -#if 0
25   -#define raise_exception_err(a, b)\
26   -do {\
27   - fprintf(logfile, "raise_exception line=%d\n", __LINE__);\
28   - (raise_exception_err)(a, b);\
29   -} while (0)
30   -#endif
31   -
32 24 /* Sparc MMU emulation */
33 25 int cpu_sparc_handle_mmu_fault (CPUState *env, uint32_t address, int rw,
34 26 int is_user, int is_softmmu);
35 27  
36   -
37 28 /* thread support */
38 29  
39 30 spinlock_t global_cpu_lock = SPIN_LOCK_UNLOCKED;
... ... @@ -48,15 +39,6 @@ void cpu_unlock(void)
48 39 spin_unlock(&global_cpu_lock);
49 40 }
50 41  
51   -#if 0
52   -void cpu_loop_exit(void)
53   -{
54   - /* NOTE: the register at this point must be saved by hand because
55   - longjmp restore them */
56   - longjmp(env->jmp_env, 1);
57   -}
58   -#endif
59   -
60 42 #if !defined(CONFIG_USER_ONLY)
61 43  
62 44 #define MMUSUFFIX _mmu
... ... @@ -258,7 +240,7 @@ int cpu_sparc_handle_mmu_fault (CPUState *env, uint32_t address, int rw,
258 240 env->mmuregs[3] |= (access_index << 5) | (error_code << 2) | 2;
259 241 env->mmuregs[4] = address; /* Fault address register */
260 242  
261   - if (env->mmuregs[0] & MMU_NF) // No fault
  243 + if (env->mmuregs[0] & MMU_NF || env->psret == 0) // No fault
262 244 return 0;
263 245  
264 246 env->exception_index = exception;
... ... @@ -306,7 +288,7 @@ void do_interrupt(int intno, int is_int, int error_code,
306 288 fprintf(logfile, "%6d: v=%02x e=%04x i=%d pc=%08x npc=%08x SP=%08x\n",
307 289 count, intno, error_code, is_int,
308 290 env->pc,
309   - env->npc, env->gregs[7]);
  291 + env->npc, env->regwptr[6]);
310 292 #if 0
311 293 cpu_sparc_dump_state(env, logfile, 0);
312 294 {
... ...
target-sparc/op.c
... ... @@ -474,92 +474,6 @@ void OPPROTO op_sra(void)
474 474 T0 = ((int32_t) T0) >> T1;
475 475 }
476 476  
477   -#if 0
478   -void OPPROTO op_st(void)
479   -{
480   - stl((void *) T0, T1);
481   -}
482   -
483   -void OPPROTO op_stb(void)
484   -{
485   - stb((void *) T0, T1);
486   -}
487   -
488   -void OPPROTO op_sth(void)
489   -{
490   - stw((void *) T0, T1);
491   -}
492   -
493   -void OPPROTO op_std(void)
494   -{
495   - stl((void *) T0, T1);
496   - stl((void *) (T0 + 4), T2);
497   -}
498   -
499   -void OPPROTO op_ld(void)
500   -{
501   - T1 = ldl((void *) T0);
502   -}
503   -
504   -void OPPROTO op_ldub(void)
505   -{
506   - T1 = ldub((void *) T0);
507   -}
508   -
509   -void OPPROTO op_lduh(void)
510   -{
511   - T1 = lduw((void *) T0);
512   -}
513   -
514   -void OPPROTO op_ldsb(void)
515   -{
516   - T1 = ldsb((void *) T0);
517   -}
518   -
519   -void OPPROTO op_ldsh(void)
520   -{
521   - T1 = ldsw((void *) T0);
522   -}
523   -
524   -void OPPROTO op_ldstub(void)
525   -{
526   - T1 = ldub((void *) T0);
527   - stb((void *) T0, 0xff); /* XXX: Should be Atomically */
528   -}
529   -
530   -void OPPROTO op_swap(void)
531   -{
532   - unsigned int tmp = ldl((void *) T0);
533   - stl((void *) T0, T1); /* XXX: Should be Atomically */
534   - T1 = tmp;
535   -}
536   -
537   -void OPPROTO op_ldd(void)
538   -{
539   - T1 = ldl((void *) T0);
540   - T0 = ldl((void *) (T0 + 4));
541   -}
542   -
543   -void OPPROTO op_stf(void)
544   -{
545   - stfl((void *) T0, FT0);
546   -}
547   -
548   -void OPPROTO op_stdf(void)
549   -{
550   - stfq((void *) T0, DT0);
551   -}
552   -
553   -void OPPROTO op_ldf(void)
554   -{
555   - FT0 = ldfl((void *) T0);
556   -}
557   -
558   -void OPPROTO op_lddf(void)
559   -{
560   - DT0 = ldfq((void *) T0);
561   -}
562   -#else
563 477 /* Load and store */
564 478 #define MEMSUFFIX _raw
565 479 #include "op_mem.h"
... ... @@ -570,19 +484,16 @@ void OPPROTO op_lddf(void)
570 484 #define MEMSUFFIX _kernel
571 485 #include "op_mem.h"
572 486 #endif
573   -#endif
574 487  
575 488 void OPPROTO op_ldfsr(void)
576 489 {
577 490 env->fsr = *((uint32_t *) &FT0);
578   - FORCE_RET();
  491 + helper_ldfsr();
579 492 }
580 493  
581 494 void OPPROTO op_stfsr(void)
582 495 {
583 496 *((uint32_t *) &FT0) = env->fsr;
584   - helper_stfsr();
585   - FORCE_RET();
586 497 }
587 498  
588 499 void OPPROTO op_wry(void)
... ... @@ -609,16 +520,17 @@ void OPPROTO op_wrwim(void)
609 520 void OPPROTO op_rdpsr(void)
610 521 {
611 522 T0 = GET_PSR(env);
612   - FORCE_RET();
613 523 }
614 524  
615 525 void OPPROTO op_wrpsr(void)
616 526 {
  527 + int cwp;
617 528 env->psr = T0 & ~PSR_ICC;
618 529 env->psrs = (T0 & PSR_S)? 1 : 0;
619 530 env->psrps = (T0 & PSR_PS)? 1 : 0;
620 531 env->psret = (T0 & PSR_ET)? 1 : 0;
621   - env->cwp = (T0 & PSR_CWP);
  532 + cwp = (T0 & PSR_CWP) & (NWINDOWS - 1);
  533 + set_cwp(cwp);
622 534 FORCE_RET();
623 535 }
624 536  
... ...
target-sparc/op_helper.c
... ... @@ -104,6 +104,27 @@ void OPPROTO helper_st_asi(int asi, int size, int sign)
104 104 }
105 105 }
106 106  
  107 +#if 0
  108 +void do_ldd_raw(uint32_t addr)
  109 +{
  110 + T1 = ldl_raw((void *) addr);
  111 + T0 = ldl_raw((void *) (addr + 4));
  112 +}
  113 +
  114 +#if !defined(CONFIG_USER_ONLY)
  115 +void do_ldd_user(uint32_t addr)
  116 +{
  117 + T1 = ldl_user((void *) addr);
  118 + T0 = ldl_user((void *) (addr + 4));
  119 +}
  120 +void do_ldd_kernel(uint32_t addr)
  121 +{
  122 + T1 = ldl_kernel((void *) addr);
  123 + T0 = ldl_kernel((void *) (addr + 4));
  124 +}
  125 +#endif
  126 +#endif
  127 +
107 128 void OPPROTO helper_rett()
108 129 {
109 130 int cwp;
... ... @@ -116,7 +137,7 @@ void OPPROTO helper_rett()
116 137 env->psrs = env->psrps;
117 138 }
118 139  
119   -void helper_stfsr(void)
  140 +void helper_ldfsr(void)
120 141 {
121 142 switch (env->fsr & FSR_RD_MASK) {
122 143 case FSR_RD_NEAREST:
... ...
target-sparc/op_mem.h
... ... @@ -43,8 +43,12 @@ void OPPROTO glue(op_swap, MEMSUFFIX)(void)
43 43  
44 44 void OPPROTO glue(op_ldd, MEMSUFFIX)(void)
45 45 {
  46 +#if 1
46 47 T1 = glue(ldl, MEMSUFFIX)((void *) T0);
47 48 T0 = glue(ldl, MEMSUFFIX)((void *) (T0 + 4));
  49 +#else
  50 + glue(do_ldd, MEMSUFFIX)(T0);
  51 +#endif
48 52 }
49 53  
50 54 /*** Floating-point store ***/
... ...
tests/Makefile
1   -include ../config-host.mak
  1 +-include ../config-host.mak
2 2  
3 3 CFLAGS=-Wall -O2 -g
4 4 LDFLAGS=
... ...
... ... @@ -673,20 +673,23 @@ void sun4m_init(int ram_size, int vga_ram_size, int boot_device,
673 673 const char *initrd_filename);
674 674  
675 675 /* iommu.c */
676   -void iommu_init();
  676 +void iommu_init(uint32_t addr);
677 677 uint32_t iommu_translate(uint32_t addr);
678 678  
679 679 /* lance.c */
680   -void lance_init(NetDriverState *nd, int irq);
  680 +void lance_init(NetDriverState *nd, int irq, uint32_t leaddr, uint32_t ledaddr);
681 681  
682 682 /* tcx.c */
683   -void tcx_init(DisplayState *ds);
  683 +void tcx_init(DisplayState *ds, uint32_t addr);
684 684  
685 685 /* sched.c */
686 686 void sched_init();
687 687  
688 688 /* magic-load.c */
689   -void magic_init(const char *kfn, int kloadaddr);
  689 +void magic_init(const char *kfn, int kloadaddr, uint32_t addr);
  690 +
  691 +/* timer.c */
  692 +void timer_init(uint32_t addr, int irq);
690 693  
691 694 /* NVRAM helpers */
692 695 #include "hw/m48t59.h"
... ...