Blame view

gdbstub.c 48.6 KB
bellard authored
1
2
/*
 * gdb server stub
3
 *
bellard authored
4
 * Copyright (c) 2003-2005 Fabrice Bellard
bellard authored
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
20
#include "config.h"
21
#include "qemu-common.h"
22
23
24
25
26
27
28
#ifdef CONFIG_USER_ONLY
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
29
#include <fcntl.h>
30
31
32

#include "qemu.h"
#else
pbrook authored
33
34
35
#include "qemu-char.h"
#include "sysemu.h"
#include "gdbstub.h"
36
#endif
37
38
39
#define MAX_PACKET_LENGTH 4096
bellard authored
40
41
42
43
44
45
46
47
48
49
#include "qemu_socket.h"
#ifdef _WIN32
/* XXX: these constants may be independent of the host ones even for Unix */
#ifndef SIGTRAP
#define SIGTRAP 5
#endif
#ifndef SIGINT
#define SIGINT 2
#endif
#else
bellard authored
50
#include <signal.h>
bellard authored
51
#endif
bellard authored
52
bellard authored
53
//#define DEBUG_GDB
bellard authored
54
55
56
57
58
59
60
61
62
63
typedef struct GDBRegisterState {
    int base_reg;
    int num_regs;
    gdb_reg_cb get_reg;
    gdb_reg_cb set_reg;
    const char *xml;
    struct GDBRegisterState *next;
} GDBRegisterState;
64
65
66
67
68
enum RSState {
    RS_IDLE,
    RS_GETLINE,
    RS_CHKSUM1,
    RS_CHKSUM2,
pbrook authored
69
    RS_SYSCALL,
70
71
};
typedef struct GDBState {
bellard authored
72
    CPUState *env; /* current CPU */
bellard authored
73
    enum RSState state; /* parsing state */
74
    char line_buf[MAX_PACKET_LENGTH];
75
76
    int line_buf_index;
    int line_csum;
77
    uint8_t last_packet[MAX_PACKET_LENGTH + 4];
78
    int last_packet_len;
79
    int signal;
bellard authored
80
#ifdef CONFIG_USER_ONLY
81
    int fd;
bellard authored
82
    int running_state;
83
84
#else
    CharDriverState *chr;
bellard authored
85
#endif
86
} GDBState;
bellard authored
87
88
89
90
91
92
/* By default use no IRQs and no timers while single stepping so as to
 * make single stepping like an ICE HW step.
 */
static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
93
94
95
96
97
/* This is an ugly hack to cope with both new and old gdb.
   If gdb sends qXfer:features:read then assume we're talking to a newish
   gdb that understands target descriptions.  */
static int gdb_has_xml;
98
#ifdef CONFIG_USER_ONLY
99
100
101
/* XXX: This is not thread safe.  Do we care?  */
static int gdbserver_fd = -1;
102
103
104
/* XXX: remove this hack.  */
static GDBState gdbserver_state;
105
static int get_char(GDBState *s)
bellard authored
106
107
108
109
110
{
    uint8_t ch;
    int ret;

    for(;;) {
bellard authored
111
        ret = recv(s->fd, &ch, 1, 0);
bellard authored
112
        if (ret < 0) {
113
114
            if (errno == ECONNRESET)
                s->fd = -1;
bellard authored
115
116
117
            if (errno != EINTR && errno != EAGAIN)
                return -1;
        } else if (ret == 0) {
118
119
            close(s->fd);
            s->fd = -1;
bellard authored
120
121
122
123
124
125
126
            return -1;
        } else {
            break;
        }
    }
    return ch;
}
127
#endif
bellard authored
128
pbrook authored
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
/* GDB stub state for use by semihosting syscalls.  */
static GDBState *gdb_syscall_state;
static gdb_syscall_complete_cb gdb_current_syscall_cb;

enum {
    GDB_SYS_UNKNOWN,
    GDB_SYS_ENABLED,
    GDB_SYS_DISABLED,
} gdb_syscall_mode;

/* If gdb is connected when the first semihosting syscall occurs then use
   remote gdb syscalls.  Otherwise use native file IO.  */
int use_gdb_syscalls(void)
{
    if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
        gdb_syscall_mode = (gdb_syscall_state ? GDB_SYS_ENABLED
                                              : GDB_SYS_DISABLED);
    }
    return gdb_syscall_mode == GDB_SYS_ENABLED;
}
150
151
152
153
154
155
156
157
158
159
/* Resume execution.  */
static inline void gdb_continue(GDBState *s)
{
#ifdef CONFIG_USER_ONLY
    s->running_state = 1;
#else
    vm_start();
#endif
}
160
static void put_buffer(GDBState *s, const uint8_t *buf, int len)
bellard authored
161
{
162
#ifdef CONFIG_USER_ONLY
bellard authored
163
164
165
    int ret;

    while (len > 0) {
bellard authored
166
        ret = send(s->fd, buf, len, 0);
bellard authored
167
168
169
170
171
172
173
174
        if (ret < 0) {
            if (errno != EINTR && errno != EAGAIN)
                return;
        } else {
            buf += ret;
            len -= ret;
        }
    }
175
176
177
#else
    qemu_chr_write(s->chr, buf, len);
#endif
bellard authored
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
}

static inline int fromhex(int v)
{
    if (v >= '0' && v <= '9')
        return v - '0';
    else if (v >= 'A' && v <= 'F')
        return v - 'A' + 10;
    else if (v >= 'a' && v <= 'f')
        return v - 'a' + 10;
    else
        return 0;
}

static inline int tohex(int v)
{
    if (v < 10)
        return v + '0';
    else
        return v - 10 + 'a';
}

static void memtohex(char *buf, const uint8_t *mem, int len)
{
    int i, c;
    char *q;
    q = buf;
    for(i = 0; i < len; i++) {
        c = mem[i];
        *q++ = tohex(c >> 4);
        *q++ = tohex(c & 0xf);
    }
    *q = '\0';
}

static void hextomem(uint8_t *mem, const char *buf, int len)
{
    int i;

    for(i = 0; i < len; i++) {
        mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
        buf += 2;
    }
}

/* return -1 if error, 0 if OK */
224
static int put_packet_binary(GDBState *s, const char *buf, int len)
bellard authored
225
{
226
    int csum, i;
227
    uint8_t *p;
bellard authored
228
229

    for(;;) {
230
231
232
233
        p = s->last_packet;
        *(p++) = '$';
        memcpy(p, buf, len);
        p += len;
bellard authored
234
235
236
237
        csum = 0;
        for(i = 0; i < len; i++) {
            csum += buf[i];
        }
238
239
240
        *(p++) = '#';
        *(p++) = tohex((csum >> 4) & 0xf);
        *(p++) = tohex((csum) & 0xf);
bellard authored
241
242
        s->last_packet_len = p - s->last_packet;
243
        put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
bellard authored
244
245
246
247
#ifdef CONFIG_USER_ONLY
        i = get_char(s);
        if (i < 0)
bellard authored
248
            return -1;
249
        if (i == '+')
bellard authored
250
            break;
251
252
253
#else
        break;
#endif
bellard authored
254
255
256
257
    }
    return 0;
}
258
259
260
261
262
263
/* return -1 if error, 0 if OK */
static int put_packet(GDBState *s, const char *buf)
{
#ifdef DEBUG_GDB
    printf("reply='%s'\n", buf);
#endif
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
    return put_packet_binary(s, buf, strlen(buf));
}

/* The GDB remote protocol transfers values in target byte order.  This means
   we can use the raw memory access routines to access the value buffer.
   Conveniently, these also handle the case where the buffer is mis-aligned.
 */
#define GET_REG8(val) do { \
    stb_p(mem_buf, val); \
    return 1; \
    } while(0)
#define GET_REG16(val) do { \
    stw_p(mem_buf, val); \
    return 2; \
    } while(0)
#define GET_REG32(val) do { \
    stl_p(mem_buf, val); \
    return 4; \
    } while(0)
#define GET_REG64(val) do { \
    stq_p(mem_buf, val); \
    return 8; \
    } while(0)

#if TARGET_LONG_BITS == 64
#define GET_REGL(val) GET_REG64(val)
#define ldtul_p(addr) ldq_p(addr)
#else
#define GET_REGL(val) GET_REG32(val)
#define ldtul_p(addr) ldl_p(addr)
295
296
#endif
297
#if defined(TARGET_I386)
298
299

#ifdef TARGET_X86_64
300
301
302
303
static const int gpr_map[16] = {
    R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
    8, 9, 10, 11, 12, 13, 14, 15
};
304
#else
305
static const int gpr_map[8] = {0, 1, 2, 3, 4, 5, 6, 7};
306
307
#endif
308
309
310
#define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)

static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
311
{
312
313
314
315
316
317
    if (n < CPU_NB_REGS) {
        GET_REGL(env->regs[gpr_map[n]]);
    } else if (n >= CPU_NB_REGS + 8 && n < CPU_NB_REGS + 16) {
        /* FIXME: byteswap float values.  */
#ifdef USE_X86LDOUBLE
        memcpy(mem_buf, &env->fpregs[n - (CPU_NB_REGS + 8)], 10);
318
#else
319
        memset(mem_buf, 0, 10);
320
#endif
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
        return 10;
    } else if (n >= CPU_NB_REGS + 24) {
        n -= CPU_NB_REGS + 24;
        if (n < CPU_NB_REGS) {
            stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0));
            stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1));
            return 16;
        } else if (n == CPU_NB_REGS) {
            GET_REG32(env->mxcsr);
        } 
    } else {
        n -= CPU_NB_REGS;
        switch (n) {
        case 0: GET_REGL(env->eip);
        case 1: GET_REG32(env->eflags);
        case 2: GET_REG32(env->segs[R_CS].selector);
        case 3: GET_REG32(env->segs[R_SS].selector);
        case 4: GET_REG32(env->segs[R_DS].selector);
        case 5: GET_REG32(env->segs[R_ES].selector);
        case 6: GET_REG32(env->segs[R_FS].selector);
        case 7: GET_REG32(env->segs[R_GS].selector);
        /* 8...15 x87 regs.  */
        case 16: GET_REG32(env->fpuc);
        case 17: GET_REG32((env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11);
        case 18: GET_REG32(0); /* ftag */
        case 19: GET_REG32(0); /* fiseg */
        case 20: GET_REG32(0); /* fioff */
        case 21: GET_REG32(0); /* foseg */
        case 22: GET_REG32(0); /* fooff */
        case 23: GET_REG32(0); /* fop */
        /* 24+ xmm regs.  */
        }
353
    }
354
    return 0;
bellard authored
355
356
}
357
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int i)
bellard authored
358
{
359
    uint32_t tmp;
bellard authored
360
361
362
363
364
365
366
367
    if (i < CPU_NB_REGS) {
        env->regs[gpr_map[i]] = ldtul_p(mem_buf);
        return sizeof(target_ulong);
    } else if (i >= CPU_NB_REGS + 8 && i < CPU_NB_REGS + 16) {
        i -= CPU_NB_REGS + 8;
#ifdef USE_X86LDOUBLE
        memcpy(&env->fpregs[i], mem_buf, 10);
368
#endif
369
370
371
372
373
374
375
376
377
378
        return 10;
    } else if (i >= CPU_NB_REGS + 24) {
        i -= CPU_NB_REGS + 24;
        if (i < CPU_NB_REGS) {
            env->xmm_regs[i].XMM_Q(0) = ldq_p(mem_buf);
            env->xmm_regs[i].XMM_Q(1) = ldq_p(mem_buf + 8);
            return 16;
        } else if (i == CPU_NB_REGS) {
            env->mxcsr = ldl_p(mem_buf);
            return 4;
379
        }
380
381
382
383
384
385
386
387
388
389
390
391
392
393
    } else {
        i -= CPU_NB_REGS;
        switch (i) {
        case 0: env->eip = ldtul_p(mem_buf); return sizeof(target_ulong);
        case 1: env->eflags = ldl_p(mem_buf); return 4;
#if defined(CONFIG_USER_ONLY)
#define LOAD_SEG(index, sreg)\
            tmp = ldl_p(mem_buf);\
            if (tmp != env->segs[sreg].selector)\
                cpu_x86_load_seg(env, sreg, tmp);
#else
/* FIXME: Honor segment registers.  Needs to avoid raising an exception
   when the selector is invalid.  */
#define LOAD_SEG(index, sreg) do {} while(0)
bellard authored
394
#endif
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
        case 2: LOAD_SEG(10, R_CS); return 4;
        case 3: LOAD_SEG(11, R_SS); return 4;
        case 4: LOAD_SEG(12, R_DS); return 4;
        case 5: LOAD_SEG(13, R_ES); return 4;
        case 6: LOAD_SEG(14, R_FS); return 4;
        case 7: LOAD_SEG(15, R_GS); return 4;
        /* 8...15 x87 regs.  */
        case 16: env->fpuc = ldl_p(mem_buf); return 4;
        case 17:
                 tmp = ldl_p(mem_buf);
                 env->fpstt = (tmp >> 11) & 7;
                 env->fpus = tmp & ~0x3800;
                 return 4;
        case 18: /* ftag */ return 4;
        case 19: /* fiseg */ return 4;
        case 20: /* fioff */ return 4;
        case 21: /* foseg */ return 4;
        case 22: /* fooff */ return 4;
        case 23: /* fop */ return 4;
        /* 24+ xmm regs.  */
415
416
        }
    }
417
418
    /* Unrecognised register.  */
    return 0;
bellard authored
419
420
}
bellard authored
421
422
#elif defined (TARGET_PPC)
423
#define NUM_CORE_REGS 71
bellard authored
424
425
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
bellard authored
426
{
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
    if (n < 32) {
        /* gprs */
        GET_REGL(env->gpr[n]);
    } else if (n < 64) {
        /* fprs */
        stfq_p(mem_buf, env->fpr[n]);
        return 8;
    } else {
        switch (n) {
        case 64: GET_REGL(env->nip);
        case 65: GET_REGL(env->msr);
        case 66:
            {
                uint32_t cr = 0;
                int i;
                for (i = 0; i < 8; i++)
                    cr |= env->crf[i] << (32 - ((i + 1) * 4));
                GET_REG32(cr);
            }
        case 67: GET_REGL(env->lr);
        case 68: GET_REGL(env->ctr);
448
        case 69: GET_REGL(env->xer);
449
450
451
452
453
        case 70: GET_REG32(0); /* fpscr */
        }
    }
    return 0;
}
bellard authored
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
{
    if (n < 32) {
        /* gprs */
        env->gpr[n] = ldtul_p(mem_buf);
        return sizeof(target_ulong);
    } else if (n < 64) {
        /* fprs */
        env->fpr[n] = ldfq_p(mem_buf);
        return 8;
    } else {
        switch (n) {
        case 64:
            env->nip = ldtul_p(mem_buf);
            return sizeof(target_ulong);
        case 65:
            ppc_store_msr(env, ldtul_p(mem_buf));
            return sizeof(target_ulong);
        case 66:
            {
                uint32_t cr = ldl_p(mem_buf);
                int i;
                for (i = 0; i < 8; i++)
                    env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
                return 4;
            }
        case 67:
            env->lr = ldtul_p(mem_buf);
            return sizeof(target_ulong);
        case 68:
            env->ctr = ldtul_p(mem_buf);
            return sizeof(target_ulong);
        case 69:
488
489
            env->xer = ldtul_p(mem_buf);
            return sizeof(target_ulong);
490
491
492
493
494
495
        case 70:
            /* fpscr */
            return 4;
        }
    }
    return 0;
496
}
497
498
#elif defined (TARGET_SPARC)
499
500
501

#if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
#define NUM_CORE_REGS 86
502
#else
503
#define NUM_CORE_REGS 73
504
#endif
505
506
#ifdef TARGET_ABI32
507
#define GET_REGA(val) GET_REG32(val)
508
#else
509
#define GET_REGA(val) GET_REGL(val)
510
#endif
511
512
513
514
515
516
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
{
    if (n < 8) {
        /* g0..g7 */
        GET_REGA(env->gregs[n]);
517
    }
518
519
520
    if (n < 32) {
        /* register window */
        GET_REGA(env->regwptr[n - 8]);
521
    }
522
523
524
525
#if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
    if (n < 64) {
        /* fprs */
        GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
526
527
    }
    /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
528
529
530
531
532
533
534
535
536
537
538
    switch (n) {
    case 64: GET_REGA(env->y);
    case 65: GET_REGA(GET_PSR(env));
    case 66: GET_REGA(env->wim);
    case 67: GET_REGA(env->tbr);
    case 68: GET_REGA(env->pc);
    case 69: GET_REGA(env->npc);
    case 70: GET_REGA(env->fsr);
    case 71: GET_REGA(0); /* csr */
    case 72: GET_REGA(0);
    }
bellard authored
539
#else
540
541
542
543
544
545
546
    if (n < 64) {
        /* f0-f31 */
        GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
    }
    if (n < 80) {
        /* f32-f62 (double width, even numbers only) */
        uint64_t val;
547
548
549
550
        val = (uint64_t)*((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) << 32;
        val |= *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]);
        GET_REG64(val);
bellard authored
551
    }
552
553
554
555
    switch (n) {
    case 80: GET_REGL(env->pc);
    case 81: GET_REGL(env->npc);
    case 82: GET_REGL(((uint64_t)GET_CCR(env) << 32) |
556
557
558
                           ((env->asi & 0xff) << 24) |
                           ((env->pstate & 0xfff) << 8) |
                           GET_CWP64(env));
559
560
561
562
    case 83: GET_REGL(env->fsr);
    case 84: GET_REGL(env->fprs);
    case 85: GET_REGL(env->y);
    }
bellard authored
563
#endif
564
    return 0;
565
566
}
567
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
568
{
569
570
571
572
#if defined(TARGET_ABI32)
    abi_ulong tmp;

    tmp = ldl_p(mem_buf);
573
#else
574
575
576
    target_ulong tmp;

    tmp = ldtul_p(mem_buf);
577
#endif
578
579
580
581
582
583
584
    if (n < 8) {
        /* g0..g7 */
        env->gregs[n] = tmp;
    } else if (n < 32) {
        /* register window */
        env->regwptr[n - 8] = tmp;
585
    }
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
#if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
    else if (n < 64) {
        /* fprs */
        *((uint32_t *)&env->fpr[n - 32]) = tmp;
    } else {
        /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
        switch (n) {
        case 64: env->y = tmp; break;
        case 65: PUT_PSR(env, tmp); break;
        case 66: env->wim = tmp; break;
        case 67: env->tbr = tmp; break;
        case 68: env->pc = tmp; break;
        case 69: env->npc = tmp; break;
        case 70: env->fsr = tmp; break;
        default: return 0;
        }
602
    }
603
    return 4;
bellard authored
604
#else
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
    else if (n < 64) {
        /* f0-f31 */
        env->fpr[n] = ldfl_p(mem_buf);
        return 4;
    } else if (n < 80) {
        /* f32-f62 (double width, even numbers only) */
        *((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) = tmp >> 32;
        *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]) = tmp;
    } else {
        switch (n) {
        case 80: env->pc = tmp; break;
        case 81: env->npc = tmp; break;
        case 82:
	    PUT_CCR(env, tmp >> 32);
	    env->asi = (tmp >> 24) & 0xff;
	    env->pstate = (tmp >> 8) & 0xfff;
	    PUT_CWP64(env, tmp & 0xff);
	    break;
        case 83: env->fsr = tmp; break;
        case 84: env->fprs = tmp; break;
        case 85: env->y = tmp; break;
        default: return 0;
        }
628
    }
629
    return 8;
bellard authored
630
#endif
bellard authored
631
}
632
#elif defined (TARGET_ARM)
bellard authored
633
634
635
636
637
638
639
640
/* Old gdb always expect FPA registers.  Newer (xml-aware) gdb only expect
   whatever the target description contains.  Due to a historical mishap
   the FPA registers appear in between core integer regs and the CPSR.
   We hack round this by giving the FPA regs zero size when talking to a
   newer gdb.  */
#define NUM_CORE_REGS 26
#define GDB_CORE_XML "arm-core.xml"
pbrook authored
641
642
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
pbrook authored
643
{
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
    if (n < 16) {
        /* Core integer register.  */
        GET_REG32(env->regs[n]);
    }
    if (n < 24) {
        /* FPA registers.  */
        if (gdb_has_xml)
            return 0;
        memset(mem_buf, 0, 12);
        return 12;
    }
    switch (n) {
    case 24:
        /* FPA status register.  */
        if (gdb_has_xml)
            return 0;
        GET_REG32(0);
    case 25:
        /* CPSR */
        GET_REG32(cpsr_read(env));
    }
    /* Unknown register.  */
    return 0;
pbrook authored
667
}
668
669
670
671
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
{
    uint32_t tmp;
672
673
    tmp = ldl_p(mem_buf);
674
675
676
677
678
    /* Mask out low bit of PC to workaround gdb bugs.  This will probably
       cause problems if we ever implement the Jazelle DBX extensions.  */
    if (n == 15)
        tmp &= ~1;
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
    if (n < 16) {
        /* Core integer register.  */
        env->regs[n] = tmp;
        return 4;
    }
    if (n < 24) { /* 16-23 */
        /* FPA registers (ignored).  */
        if (gdb_has_xml)
            return 0;
        return 12;
    }
    switch (n) {
    case 24:
        /* FPA status register (ignored).  */
        if (gdb_has_xml)
            return 0;
        return 4;
    case 25:
        /* CPSR */
        cpsr_write (env, tmp, 0xffffffff);
        return 4;
    }
    /* Unknown register.  */
    return 0;
}
705
706
#elif defined (TARGET_M68K)
707
708
#define NUM_CORE_REGS 18
709
710
#define GDB_CORE_XML "cf-core.xml"
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
{
    if (n < 8) {
        /* D0-D7 */
        GET_REG32(env->dregs[n]);
    } else if (n < 16) {
        /* A0-A7 */
        GET_REG32(env->aregs[n - 8]);
    } else {
	switch (n) {
        case 16: GET_REG32(env->sr);
        case 17: GET_REG32(env->pc);
        }
    }
    /* FP registers not included here because they vary between
       ColdFire and m68k.  Use XML bits for these.  */
    return 0;
}
730
731
732
733
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
{
    uint32_t tmp;
734
735
    tmp = ldl_p(mem_buf);
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
    if (n < 8) {
        /* D0-D7 */
        env->dregs[n] = tmp;
    } else if (n < 8) {
        /* A0-A7 */
        env->aregs[n - 8] = tmp;
    } else {
        switch (n) {
        case 16: env->sr = tmp; break;
        case 17: env->pc = tmp; break;
        default: return 0;
        }
    }
    return 4;
}
#elif defined (TARGET_MIPS)
ths authored
753
754
#define NUM_CORE_REGS 73
ths authored
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
{
    if (n < 32) {
        GET_REGL(env->active_tc.gpr[n]);
    }
    if (env->CP0_Config1 & (1 << CP0C1_FP)) {
        if (n >= 38 && n < 70) {
            if (env->CP0_Status & (1 << CP0St_FR))
		GET_REGL(env->active_fpu.fpr[n - 38].d);
            else
		GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]);
        }
        switch (n) {
        case 70: GET_REGL((int32_t)env->active_fpu.fcr31);
        case 71: GET_REGL((int32_t)env->active_fpu.fcr0);
        }
    }
    switch (n) {
    case 32: GET_REGL((int32_t)env->CP0_Status);
    case 33: GET_REGL(env->active_tc.LO[0]);
    case 34: GET_REGL(env->active_tc.HI[0]);
    case 35: GET_REGL(env->CP0_BadVAddr);
    case 36: GET_REGL((int32_t)env->CP0_Cause);
    case 37: GET_REGL(env->active_tc.PC);
    case 72: GET_REGL(0); /* fp */
    case 89: GET_REGL((int32_t)env->CP0_PRid);
    }
    if (n >= 73 && n <= 88) {
	/* 16 embedded regs.  */
	GET_REGL(0);
    }
787
788
    return 0;
789
790
}
791
792
793
794
795
796
797
798
799
/* convert MIPS rounding mode in FCR31 to IEEE library */
static unsigned int ieee_rm[] =
  {
    float_round_nearest_even,
    float_round_to_zero,
    float_round_up,
    float_round_down
  };
#define RESTORE_ROUNDING_MODE \
800
    set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
801
802
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
803
{
804
    target_ulong tmp;
805
806
    tmp = ldtul_p(mem_buf);
807
808
809
810
811
812
813
814
    if (n < 32) {
        env->active_tc.gpr[n] = tmp;
        return sizeof(target_ulong);
    }
    if (env->CP0_Config1 & (1 << CP0C1_FP)
            && n >= 38 && n < 73) {
        if (n < 70) {
ths authored
815
            if (env->CP0_Status & (1 << CP0St_FR))
816
              env->active_fpu.fpr[n - 38].d = tmp;
ths authored
817
            else
818
819
820
821
822
823
824
              env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp;
        }
        switch (n) {
        case 70:
            env->active_fpu.fcr31 = tmp & 0xFF83FFFF;
            /* set rounding mode */
            RESTORE_ROUNDING_MODE;
825
#ifndef CONFIG_SOFTFLOAT
826
827
            /* no floating point exception for native float */
            SET_FP_ENABLE(env->active_fpu.fcr31, 0);
828
#endif
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
            break;
        case 71: env->active_fpu.fcr0 = tmp; break;
        }
        return sizeof(target_ulong);
    }
    switch (n) {
    case 32: env->CP0_Status = tmp; break;
    case 33: env->active_tc.LO[0] = tmp; break;
    case 34: env->active_tc.HI[0] = tmp; break;
    case 35: env->CP0_BadVAddr = tmp; break;
    case 36: env->CP0_Cause = tmp; break;
    case 37: env->active_tc.PC = tmp; break;
    case 72: /* fp, ignored */ break;
    default: 
	if (n > 89)
	    return 0;
	/* Other registers are readonly.  Ignore writes.  */
	break;
    }

    return sizeof(target_ulong);
850
}
bellard authored
851
#elif defined (TARGET_SH4)
852
853

/* Hint: Use "set architecture sh4" in GDB to see fpu registers */
854
855
856
/* FIXME: We should use XML for this.  */

#define NUM_CORE_REGS 59
857
858
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
bellard authored
859
{
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
    if (n < 8) {
        if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
            GET_REGL(env->gregs[n + 16]);
        } else {
            GET_REGL(env->gregs[n]);
        }
    } else if (n < 16) {
        GET_REGL(env->gregs[n - 8]);
    } else if (n >= 25 && n < 41) {
	GET_REGL(env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
    } else if (n >= 43 && n < 51) {
	GET_REGL(env->gregs[n - 43]);
    } else if (n >= 51 && n < 59) {
	GET_REGL(env->gregs[n - (51 - 16)]);
    }
    switch (n) {
    case 16: GET_REGL(env->pc);
    case 17: GET_REGL(env->pr);
    case 18: GET_REGL(env->gbr);
    case 19: GET_REGL(env->vbr);
    case 20: GET_REGL(env->mach);
    case 21: GET_REGL(env->macl);
    case 22: GET_REGL(env->sr);
    case 23: GET_REGL(env->fpul);
    case 24: GET_REGL(env->fpscr);
    case 41: GET_REGL(env->ssr);
    case 42: GET_REGL(env->spc);
    }

    return 0;
bellard authored
890
891
}
892
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
bellard authored
893
{
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
    uint32_t tmp;

    tmp = ldl_p(mem_buf);

    if (n < 8) {
        if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
            env->gregs[n + 16] = tmp;
        } else {
            env->gregs[n] = tmp;
        }
	return 4;
    } else if (n < 16) {
        env->gregs[n - 8] = tmp;
	return 4;
    } else if (n >= 25 && n < 41) {
	env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)] = tmp;
    } else if (n >= 43 && n < 51) {
	env->gregs[n - 43] = tmp;
	return 4;
    } else if (n >= 51 && n < 59) {
	env->gregs[n - (51 - 16)] = tmp;
	return 4;
    }
    switch (n) {
    case 16: env->pc = tmp;
    case 17: env->pr = tmp;
    case 18: env->gbr = tmp;
    case 19: env->vbr = tmp;
    case 20: env->mach = tmp;
    case 21: env->macl = tmp;
    case 22: env->sr = tmp;
    case 23: env->fpul = tmp;
    case 24: env->fpscr = tmp;
    case 41: env->ssr = tmp;
    case 42: env->spc = tmp;
    default: return 0;
    }

    return 4;
bellard authored
933
}
934
935
#elif defined (TARGET_CRIS)
936
937
938
#define NUM_CORE_REGS 49

static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
939
{
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
    uint8_t srs;

    srs = env->pregs[PR_SRS];
    if (n < 16) {
	GET_REG32(env->regs[n]);
    }

    if (n >= 21 && n < 32) {
	GET_REG32(env->pregs[n - 16]);
    }
    if (n >= 33 && n < 49) {
	GET_REG32(env->sregs[srs][n - 33]);
    }
    switch (n) {
    case 16: GET_REG8(env->pregs[0]);
    case 17: GET_REG8(env->pregs[1]);
    case 18: GET_REG32(env->pregs[2]);
    case 19: GET_REG8(srs);
    case 20: GET_REG16(env->pregs[4]);
    case 32: GET_REG32(env->pc);
    }

    return 0;
963
}
964
965

static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
966
{
967
968
969
970
971
972
973
974
975
976
977
    uint32_t tmp;

    if (n > 49)
	return 0;

    tmp = ldl_p(mem_buf);

    if (n < 16) {
	env->regs[n] = tmp;
    }
978
979
980
981
982
    if (n >= 21 && n < 32) {
	env->pregs[n - 16] = tmp;
    }

    /* FIXME: Should support function regs be writable?  */
983
984
985
    switch (n) {
    case 16: return 1;
    case 17: return 1;
986
    case 18: env->pregs[PR_PID] = tmp; break;
987
988
989
990
991
992
    case 19: return 1;
    case 20: return 2;
    case 32: env->pc = tmp; break;
    }

    return 4;
993
}
994
995
996
997
998
#else

#define NUM_CORE_REGS 0

static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
999
{
1000
    return 0;
1001
1002
}
1003
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1004
{
1005
1006
    return 0;
}
1007
1008
#endif
1009
1010
static int num_g_regs = NUM_CORE_REGS;
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
#ifdef GDB_CORE_XML
/* Encode data using the encoding for 'x' packets.  */
static int memtox(char *buf, const char *mem, int len)
{
    char *p = buf;
    char c;

    while (len--) {
        c = *(mem++);
        switch (c) {
        case '#': case '$': case '*': case '}':
            *(p++) = '}';
            *(p++) = c ^ 0x20;
            break;
        default:
            *(p++) = c;
            break;
        }
    }
    return p - buf;
}
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
const char *get_feature_xml(CPUState *env, const char *p, const char **newp)
{
    extern const char *const xml_builtin[][2];
    size_t len;
    int i;
    const char *name;
    static char target_xml[1024];

    len = 0;
    while (p[len] && p[len] != ':')
        len++;
    *newp = p + len;

    name = NULL;
    if (strncmp(p, "target.xml", len) == 0) {
        /* Generate the XML description for this CPU.  */
        if (!target_xml[0]) {
            GDBRegisterState *r;
1053
1054
1055
1056
1057
1058
            snprintf(target_xml, sizeof(target_xml),
                     "<?xml version=\"1.0\"?>"
                     "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
                     "<target>"
                     "<xi:include href=\"%s\"/>",
                     GDB_CORE_XML);
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076

            for (r = env->gdb_regs; r; r = r->next) {
                strcat(target_xml, "<xi:include href=\"");
                strcat(target_xml, r->xml);
                strcat(target_xml, "\"/>");
            }
            strcat(target_xml, "</target>");
        }
        return target_xml;
    }
    for (i = 0; ; i++) {
        name = xml_builtin[i][0];
        if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
            break;
    }
    return name ? xml_builtin[i][1] : NULL;
}
#endif
1077
1078
1079
1080
static int gdb_read_register(CPUState *env, uint8_t *mem_buf, int reg)
{
    GDBRegisterState *r;
1081
1082
1083
    if (reg < NUM_CORE_REGS)
        return cpu_gdb_read_register(env, mem_buf, reg);
1084
1085
1086
1087
1088
1089
1090
    for (r = env->gdb_regs; r; r = r->next) {
        if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
            return r->get_reg(env, mem_buf, reg - r->base_reg);
        }
    }
    return 0;
1091
1092
}
1093
static int gdb_write_register(CPUState *env, uint8_t *mem_buf, int reg)
1094
{
1095
    GDBRegisterState *r;
1096
1097
1098
1099
1100
1101
1102
1103
1104
    if (reg < NUM_CORE_REGS)
        return cpu_gdb_write_register(env, mem_buf, reg);

    for (r = env->gdb_regs; r; r = r->next) {
        if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
            return r->set_reg(env, mem_buf, reg - r->base_reg);
        }
    }
bellard authored
1105
1106
1107
    return 0;
}
1108
1109
1110
1111
1112
1113
1114
1115
1116
/* Register a supplemental set of CPU registers.  If g_pos is nonzero it
   specifies the first register number and these registers are included in
   a standard "g" packet.  Direction is relative to gdb, i.e. get_reg is
   gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
 */

void gdb_register_coprocessor(CPUState * env,
                             gdb_reg_cb get_reg, gdb_reg_cb set_reg,
                             int num_regs, const char *xml, int g_pos)
bellard authored
1117
{
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
    GDBRegisterState *s;
    GDBRegisterState **p;
    static int last_reg = NUM_CORE_REGS;

    s = (GDBRegisterState *)qemu_mallocz(sizeof(GDBRegisterState));
    s->base_reg = last_reg;
    s->num_regs = num_regs;
    s->get_reg = get_reg;
    s->set_reg = set_reg;
    s->xml = xml;
    p = &env->gdb_regs;
    while (*p) {
        /* Check for duplicates.  */
        if (strcmp((*p)->xml, xml) == 0)
            return;
        p = &(*p)->next;
    }
    /* Add to end of list.  */
    last_reg += num_regs;
    *p = s;
    if (g_pos) {
        if (g_pos != s->base_reg) {
            fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n"
                    "Expected %d got %d\n", xml, g_pos, s->base_reg);
        } else {
            num_g_regs = last_reg;
        }
    }
bellard authored
1146
1147
}
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
/* GDB breakpoint/watchpoint types */
#define GDB_BREAKPOINT_SW        0
#define GDB_BREAKPOINT_HW        1
#define GDB_WATCHPOINT_WRITE     2
#define GDB_WATCHPOINT_READ      3
#define GDB_WATCHPOINT_ACCESS    4

#ifndef CONFIG_USER_ONLY
static const int xlat_gdb_type[] = {
    [GDB_WATCHPOINT_WRITE]  = BP_GDB | BP_MEM_WRITE,
    [GDB_WATCHPOINT_READ]   = BP_GDB | BP_MEM_READ,
    [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
};
#endif

static int gdb_breakpoint_insert(CPUState *env, target_ulong addr,
                                 target_ulong len, int type)
{
    switch (type) {
    case GDB_BREAKPOINT_SW:
    case GDB_BREAKPOINT_HW:
        return cpu_breakpoint_insert(env, addr, BP_GDB, NULL);
#ifndef CONFIG_USER_ONLY
    case GDB_WATCHPOINT_WRITE:
    case GDB_WATCHPOINT_READ:
    case GDB_WATCHPOINT_ACCESS:
        return cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type],
                                     NULL);
#endif
    default:
        return -ENOSYS;
    }
}

static int gdb_breakpoint_remove(CPUState *env, target_ulong addr,
                                 target_ulong len, int type)
{
    switch (type) {
    case GDB_BREAKPOINT_SW:
    case GDB_BREAKPOINT_HW:
        return cpu_breakpoint_remove(env, addr, BP_GDB);
#ifndef CONFIG_USER_ONLY
    case GDB_WATCHPOINT_WRITE:
    case GDB_WATCHPOINT_READ:
    case GDB_WATCHPOINT_ACCESS:
        return cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]);
#endif
    default:
        return -ENOSYS;
    }
}

static void gdb_breakpoint_remove_all(CPUState *env)
{
    cpu_breakpoint_remove_all(env, BP_GDB);
#ifndef CONFIG_USER_ONLY
    cpu_watchpoint_remove_all(env, BP_GDB);
#endif
}
1208
static int gdb_handle_packet(GDBState *s, CPUState *env, const char *line_buf)
bellard authored
1209
1210
{
    const char *p;
1211
    int ch, reg_size, type, res;
1212
1213
1214
    char buf[MAX_PACKET_LENGTH];
    uint8_t mem_buf[MAX_PACKET_LENGTH];
    uint8_t *registers;
1215
    target_ulong addr, len;
1216
1217
1218
1219
1220
1221
1222
1223
#ifdef DEBUG_GDB
    printf("command='%s'\n", line_buf);
#endif
    p = line_buf;
    ch = *p++;
    switch(ch) {
    case '?':
1224
        /* TODO: Make this return the correct value for user-mode.  */
1225
1226
        snprintf(buf, sizeof(buf), "S%02x", SIGTRAP);
        put_packet(s, buf);
1227
1228
1229
1230
        /* Remove all the breakpoints when this query is issued,
         * because gdb is doing and initial connect and the state
         * should be cleaned up.
         */
1231
        gdb_breakpoint_remove_all(env);
1232
1233
1234
        break;
    case 'c':
        if (*p != '\0') {
1235
            addr = strtoull(p, (char **)&p, 16);
bellard authored
1236
#if defined(TARGET_I386)
1237
            env->eip = addr;
bellard authored
1238
#elif defined (TARGET_PPC)
1239
            env->nip = addr;
bellard authored
1240
1241
1242
#elif defined (TARGET_SPARC)
            env->pc = addr;
            env->npc = addr + 4;
1243
1244
#elif defined (TARGET_ARM)
            env->regs[15] = addr;
bellard authored
1245
#elif defined (TARGET_SH4)
1246
1247
            env->pc = addr;
#elif defined (TARGET_MIPS)
1248
            env->active_tc.PC = addr;
1249
1250
#elif defined (TARGET_CRIS)
            env->pc = addr;
bellard authored
1251
#endif
1252
        }
1253
        gdb_continue(s);
bellard authored
1254
	return RS_IDLE;
1255
1256
1257
1258
    case 'C':
        s->signal = strtoul(p, (char **)&p, 16);
        gdb_continue(s);
        return RS_IDLE;
1259
1260
1261
1262
1263
1264
    case 'k':
        /* Kill the target */
        fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
        exit(0);
    case 'D':
        /* Detach packet */
1265
        gdb_breakpoint_remove_all(env);
1266
1267
1268
        gdb_continue(s);
        put_packet(s, "OK");
        break;
1269
1270
    case 's':
        if (*p != '\0') {
1271
            addr = strtoull(p, (char **)&p, 16);
1272
#if defined(TARGET_I386)
1273
            env->eip = addr;
bellard authored
1274
#elif defined (TARGET_PPC)
1275
            env->nip = addr;
bellard authored
1276
1277
1278
#elif defined (TARGET_SPARC)
            env->pc = addr;
            env->npc = addr + 4;
1279
1280
#elif defined (TARGET_ARM)
            env->regs[15] = addr;
bellard authored
1281
#elif defined (TARGET_SH4)
1282
1283
            env->pc = addr;
#elif defined (TARGET_MIPS)
1284
            env->active_tc.PC = addr;
1285
1286
#elif defined (TARGET_CRIS)
            env->pc = addr;
1287
#endif
1288
        }
1289
        cpu_single_step(env, sstep_flags);
1290
        gdb_continue(s);
bellard authored
1291
	return RS_IDLE;
pbrook authored
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
    case 'F':
        {
            target_ulong ret;
            target_ulong err;

            ret = strtoull(p, (char **)&p, 16);
            if (*p == ',') {
                p++;
                err = strtoull(p, (char **)&p, 16);
            } else {
                err = 0;
            }
            if (*p == ',')
                p++;
            type = *p;
            if (gdb_current_syscall_cb)
                gdb_current_syscall_cb(s->env, ret, err);
            if (type == 'C') {
                put_packet(s, "T02");
            } else {
1312
                gdb_continue(s);
pbrook authored
1313
1314
1315
            }
        }
        break;
1316
    case 'g':
1317
1318
1319
1320
1321
1322
        len = 0;
        for (addr = 0; addr < num_g_regs; addr++) {
            reg_size = gdb_read_register(env, mem_buf + len, addr);
            len += reg_size;
        }
        memtohex(buf, mem_buf, len);
1323
1324
1325
        put_packet(s, buf);
        break;
    case 'G':
1326
        registers = mem_buf;
1327
1328
        len = strlen(p) / 2;
        hextomem((uint8_t *)registers, p, len);
1329
1330
1331
1332
1333
        for (addr = 0; addr < num_g_regs && len > 0; addr++) {
            reg_size = gdb_write_register(env, registers, addr);
            len -= reg_size;
            registers += reg_size;
        }
1334
1335
1336
        put_packet(s, "OK");
        break;
    case 'm':
1337
        addr = strtoull(p, (char **)&p, 16);
1338
1339
        if (*p == ',')
            p++;
1340
        len = strtoull(p, NULL, 16);
1341
1342
1343
1344
1345
1346
        if (cpu_memory_rw_debug(env, addr, mem_buf, len, 0) != 0) {
            put_packet (s, "E14");
        } else {
            memtohex(buf, mem_buf, len);
            put_packet(s, buf);
        }
1347
1348
        break;
    case 'M':
1349
        addr = strtoull(p, (char **)&p, 16);
1350
1351
        if (*p == ',')
            p++;
1352
        len = strtoull(p, (char **)&p, 16);
1353
        if (*p == ':')
1354
1355
1356
            p++;
        hextomem(mem_buf, p, len);
        if (cpu_memory_rw_debug(env, addr, mem_buf, len, 1) != 0)
1357
            put_packet(s, "E14");
1358
1359
1360
        else
            put_packet(s, "OK");
        break;
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
    case 'p':
        /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
           This works, but can be very slow.  Anything new enough to
           understand XML also knows how to use this properly.  */
        if (!gdb_has_xml)
            goto unknown_command;
        addr = strtoull(p, (char **)&p, 16);
        reg_size = gdb_read_register(env, mem_buf, addr);
        if (reg_size) {
            memtohex(buf, mem_buf, reg_size);
            put_packet(s, buf);
        } else {
            put_packet(s, "E14");
        }
        break;
    case 'P':
        if (!gdb_has_xml)
            goto unknown_command;
        addr = strtoull(p, (char **)&p, 16);
        if (*p == '=')
            p++;
        reg_size = strlen(p) / 2;
        hextomem(mem_buf, p, reg_size);
        gdb_write_register(env, mem_buf, addr);
        put_packet(s, "OK");
        break;
1387
1388
1389
1390
1391
    case 'Z':
    case 'z':
        type = strtoul(p, (char **)&p, 16);
        if (*p == ',')
            p++;
1392
        addr = strtoull(p, (char **)&p, 16);
1393
1394
        if (*p == ',')
            p++;
1395
        len = strtoull(p, (char **)&p, 16);
1396
1397
1398
1399
1400
1401
1402
        if (ch == 'Z')
            res = gdb_breakpoint_insert(env, addr, len, type);
        else
            res = gdb_breakpoint_remove(env, addr, len, type);
        if (res >= 0)
             put_packet(s, "OK");
        else if (res == -ENOSYS)
pbrook authored
1403
            put_packet(s, "");
1404
1405
        else
            put_packet(s, "E22");
1406
        break;
1407
    case 'q':
1408
1409
1410
1411
    case 'Q':
        /* parse any 'q' packets here */
        if (!strcmp(p,"qemu.sstepbits")) {
            /* Query Breakpoint bit definitions */
1412
1413
1414
1415
            snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
                     SSTEP_ENABLE,
                     SSTEP_NOIRQ,
                     SSTEP_NOTIMER);
1416
1417
1418
1419
1420
1421
1422
            put_packet(s, buf);
            break;
        } else if (strncmp(p,"qemu.sstep",10) == 0) {
            /* Display or change the sstep_flags */
            p += 10;
            if (*p != '=') {
                /* Display current setting */
1423
                snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
                put_packet(s, buf);
                break;
            }
            p++;
            type = strtoul(p, (char **)&p, 16);
            sstep_flags = type;
            put_packet(s, "OK");
            break;
        }
#ifdef CONFIG_LINUX_USER
        else if (strncmp(p, "Offsets", 7) == 0) {
1435
1436
            TaskState *ts = env->opaque;
1437
1438
1439
1440
1441
1442
            snprintf(buf, sizeof(buf),
                     "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
                     ";Bss=" TARGET_ABI_FMT_lx,
                     ts->info->code_offset,
                     ts->info->data_offset,
                     ts->info->data_offset);
1443
1444
1445
1446
            put_packet(s, buf);
            break;
        }
#endif
1447
        if (strncmp(p, "Supported", 9) == 0) {
1448
            snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
#ifdef GDB_CORE_XML
            strcat(buf, ";qXfer:features:read+");
#endif
            put_packet(s, buf);
            break;
        }
#ifdef GDB_CORE_XML
        if (strncmp(p, "Xfer:features:read:", 19) == 0) {
            const char *xml;
            target_ulong total_len;

            gdb_has_xml = 1;
            p += 19;
            xml = get_feature_xml(env, p, &p);
            if (!xml) {
1464
                snprintf(buf, sizeof(buf), "E00");
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
                put_packet(s, buf);
                break;
            }

            if (*p == ':')
                p++;
            addr = strtoul(p, (char **)&p, 16);
            if (*p == ',')
                p++;
            len = strtoul(p, (char **)&p, 16);

            total_len = strlen(xml);
            if (addr > total_len) {
1478
                snprintf(buf, sizeof(buf), "E00");
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
                put_packet(s, buf);
                break;
            }
            if (len > (MAX_PACKET_LENGTH - 5) / 2)
                len = (MAX_PACKET_LENGTH - 5) / 2;
            if (len < total_len - addr) {
                buf[0] = 'm';
                len = memtox(buf + 1, xml + addr, len);
            } else {
                buf[0] = 'l';
                len = memtox(buf + 1, xml + addr, total_len - addr);
            }
            put_packet_binary(s, buf, len + 1);
            break;
        }
#endif
        /* Unrecognised 'q' command.  */
        goto unknown_command;
1498
    default:
1499
    unknown_command:
1500
1501
1502
1503
1504
1505
1506
1507
        /* put empty packet */
        buf[0] = '\0';
        put_packet(s, buf);
        break;
    }
    return RS_IDLE;
}
bellard authored
1508
1509
extern void tb_flush(CPUState *env);
1510
#ifndef CONFIG_USER_ONLY
1511
1512
1513
1514
static void gdb_vm_stopped(void *opaque, int reason)
{
    GDBState *s = opaque;
    char buf[256];
1515
    const char *type;
1516
1517
    int ret;
pbrook authored
1518
1519
1520
    if (s->state == RS_SYSCALL)
        return;
1521
    /* disable single step if it was enable */
bellard authored
1522
    cpu_single_step(s->env, 0);
1523
bellard authored
1524
    if (reason == EXCP_DEBUG) {
1525
        if (s->env->watchpoint_hit) {
1526
1527
            switch (s->env->watchpoint_hit->flags & BP_MEM_ACCESS) {
            case BP_MEM_READ:
1528
1529
                type = "r";
                break;
1530
            case BP_MEM_ACCESS:
1531
1532
1533
1534
1535
1536
1537
                type = "a";
                break;
            default:
                type = "";
                break;
            }
            snprintf(buf, sizeof(buf), "T%02x%swatch:" TARGET_FMT_lx ";",
1538
                     SIGTRAP, type, s->env->watchpoint_hit->vaddr);
1539
            put_packet(s, buf);
1540
            s->env->watchpoint_hit = NULL;
1541
1542
            return;
        }
bellard authored
1543
	tb_flush(s->env);
1544
        ret = SIGTRAP;
1545
1546
1547
    } else if (reason == EXCP_INTERRUPT) {
        ret = SIGINT;
    } else {
1548
        ret = 0;
1549
    }
1550
1551
1552
    snprintf(buf, sizeof(buf), "S%02x", ret);
    put_packet(s, buf);
}
1553
#endif
1554
pbrook authored
1555
1556
/* Send a gdb syscall request.
   This accepts limited printf-style format specifiers, specifically:
pbrook authored
1557
1558
1559
    %x  - target_ulong argument printed in hex.
    %lx - 64-bit argument printed in hex.
    %s  - string pointer (target_ulong) and length (int) pair.  */
1560
void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
pbrook authored
1561
1562
1563
1564
1565
{
    va_list va;
    char buf[256];
    char *p;
    target_ulong addr;
pbrook authored
1566
    uint64_t i64;
pbrook authored
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
    GDBState *s;

    s = gdb_syscall_state;
    if (!s)
        return;
    gdb_current_syscall_cb = cb;
    s->state = RS_SYSCALL;
#ifndef CONFIG_USER_ONLY
    vm_stop(EXCP_DEBUG);
#endif
    s->state = RS_IDLE;
    va_start(va, fmt);
    p = buf;
    *(p++) = 'F';
    while (*fmt) {
        if (*fmt == '%') {
            fmt++;
            switch (*fmt++) {
            case 'x':
                addr = va_arg(va, target_ulong);
1587
                p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx, addr);
pbrook authored
1588
                break;
pbrook authored
1589
1590
1591
1592
            case 'l':
                if (*(fmt++) != 'x')
                    goto bad_format;
                i64 = va_arg(va, uint64_t);
1593
                p += snprintf(p, &buf[sizeof(buf)] - p, "%" PRIx64, i64);
pbrook authored
1594
                break;
pbrook authored
1595
1596
            case 's':
                addr = va_arg(va, target_ulong);
1597
1598
                p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx "/%x",
                              addr, va_arg(va, int));
pbrook authored
1599
1600
                break;
            default:
pbrook authored
1601
            bad_format:
pbrook authored
1602
1603
1604
1605
1606
1607
1608
1609
                fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
                        fmt - 1);
                break;
            }
        } else {
            *(p++) = *(fmt++);
        }
    }
1610
    *p = 0;
pbrook authored
1611
1612
1613
1614
1615
1616
1617
1618
1619
    va_end(va);
    put_packet(s, buf);
#ifdef CONFIG_USER_ONLY
    gdb_handlesig(s->env, 0);
#else
    cpu_interrupt(s->env, CPU_INTERRUPT_EXIT);
#endif
}
bellard authored
1620
static void gdb_read_byte(GDBState *s, int ch)
1621
{
bellard authored
1622
    CPUState *env = s->env;
1623
    int i, csum;
1624
    uint8_t reply;
1625
1626
#ifndef CONFIG_USER_ONLY
1627
1628
1629
1630
1631
1632
1633
    if (s->last_packet_len) {
        /* Waiting for a response to the last packet.  If we see the start
           of a new command then abandon the previous response.  */
        if (ch == '-') {
#ifdef DEBUG_GDB
            printf("Got NACK, retransmitting\n");
#endif
1634
            put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
        }
#ifdef DEBUG_GDB
        else if (ch == '+')
            printf("Got ACK\n");
        else
            printf("Got '%c' when expecting ACK/NACK\n", ch);
#endif
        if (ch == '+' || ch == '$')
            s->last_packet_len = 0;
        if (ch != '$')
            return;
    }
1647
1648
1649
1650
    if (vm_running) {
        /* when the CPU is running, we cannot do anything except stop
           it when receiving a char */
        vm_stop(EXCP_INTERRUPT);
1651
    } else
1652
#endif
bellard authored
1653
    {
1654
1655
1656
1657
1658
        switch(s->state) {
        case RS_IDLE:
            if (ch == '$') {
                s->line_buf_index = 0;
                s->state = RS_GETLINE;
1659
            }
bellard authored
1660
            break;
1661
1662
1663
1664
1665
        case RS_GETLINE:
            if (ch == '#') {
            s->state = RS_CHKSUM1;
            } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
                s->state = RS_IDLE;
bellard authored
1666
            } else {
1667
            s->line_buf[s->line_buf_index++] = ch;
bellard authored
1668
1669
            }
            break;
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
        case RS_CHKSUM1:
            s->line_buf[s->line_buf_index] = '\0';
            s->line_csum = fromhex(ch) << 4;
            s->state = RS_CHKSUM2;
            break;
        case RS_CHKSUM2:
            s->line_csum |= fromhex(ch);
            csum = 0;
            for(i = 0; i < s->line_buf_index; i++) {
                csum += s->line_buf[i];
            }
            if (s->line_csum != (csum & 0xff)) {
1682
1683
                reply = '-';
                put_buffer(s, &reply, 1);
1684
                s->state = RS_IDLE;
bellard authored
1685
            } else {
1686
1687
                reply = '+';
                put_buffer(s, &reply, 1);
1688
                s->state = gdb_handle_packet(s, env, s->line_buf);
bellard authored
1689
1690
            }
            break;
pbrook authored
1691
1692
        default:
            abort();
1693
1694
1695
1696
        }
    }
}
1697
1698
1699
1700
1701
1702
1703
1704
1705
#ifdef CONFIG_USER_ONLY
int
gdb_handlesig (CPUState *env, int sig)
{
  GDBState *s;
  char buf[256];
  int n;

  s = &gdbserver_state;
1706
1707
  if (gdbserver_fd < 0 || s->fd < 0)
    return sig;
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717

  /* disable single step if it was enabled */
  cpu_single_step(env, 0);
  tb_flush(env);

  if (sig != 0)
    {
      snprintf(buf, sizeof(buf), "S%02x", sig);
      put_packet(s, buf);
    }
1718
1719
1720
1721
  /* put_packet() might have detected that the peer terminated the 
     connection.  */
  if (s->fd < 0)
      return sig;
1722
1723
1724

  sig = 0;
  s->state = RS_IDLE;
bellard authored
1725
1726
  s->running_state = 0;
  while (s->running_state == 0) {
1727
1728
1729
1730
1731
1732
      n = read (s->fd, buf, 256);
      if (n > 0)
        {
          int i;

          for (i = 0; i < n; i++)
bellard authored
1733
            gdb_read_byte (s, buf[i]);
1734
1735
1736
1737
1738
1739
1740
        }
      else if (n == 0 || errno != EAGAIN)
        {
          /* XXX: Connection closed.  Should probably wait for annother
             connection before continuing.  */
          return sig;
        }
bellard authored
1741
  }
1742
1743
  sig = s->signal;
  s->signal = 0;
1744
1745
  return sig;
}
1746
1747
1748
1749
1750
1751
1752
1753

/* Tell the remote gdb that the process has exited.  */
void gdb_exit(CPUState *env, int code)
{
  GDBState *s;
  char buf[4];

  s = &gdbserver_state;
1754
1755
  if (gdbserver_fd < 0 || s->fd < 0)
    return;
1756
1757
1758
1759
1760

  snprintf(buf, sizeof(buf), "W%02x", code);
  put_packet(s, buf);
}
1761
bellard authored
1762
static void gdb_accept(void *opaque)
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
{
    GDBState *s;
    struct sockaddr_in sockaddr;
    socklen_t len;
    int val, fd;

    for(;;) {
        len = sizeof(sockaddr);
        fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
        if (fd < 0 && errno != EINTR) {
            perror("accept");
            return;
        } else if (fd >= 0) {
bellard authored
1776
1777
1778
            break;
        }
    }
1779
1780
1781

    /* set short latency */
    val = 1;
bellard authored
1782
    setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
1783
1784
1785
    s = &gdbserver_state;
    memset (s, 0, sizeof (GDBState));
bellard authored
1786
    s->env = first_cpu; /* XXX: allow to change CPU */
1787
    s->fd = fd;
1788
    gdb_has_xml = 0;
1789
pbrook authored
1790
1791
    gdb_syscall_state = s;
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
    fcntl(fd, F_SETFL, O_NONBLOCK);
}

static int gdbserver_open(int port)
{
    struct sockaddr_in sockaddr;
    int fd, val, ret;

    fd = socket(PF_INET, SOCK_STREAM, 0);
    if (fd < 0) {
        perror("socket");
        return -1;
    }

    /* allow fast reuse */
    val = 1;
bellard authored
1808
    setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831

    sockaddr.sin_family = AF_INET;
    sockaddr.sin_port = htons(port);
    sockaddr.sin_addr.s_addr = 0;
    ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
    if (ret < 0) {
        perror("bind");
        return -1;
    }
    ret = listen(fd, 0);
    if (ret < 0) {
        perror("listen");
        return -1;
    }
    return fd;
}

int gdbserver_start(int port)
{
    gdbserver_fd = gdbserver_open(port);
    if (gdbserver_fd < 0)
        return -1;
    /* accept connections */
bellard authored
1832
    gdb_accept (NULL);
1833
1834
    return 0;
}
1835
#else
ths authored
1836
static int gdb_chr_can_receive(void *opaque)
1837
{
1838
1839
1840
  /* We can handle an arbitrarily large amount of data.
   Pick the maximum packet size, which is as good as anything.  */
  return MAX_PACKET_LENGTH;
1841
1842
}
ths authored
1843
static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
{
    GDBState *s = opaque;
    int i;

    for (i = 0; i < size; i++) {
        gdb_read_byte(s, buf[i]);
    }
}

static void gdb_chr_event(void *opaque, int event)
{
    switch (event) {
    case CHR_EVENT_RESET:
        vm_stop(EXCP_INTERRUPT);
pbrook authored
1858
        gdb_syscall_state = opaque;
1859
        gdb_has_xml = 0;
1860
1861
1862
1863
1864
1865
        break;
    default:
        break;
    }
}
1866
int gdbserver_start(const char *port)
1867
1868
{
    GDBState *s;
1869
1870
1871
1872
1873
1874
1875
    char gdbstub_port_name[128];
    int port_num;
    char *p;
    CharDriverState *chr;

    if (!port || !*port)
      return -1;
1876
1877
1878
1879
1880
1881
1882
1883
1884
    port_num = strtol(port, &p, 10);
    if (*p == 0) {
        /* A numeric value is interpreted as a port number.  */
        snprintf(gdbstub_port_name, sizeof(gdbstub_port_name),
                 "tcp::%d,nowait,nodelay,server", port_num);
        port = gdbstub_port_name;
    }
1885
    chr = qemu_chr_open("gdb", port);
1886
1887
1888
1889
1890
1891
1892
1893
1894
    if (!chr)
        return -1;

    s = qemu_mallocz(sizeof(GDBState));
    if (!s) {
        return -1;
    }
    s->env = first_cpu; /* XXX: allow to change CPU */
    s->chr = chr;
ths authored
1895
    qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
1896
1897
                          gdb_chr_event, s);
    qemu_add_vm_stop_handler(gdb_vm_stopped, s);
bellard authored
1898
1899
    return 0;
}
1900
#endif