Blame view

gdbstub.c 47.7 KB
bellard authored
1
2
/*
 * gdb server stub
3
 *
bellard authored
4
 * Copyright (c) 2003-2005 Fabrice Bellard
bellard authored
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
20
#include "config.h"
21
#include "qemu-common.h"
22
23
24
25
26
27
28
#ifdef CONFIG_USER_ONLY
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
29
#include <fcntl.h>
30
31
32

#include "qemu.h"
#else
pbrook authored
33
34
35
#include "qemu-char.h"
#include "sysemu.h"
#include "gdbstub.h"
36
#endif
37
38
39
#define MAX_PACKET_LENGTH 4096
bellard authored
40
41
42
43
44
45
46
47
48
49
#include "qemu_socket.h"
#ifdef _WIN32
/* XXX: these constants may be independent of the host ones even for Unix */
#ifndef SIGTRAP
#define SIGTRAP 5
#endif
#ifndef SIGINT
#define SIGINT 2
#endif
#else
bellard authored
50
#include <signal.h>
bellard authored
51
#endif
bellard authored
52
bellard authored
53
//#define DEBUG_GDB
bellard authored
54
55
56
57
58
59
60
61
62
63
typedef struct GDBRegisterState {
    int base_reg;
    int num_regs;
    gdb_reg_cb get_reg;
    gdb_reg_cb set_reg;
    const char *xml;
    struct GDBRegisterState *next;
} GDBRegisterState;
64
65
66
67
68
enum RSState {
    RS_IDLE,
    RS_GETLINE,
    RS_CHKSUM1,
    RS_CHKSUM2,
pbrook authored
69
    RS_SYSCALL,
70
71
};
typedef struct GDBState {
bellard authored
72
    CPUState *env; /* current CPU */
bellard authored
73
    enum RSState state; /* parsing state */
74
    char line_buf[MAX_PACKET_LENGTH];
75
76
    int line_buf_index;
    int line_csum;
77
    uint8_t last_packet[MAX_PACKET_LENGTH + 4];
78
    int last_packet_len;
79
    int signal;
bellard authored
80
#ifdef CONFIG_USER_ONLY
81
    int fd;
bellard authored
82
    int running_state;
83
84
#else
    CharDriverState *chr;
bellard authored
85
#endif
86
} GDBState;
bellard authored
87
88
89
90
91
92
/* By default use no IRQs and no timers while single stepping so as to
 * make single stepping like an ICE HW step.
 */
static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
93
94
95
96
97
/* This is an ugly hack to cope with both new and old gdb.
   If gdb sends qXfer:features:read then assume we're talking to a newish
   gdb that understands target descriptions.  */
static int gdb_has_xml;
98
#ifdef CONFIG_USER_ONLY
99
100
101
/* XXX: This is not thread safe.  Do we care?  */
static int gdbserver_fd = -1;
102
103
104
/* XXX: remove this hack.  */
static GDBState gdbserver_state;
105
static int get_char(GDBState *s)
bellard authored
106
107
108
109
110
{
    uint8_t ch;
    int ret;

    for(;;) {
bellard authored
111
        ret = recv(s->fd, &ch, 1, 0);
bellard authored
112
        if (ret < 0) {
113
114
            if (errno == ECONNRESET)
                s->fd = -1;
bellard authored
115
116
117
            if (errno != EINTR && errno != EAGAIN)
                return -1;
        } else if (ret == 0) {
118
119
            close(s->fd);
            s->fd = -1;
bellard authored
120
121
122
123
124
125
126
            return -1;
        } else {
            break;
        }
    }
    return ch;
}
127
#endif
bellard authored
128
pbrook authored
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
/* GDB stub state for use by semihosting syscalls.  */
static GDBState *gdb_syscall_state;
static gdb_syscall_complete_cb gdb_current_syscall_cb;

enum {
    GDB_SYS_UNKNOWN,
    GDB_SYS_ENABLED,
    GDB_SYS_DISABLED,
} gdb_syscall_mode;

/* If gdb is connected when the first semihosting syscall occurs then use
   remote gdb syscalls.  Otherwise use native file IO.  */
int use_gdb_syscalls(void)
{
    if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
        gdb_syscall_mode = (gdb_syscall_state ? GDB_SYS_ENABLED
                                              : GDB_SYS_DISABLED);
    }
    return gdb_syscall_mode == GDB_SYS_ENABLED;
}
150
151
152
153
154
155
156
157
158
159
/* Resume execution.  */
static inline void gdb_continue(GDBState *s)
{
#ifdef CONFIG_USER_ONLY
    s->running_state = 1;
#else
    vm_start();
#endif
}
160
static void put_buffer(GDBState *s, const uint8_t *buf, int len)
bellard authored
161
{
162
#ifdef CONFIG_USER_ONLY
bellard authored
163
164
165
    int ret;

    while (len > 0) {
bellard authored
166
        ret = send(s->fd, buf, len, 0);
bellard authored
167
168
169
170
171
172
173
174
        if (ret < 0) {
            if (errno != EINTR && errno != EAGAIN)
                return;
        } else {
            buf += ret;
            len -= ret;
        }
    }
175
176
177
#else
    qemu_chr_write(s->chr, buf, len);
#endif
bellard authored
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
}

static inline int fromhex(int v)
{
    if (v >= '0' && v <= '9')
        return v - '0';
    else if (v >= 'A' && v <= 'F')
        return v - 'A' + 10;
    else if (v >= 'a' && v <= 'f')
        return v - 'a' + 10;
    else
        return 0;
}

static inline int tohex(int v)
{
    if (v < 10)
        return v + '0';
    else
        return v - 10 + 'a';
}

static void memtohex(char *buf, const uint8_t *mem, int len)
{
    int i, c;
    char *q;
    q = buf;
    for(i = 0; i < len; i++) {
        c = mem[i];
        *q++ = tohex(c >> 4);
        *q++ = tohex(c & 0xf);
    }
    *q = '\0';
}

static void hextomem(uint8_t *mem, const char *buf, int len)
{
    int i;

    for(i = 0; i < len; i++) {
        mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
        buf += 2;
    }
}

/* return -1 if error, 0 if OK */
224
static int put_packet_binary(GDBState *s, const char *buf, int len)
bellard authored
225
{
226
    int csum, i;
227
    uint8_t *p;
bellard authored
228
229

    for(;;) {
230
231
232
233
        p = s->last_packet;
        *(p++) = '$';
        memcpy(p, buf, len);
        p += len;
bellard authored
234
235
236
237
        csum = 0;
        for(i = 0; i < len; i++) {
            csum += buf[i];
        }
238
239
240
        *(p++) = '#';
        *(p++) = tohex((csum >> 4) & 0xf);
        *(p++) = tohex((csum) & 0xf);
bellard authored
241
242
        s->last_packet_len = p - s->last_packet;
243
        put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
bellard authored
244
245
246
247
#ifdef CONFIG_USER_ONLY
        i = get_char(s);
        if (i < 0)
bellard authored
248
            return -1;
249
        if (i == '+')
bellard authored
250
            break;
251
252
253
#else
        break;
#endif
bellard authored
254
255
256
257
    }
    return 0;
}
258
259
260
261
262
263
/* return -1 if error, 0 if OK */
static int put_packet(GDBState *s, const char *buf)
{
#ifdef DEBUG_GDB
    printf("reply='%s'\n", buf);
#endif
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
    return put_packet_binary(s, buf, strlen(buf));
}

/* The GDB remote protocol transfers values in target byte order.  This means
   we can use the raw memory access routines to access the value buffer.
   Conveniently, these also handle the case where the buffer is mis-aligned.
 */
#define GET_REG8(val) do { \
    stb_p(mem_buf, val); \
    return 1; \
    } while(0)
#define GET_REG16(val) do { \
    stw_p(mem_buf, val); \
    return 2; \
    } while(0)
#define GET_REG32(val) do { \
    stl_p(mem_buf, val); \
    return 4; \
    } while(0)
#define GET_REG64(val) do { \
    stq_p(mem_buf, val); \
    return 8; \
    } while(0)

#if TARGET_LONG_BITS == 64
#define GET_REGL(val) GET_REG64(val)
#define ldtul_p(addr) ldq_p(addr)
#else
#define GET_REGL(val) GET_REG32(val)
#define ldtul_p(addr) ldl_p(addr)
295
296
#endif
297
#if defined(TARGET_I386)
298
299

#ifdef TARGET_X86_64
300
301
302
303
static const int gpr_map[16] = {
    R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
    8, 9, 10, 11, 12, 13, 14, 15
};
304
#else
305
static const int gpr_map[8] = {0, 1, 2, 3, 4, 5, 6, 7};
306
307
#endif
308
309
310
#define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)

static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
311
{
312
313
314
315
316
317
    if (n < CPU_NB_REGS) {
        GET_REGL(env->regs[gpr_map[n]]);
    } else if (n >= CPU_NB_REGS + 8 && n < CPU_NB_REGS + 16) {
        /* FIXME: byteswap float values.  */
#ifdef USE_X86LDOUBLE
        memcpy(mem_buf, &env->fpregs[n - (CPU_NB_REGS + 8)], 10);
318
#else
319
        memset(mem_buf, 0, 10);
320
#endif
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
        return 10;
    } else if (n >= CPU_NB_REGS + 24) {
        n -= CPU_NB_REGS + 24;
        if (n < CPU_NB_REGS) {
            stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0));
            stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1));
            return 16;
        } else if (n == CPU_NB_REGS) {
            GET_REG32(env->mxcsr);
        } 
    } else {
        n -= CPU_NB_REGS;
        switch (n) {
        case 0: GET_REGL(env->eip);
        case 1: GET_REG32(env->eflags);
        case 2: GET_REG32(env->segs[R_CS].selector);
        case 3: GET_REG32(env->segs[R_SS].selector);
        case 4: GET_REG32(env->segs[R_DS].selector);
        case 5: GET_REG32(env->segs[R_ES].selector);
        case 6: GET_REG32(env->segs[R_FS].selector);
        case 7: GET_REG32(env->segs[R_GS].selector);
        /* 8...15 x87 regs.  */
        case 16: GET_REG32(env->fpuc);
        case 17: GET_REG32((env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11);
        case 18: GET_REG32(0); /* ftag */
        case 19: GET_REG32(0); /* fiseg */
        case 20: GET_REG32(0); /* fioff */
        case 21: GET_REG32(0); /* foseg */
        case 22: GET_REG32(0); /* fooff */
        case 23: GET_REG32(0); /* fop */
        /* 24+ xmm regs.  */
        }
353
    }
354
    return 0;
bellard authored
355
356
}
357
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int i)
bellard authored
358
{
359
    uint32_t tmp;
bellard authored
360
361
362
363
364
365
366
367
    if (i < CPU_NB_REGS) {
        env->regs[gpr_map[i]] = ldtul_p(mem_buf);
        return sizeof(target_ulong);
    } else if (i >= CPU_NB_REGS + 8 && i < CPU_NB_REGS + 16) {
        i -= CPU_NB_REGS + 8;
#ifdef USE_X86LDOUBLE
        memcpy(&env->fpregs[i], mem_buf, 10);
368
#endif
369
370
371
372
373
374
375
376
377
378
        return 10;
    } else if (i >= CPU_NB_REGS + 24) {
        i -= CPU_NB_REGS + 24;
        if (i < CPU_NB_REGS) {
            env->xmm_regs[i].XMM_Q(0) = ldq_p(mem_buf);
            env->xmm_regs[i].XMM_Q(1) = ldq_p(mem_buf + 8);
            return 16;
        } else if (i == CPU_NB_REGS) {
            env->mxcsr = ldl_p(mem_buf);
            return 4;
379
        }
380
381
382
383
384
385
386
387
388
389
390
391
392
393
    } else {
        i -= CPU_NB_REGS;
        switch (i) {
        case 0: env->eip = ldtul_p(mem_buf); return sizeof(target_ulong);
        case 1: env->eflags = ldl_p(mem_buf); return 4;
#if defined(CONFIG_USER_ONLY)
#define LOAD_SEG(index, sreg)\
            tmp = ldl_p(mem_buf);\
            if (tmp != env->segs[sreg].selector)\
                cpu_x86_load_seg(env, sreg, tmp);
#else
/* FIXME: Honor segment registers.  Needs to avoid raising an exception
   when the selector is invalid.  */
#define LOAD_SEG(index, sreg) do {} while(0)
bellard authored
394
#endif
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
        case 2: LOAD_SEG(10, R_CS); return 4;
        case 3: LOAD_SEG(11, R_SS); return 4;
        case 4: LOAD_SEG(12, R_DS); return 4;
        case 5: LOAD_SEG(13, R_ES); return 4;
        case 6: LOAD_SEG(14, R_FS); return 4;
        case 7: LOAD_SEG(15, R_GS); return 4;
        /* 8...15 x87 regs.  */
        case 16: env->fpuc = ldl_p(mem_buf); return 4;
        case 17:
                 tmp = ldl_p(mem_buf);
                 env->fpstt = (tmp >> 11) & 7;
                 env->fpus = tmp & ~0x3800;
                 return 4;
        case 18: /* ftag */ return 4;
        case 19: /* fiseg */ return 4;
        case 20: /* fioff */ return 4;
        case 21: /* foseg */ return 4;
        case 22: /* fooff */ return 4;
        case 23: /* fop */ return 4;
        /* 24+ xmm regs.  */
415
416
        }
    }
417
418
    /* Unrecognised register.  */
    return 0;
bellard authored
419
420
}
bellard authored
421
422
#elif defined (TARGET_PPC)
423
#define NUM_CORE_REGS 71
bellard authored
424
425
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
bellard authored
426
{
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
    if (n < 32) {
        /* gprs */
        GET_REGL(env->gpr[n]);
    } else if (n < 64) {
        /* fprs */
        stfq_p(mem_buf, env->fpr[n]);
        return 8;
    } else {
        switch (n) {
        case 64: GET_REGL(env->nip);
        case 65: GET_REGL(env->msr);
        case 66:
            {
                uint32_t cr = 0;
                int i;
                for (i = 0; i < 8; i++)
                    cr |= env->crf[i] << (32 - ((i + 1) * 4));
                GET_REG32(cr);
            }
        case 67: GET_REGL(env->lr);
        case 68: GET_REGL(env->ctr);
        case 69: GET_REG32(ppc_load_xer(env));
        case 70: GET_REG32(0); /* fpscr */
        }
    }
    return 0;
}
bellard authored
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
{
    if (n < 32) {
        /* gprs */
        env->gpr[n] = ldtul_p(mem_buf);
        return sizeof(target_ulong);
    } else if (n < 64) {
        /* fprs */
        env->fpr[n] = ldfq_p(mem_buf);
        return 8;
    } else {
        switch (n) {
        case 64:
            env->nip = ldtul_p(mem_buf);
            return sizeof(target_ulong);
        case 65:
            ppc_store_msr(env, ldtul_p(mem_buf));
            return sizeof(target_ulong);
        case 66:
            {
                uint32_t cr = ldl_p(mem_buf);
                int i;
                for (i = 0; i < 8; i++)
                    env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
                return 4;
            }
        case 67:
            env->lr = ldtul_p(mem_buf);
            return sizeof(target_ulong);
        case 68:
            env->ctr = ldtul_p(mem_buf);
            return sizeof(target_ulong);
        case 69:
            ppc_store_xer(env, ldl_p(mem_buf));
            return 4;
        case 70:
            /* fpscr */
            return 4;
        }
    }
    return 0;
496
}
497
498
#elif defined (TARGET_SPARC)
499
500
501

#if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
#define NUM_CORE_REGS 86
502
#else
503
#define NUM_CORE_REGS 73
504
#endif
505
506
#ifdef TARGET_ABI32
507
#define GET_REGA(val) GET_REG32(val)
508
#else
509
#define GET_REGA(val) GET_REGL(val)
510
#endif
511
512
513
514
515
516
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
{
    if (n < 8) {
        /* g0..g7 */
        GET_REGA(env->gregs[n]);
517
    }
518
519
520
    if (n < 32) {
        /* register window */
        GET_REGA(env->regwptr[n - 8]);
521
    }
522
523
524
525
#if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
    if (n < 64) {
        /* fprs */
        GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
526
527
    }
    /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
528
529
530
531
532
533
534
535
536
537
538
    switch (n) {
    case 64: GET_REGA(env->y);
    case 65: GET_REGA(GET_PSR(env));
    case 66: GET_REGA(env->wim);
    case 67: GET_REGA(env->tbr);
    case 68: GET_REGA(env->pc);
    case 69: GET_REGA(env->npc);
    case 70: GET_REGA(env->fsr);
    case 71: GET_REGA(0); /* csr */
    case 72: GET_REGA(0);
    }
bellard authored
539
#else
540
541
542
543
544
545
546
    if (n < 64) {
        /* f0-f31 */
        GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
    }
    if (n < 80) {
        /* f32-f62 (double width, even numbers only) */
        uint64_t val;
547
548
549
550
        val = (uint64_t)*((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) << 32;
        val |= *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]);
        GET_REG64(val);
bellard authored
551
    }
552
553
554
555
    switch (n) {
    case 80: GET_REGL(env->pc);
    case 81: GET_REGL(env->npc);
    case 82: GET_REGL(((uint64_t)GET_CCR(env) << 32) |
556
557
558
                           ((env->asi & 0xff) << 24) |
                           ((env->pstate & 0xfff) << 8) |
                           GET_CWP64(env));
559
560
561
562
    case 83: GET_REGL(env->fsr);
    case 84: GET_REGL(env->fprs);
    case 85: GET_REGL(env->y);
    }
bellard authored
563
#endif
564
    return 0;
565
566
}
567
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
568
{
569
570
571
572
#if defined(TARGET_ABI32)
    abi_ulong tmp;

    tmp = ldl_p(mem_buf);
573
#else
574
575
576
    target_ulong tmp;

    tmp = ldtul_p(mem_buf);
577
#endif
578
579
580
581
582
583
584
    if (n < 8) {
        /* g0..g7 */
        env->gregs[n] = tmp;
    } else if (n < 32) {
        /* register window */
        env->regwptr[n - 8] = tmp;
585
    }
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
#if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
    else if (n < 64) {
        /* fprs */
        *((uint32_t *)&env->fpr[n - 32]) = tmp;
    } else {
        /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
        switch (n) {
        case 64: env->y = tmp; break;
        case 65: PUT_PSR(env, tmp); break;
        case 66: env->wim = tmp; break;
        case 67: env->tbr = tmp; break;
        case 68: env->pc = tmp; break;
        case 69: env->npc = tmp; break;
        case 70: env->fsr = tmp; break;
        default: return 0;
        }
602
    }
603
    return 4;
bellard authored
604
#else
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
    else if (n < 64) {
        /* f0-f31 */
        uint32_t fpr;

        env->fpr[n] = ldfl_p(mem_buf);
        return 4;
    } else if (n < 80) {
        /* f32-f62 (double width, even numbers only) */
        *((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) = tmp >> 32;
        *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]) = tmp;
    } else {
        switch (n) {
        case 80: env->pc = tmp; break;
        case 81: env->npc = tmp; break;
        case 82:
	    PUT_CCR(env, tmp >> 32);
	    env->asi = (tmp >> 24) & 0xff;
	    env->pstate = (tmp >> 8) & 0xfff;
	    PUT_CWP64(env, tmp & 0xff);
	    break;
        case 83: env->fsr = tmp; break;
        case 84: env->fprs = tmp; break;
        case 85: env->y = tmp; break;
        default: return 0;
        }
630
    }
631
    return 8;
bellard authored
632
#endif
bellard authored
633
}
634
#elif defined (TARGET_ARM)
bellard authored
635
636
637
638
639
640
641
642
/* Old gdb always expect FPA registers.  Newer (xml-aware) gdb only expect
   whatever the target description contains.  Due to a historical mishap
   the FPA registers appear in between core integer regs and the CPSR.
   We hack round this by giving the FPA regs zero size when talking to a
   newer gdb.  */
#define NUM_CORE_REGS 26
#define GDB_CORE_XML "arm-core.xml"
pbrook authored
643
644
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
pbrook authored
645
{
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
    if (n < 16) {
        /* Core integer register.  */
        GET_REG32(env->regs[n]);
    }
    if (n < 24) {
        /* FPA registers.  */
        if (gdb_has_xml)
            return 0;
        memset(mem_buf, 0, 12);
        return 12;
    }
    switch (n) {
    case 24:
        /* FPA status register.  */
        if (gdb_has_xml)
            return 0;
        GET_REG32(0);
    case 25:
        /* CPSR */
        GET_REG32(cpsr_read(env));
    }
    /* Unknown register.  */
    return 0;
pbrook authored
669
}
670
671
672
673
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
{
    uint32_t tmp;
674
675
    tmp = ldl_p(mem_buf);
676
677
678
679
680
    /* Mask out low bit of PC to workaround gdb bugs.  This will probably
       cause problems if we ever implement the Jazelle DBX extensions.  */
    if (n == 15)
        tmp &= ~1;
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
    if (n < 16) {
        /* Core integer register.  */
        env->regs[n] = tmp;
        return 4;
    }
    if (n < 24) { /* 16-23 */
        /* FPA registers (ignored).  */
        if (gdb_has_xml)
            return 0;
        return 12;
    }
    switch (n) {
    case 24:
        /* FPA status register (ignored).  */
        if (gdb_has_xml)
            return 0;
        return 4;
    case 25:
        /* CPSR */
        cpsr_write (env, tmp, 0xffffffff);
        return 4;
    }
    /* Unknown register.  */
    return 0;
}
707
708
#elif defined (TARGET_M68K)
709
710
#define NUM_CORE_REGS 18
711
712
#define GDB_CORE_XML "cf-core.xml"
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
{
    if (n < 8) {
        /* D0-D7 */
        GET_REG32(env->dregs[n]);
    } else if (n < 16) {
        /* A0-A7 */
        GET_REG32(env->aregs[n - 8]);
    } else {
	switch (n) {
        case 16: GET_REG32(env->sr);
        case 17: GET_REG32(env->pc);
        }
    }
    /* FP registers not included here because they vary between
       ColdFire and m68k.  Use XML bits for these.  */
    return 0;
}
732
733
734
735
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
{
    uint32_t tmp;
736
737
    tmp = ldl_p(mem_buf);
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
    if (n < 8) {
        /* D0-D7 */
        env->dregs[n] = tmp;
    } else if (n < 8) {
        /* A0-A7 */
        env->aregs[n - 8] = tmp;
    } else {
        switch (n) {
        case 16: env->sr = tmp; break;
        case 17: env->pc = tmp; break;
        default: return 0;
        }
    }
    return 4;
}
#elif defined (TARGET_MIPS)
ths authored
755
756
#define NUM_CORE_REGS 73
ths authored
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
{
    if (n < 32) {
        GET_REGL(env->active_tc.gpr[n]);
    }
    if (env->CP0_Config1 & (1 << CP0C1_FP)) {
        if (n >= 38 && n < 70) {
            if (env->CP0_Status & (1 << CP0St_FR))
		GET_REGL(env->active_fpu.fpr[n - 38].d);
            else
		GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]);
        }
        switch (n) {
        case 70: GET_REGL((int32_t)env->active_fpu.fcr31);
        case 71: GET_REGL((int32_t)env->active_fpu.fcr0);
        }
    }
    switch (n) {
    case 32: GET_REGL((int32_t)env->CP0_Status);
    case 33: GET_REGL(env->active_tc.LO[0]);
    case 34: GET_REGL(env->active_tc.HI[0]);
    case 35: GET_REGL(env->CP0_BadVAddr);
    case 36: GET_REGL((int32_t)env->CP0_Cause);
    case 37: GET_REGL(env->active_tc.PC);
    case 72: GET_REGL(0); /* fp */
    case 89: GET_REGL((int32_t)env->CP0_PRid);
    }
    if (n >= 73 && n <= 88) {
	/* 16 embedded regs.  */
	GET_REGL(0);
    }
789
790
    return 0;
791
792
}
793
794
795
796
797
798
799
800
801
/* convert MIPS rounding mode in FCR31 to IEEE library */
static unsigned int ieee_rm[] =
  {
    float_round_nearest_even,
    float_round_to_zero,
    float_round_up,
    float_round_down
  };
#define RESTORE_ROUNDING_MODE \
802
    set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
803
804
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
805
{
806
    target_ulong tmp;
807
808
    tmp = ldtul_p(mem_buf);
809
810
811
812
813
814
815
816
    if (n < 32) {
        env->active_tc.gpr[n] = tmp;
        return sizeof(target_ulong);
    }
    if (env->CP0_Config1 & (1 << CP0C1_FP)
            && n >= 38 && n < 73) {
        if (n < 70) {
ths authored
817
            if (env->CP0_Status & (1 << CP0St_FR))
818
              env->active_fpu.fpr[n - 38].d = tmp;
ths authored
819
            else
820
821
822
823
824
825
826
              env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp;
        }
        switch (n) {
        case 70:
            env->active_fpu.fcr31 = tmp & 0xFF83FFFF;
            /* set rounding mode */
            RESTORE_ROUNDING_MODE;
827
#ifndef CONFIG_SOFTFLOAT
828
829
            /* no floating point exception for native float */
            SET_FP_ENABLE(env->active_fpu.fcr31, 0);
830
#endif
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
            break;
        case 71: env->active_fpu.fcr0 = tmp; break;
        }
        return sizeof(target_ulong);
    }
    switch (n) {
    case 32: env->CP0_Status = tmp; break;
    case 33: env->active_tc.LO[0] = tmp; break;
    case 34: env->active_tc.HI[0] = tmp; break;
    case 35: env->CP0_BadVAddr = tmp; break;
    case 36: env->CP0_Cause = tmp; break;
    case 37: env->active_tc.PC = tmp; break;
    case 72: /* fp, ignored */ break;
    default: 
	if (n > 89)
	    return 0;
	/* Other registers are readonly.  Ignore writes.  */
	break;
    }

    return sizeof(target_ulong);
852
}
bellard authored
853
#elif defined (TARGET_SH4)
854
855

/* Hint: Use "set architecture sh4" in GDB to see fpu registers */
856
857
858
/* FIXME: We should use XML for this.  */

#define NUM_CORE_REGS 59
859
860
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
bellard authored
861
{
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
    if (n < 8) {
        if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
            GET_REGL(env->gregs[n + 16]);
        } else {
            GET_REGL(env->gregs[n]);
        }
    } else if (n < 16) {
        GET_REGL(env->gregs[n - 8]);
    } else if (n >= 25 && n < 41) {
	GET_REGL(env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
    } else if (n >= 43 && n < 51) {
	GET_REGL(env->gregs[n - 43]);
    } else if (n >= 51 && n < 59) {
	GET_REGL(env->gregs[n - (51 - 16)]);
    }
    switch (n) {
    case 16: GET_REGL(env->pc);
    case 17: GET_REGL(env->pr);
    case 18: GET_REGL(env->gbr);
    case 19: GET_REGL(env->vbr);
    case 20: GET_REGL(env->mach);
    case 21: GET_REGL(env->macl);
    case 22: GET_REGL(env->sr);
    case 23: GET_REGL(env->fpul);
    case 24: GET_REGL(env->fpscr);
    case 41: GET_REGL(env->ssr);
    case 42: GET_REGL(env->spc);
    }

    return 0;
bellard authored
892
893
}
894
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
bellard authored
895
{
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
    uint32_t tmp;

    tmp = ldl_p(mem_buf);

    if (n < 8) {
        if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
            env->gregs[n + 16] = tmp;
        } else {
            env->gregs[n] = tmp;
        }
	return 4;
    } else if (n < 16) {
        env->gregs[n - 8] = tmp;
	return 4;
    } else if (n >= 25 && n < 41) {
	env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)] = tmp;
    } else if (n >= 43 && n < 51) {
	env->gregs[n - 43] = tmp;
	return 4;
    } else if (n >= 51 && n < 59) {
	env->gregs[n - (51 - 16)] = tmp;
	return 4;
    }
    switch (n) {
    case 16: env->pc = tmp;
    case 17: env->pr = tmp;
    case 18: env->gbr = tmp;
    case 19: env->vbr = tmp;
    case 20: env->mach = tmp;
    case 21: env->macl = tmp;
    case 22: env->sr = tmp;
    case 23: env->fpul = tmp;
    case 24: env->fpscr = tmp;
    case 41: env->ssr = tmp;
    case 42: env->spc = tmp;
    default: return 0;
    }

    return 4;
bellard authored
935
}
936
937
#elif defined (TARGET_CRIS)
938
939
940
#define NUM_CORE_REGS 49

static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
941
{
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
    uint8_t srs;

    srs = env->pregs[PR_SRS];
    if (n < 16) {
	GET_REG32(env->regs[n]);
    }

    if (n >= 21 && n < 32) {
	GET_REG32(env->pregs[n - 16]);
    }
    if (n >= 33 && n < 49) {
	GET_REG32(env->sregs[srs][n - 33]);
    }
    switch (n) {
    case 16: GET_REG8(env->pregs[0]);
    case 17: GET_REG8(env->pregs[1]);
    case 18: GET_REG32(env->pregs[2]);
    case 19: GET_REG8(srs);
    case 20: GET_REG16(env->pregs[4]);
    case 32: GET_REG32(env->pc);
    }

    return 0;
965
}
966
967

static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
968
{
969
970
971
972
973
974
975
976
977
978
979
    uint32_t tmp;

    if (n > 49)
	return 0;

    tmp = ldl_p(mem_buf);

    if (n < 16) {
	env->regs[n] = tmp;
    }
980
981
982
983
984
    if (n >= 21 && n < 32) {
	env->pregs[n - 16] = tmp;
    }

    /* FIXME: Should support function regs be writable?  */
985
986
987
    switch (n) {
    case 16: return 1;
    case 17: return 1;
988
    case 18: env->pregs[PR_PID] = tmp; break;
989
990
991
992
993
994
    case 19: return 1;
    case 20: return 2;
    case 32: env->pc = tmp; break;
    }

    return 4;
995
}
996
997
998
999
1000
#else

#define NUM_CORE_REGS 0

static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1001
{
1002
    return 0;
1003
1004
}
1005
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1006
{
1007
1008
    return 0;
}
1009
1010
#endif
1011
1012
static int num_g_regs = NUM_CORE_REGS;
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
#ifdef GDB_CORE_XML
/* Encode data using the encoding for 'x' packets.  */
static int memtox(char *buf, const char *mem, int len)
{
    char *p = buf;
    char c;

    while (len--) {
        c = *(mem++);
        switch (c) {
        case '#': case '$': case '*': case '}':
            *(p++) = '}';
            *(p++) = c ^ 0x20;
            break;
        default:
            *(p++) = c;
            break;
        }
    }
    return p - buf;
}
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
const char *get_feature_xml(CPUState *env, const char *p, const char **newp)
{
    extern const char *const xml_builtin[][2];
    size_t len;
    int i;
    const char *name;
    static char target_xml[1024];

    len = 0;
    while (p[len] && p[len] != ':')
        len++;
    *newp = p + len;

    name = NULL;
    if (strncmp(p, "target.xml", len) == 0) {
        /* Generate the XML description for this CPU.  */
        if (!target_xml[0]) {
            GDBRegisterState *r;

            sprintf(target_xml,
                    "<?xml version=\"1.0\"?>"
                    "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
                    "<target>"
                    "<xi:include href=\"%s\"/>",
                    GDB_CORE_XML);

            for (r = env->gdb_regs; r; r = r->next) {
                strcat(target_xml, "<xi:include href=\"");
                strcat(target_xml, r->xml);
                strcat(target_xml, "\"/>");
            }
            strcat(target_xml, "</target>");
        }
        return target_xml;
    }
    for (i = 0; ; i++) {
        name = xml_builtin[i][0];
        if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
            break;
    }
    return name ? xml_builtin[i][1] : NULL;
}
#endif
1079
1080
1081
1082
static int gdb_read_register(CPUState *env, uint8_t *mem_buf, int reg)
{
    GDBRegisterState *r;
1083
1084
1085
    if (reg < NUM_CORE_REGS)
        return cpu_gdb_read_register(env, mem_buf, reg);
1086
1087
1088
1089
1090
1091
1092
    for (r = env->gdb_regs; r; r = r->next) {
        if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
            return r->get_reg(env, mem_buf, reg - r->base_reg);
        }
    }
    return 0;
1093
1094
}
1095
static int gdb_write_register(CPUState *env, uint8_t *mem_buf, int reg)
1096
{
1097
    GDBRegisterState *r;
1098
1099
1100
1101
1102
1103
1104
1105
1106
    if (reg < NUM_CORE_REGS)
        return cpu_gdb_write_register(env, mem_buf, reg);

    for (r = env->gdb_regs; r; r = r->next) {
        if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
            return r->set_reg(env, mem_buf, reg - r->base_reg);
        }
    }
bellard authored
1107
1108
1109
    return 0;
}
1110
1111
1112
1113
1114
1115
1116
1117
1118
/* Register a supplemental set of CPU registers.  If g_pos is nonzero it
   specifies the first register number and these registers are included in
   a standard "g" packet.  Direction is relative to gdb, i.e. get_reg is
   gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
 */

void gdb_register_coprocessor(CPUState * env,
                             gdb_reg_cb get_reg, gdb_reg_cb set_reg,
                             int num_regs, const char *xml, int g_pos)
bellard authored
1119
{
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
    GDBRegisterState *s;
    GDBRegisterState **p;
    static int last_reg = NUM_CORE_REGS;

    s = (GDBRegisterState *)qemu_mallocz(sizeof(GDBRegisterState));
    s->base_reg = last_reg;
    s->num_regs = num_regs;
    s->get_reg = get_reg;
    s->set_reg = set_reg;
    s->xml = xml;
    p = &env->gdb_regs;
    while (*p) {
        /* Check for duplicates.  */
        if (strcmp((*p)->xml, xml) == 0)
            return;
        p = &(*p)->next;
    }
    /* Add to end of list.  */
    last_reg += num_regs;
    *p = s;
    if (g_pos) {
        if (g_pos != s->base_reg) {
            fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n"
                    "Expected %d got %d\n", xml, g_pos, s->base_reg);
        } else {
            num_g_regs = last_reg;
        }
    }
bellard authored
1148
1149
}
1150
static int gdb_handle_packet(GDBState *s, CPUState *env, const char *line_buf)
bellard authored
1151
1152
{
    const char *p;
1153
    int ch, reg_size, type;
1154
1155
1156
    char buf[MAX_PACKET_LENGTH];
    uint8_t mem_buf[MAX_PACKET_LENGTH];
    uint8_t *registers;
1157
    target_ulong addr, len;
1158
1159
1160
1161
1162
1163
1164
1165
#ifdef DEBUG_GDB
    printf("command='%s'\n", line_buf);
#endif
    p = line_buf;
    ch = *p++;
    switch(ch) {
    case '?':
1166
        /* TODO: Make this return the correct value for user-mode.  */
1167
1168
        snprintf(buf, sizeof(buf), "S%02x", SIGTRAP);
        put_packet(s, buf);
1169
1170
1171
1172
1173
1174
        /* Remove all the breakpoints when this query is issued,
         * because gdb is doing and initial connect and the state
         * should be cleaned up.
         */
        cpu_breakpoint_remove_all(env);
        cpu_watchpoint_remove_all(env);
1175
1176
1177
        break;
    case 'c':
        if (*p != '\0') {
1178
            addr = strtoull(p, (char **)&p, 16);
bellard authored
1179
#if defined(TARGET_I386)
1180
            env->eip = addr;
bellard authored
1181
#elif defined (TARGET_PPC)
1182
            env->nip = addr;
bellard authored
1183
1184
1185
#elif defined (TARGET_SPARC)
            env->pc = addr;
            env->npc = addr + 4;
1186
1187
#elif defined (TARGET_ARM)
            env->regs[15] = addr;
bellard authored
1188
#elif defined (TARGET_SH4)
1189
1190
            env->pc = addr;
#elif defined (TARGET_MIPS)
1191
            env->active_tc.PC = addr;
1192
1193
#elif defined (TARGET_CRIS)
            env->pc = addr;
bellard authored
1194
#endif
1195
        }
1196
        gdb_continue(s);
bellard authored
1197
	return RS_IDLE;
1198
1199
1200
1201
    case 'C':
        s->signal = strtoul(p, (char **)&p, 16);
        gdb_continue(s);
        return RS_IDLE;
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
    case 'k':
        /* Kill the target */
        fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
        exit(0);
    case 'D':
        /* Detach packet */
        cpu_breakpoint_remove_all(env);
        cpu_watchpoint_remove_all(env);
        gdb_continue(s);
        put_packet(s, "OK");
        break;
1213
1214
    case 's':
        if (*p != '\0') {
1215
            addr = strtoull(p, (char **)&p, 16);
1216
#if defined(TARGET_I386)
1217
            env->eip = addr;
bellard authored
1218
#elif defined (TARGET_PPC)
1219
            env->nip = addr;
bellard authored
1220
1221
1222
#elif defined (TARGET_SPARC)
            env->pc = addr;
            env->npc = addr + 4;
1223
1224
#elif defined (TARGET_ARM)
            env->regs[15] = addr;
bellard authored
1225
#elif defined (TARGET_SH4)
1226
1227
            env->pc = addr;
#elif defined (TARGET_MIPS)
1228
            env->active_tc.PC = addr;
1229
1230
#elif defined (TARGET_CRIS)
            env->pc = addr;
1231
#endif
1232
        }
1233
        cpu_single_step(env, sstep_flags);
1234
        gdb_continue(s);
bellard authored
1235
	return RS_IDLE;
pbrook authored
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
    case 'F':
        {
            target_ulong ret;
            target_ulong err;

            ret = strtoull(p, (char **)&p, 16);
            if (*p == ',') {
                p++;
                err = strtoull(p, (char **)&p, 16);
            } else {
                err = 0;
            }
            if (*p == ',')
                p++;
            type = *p;
            if (gdb_current_syscall_cb)
                gdb_current_syscall_cb(s->env, ret, err);
            if (type == 'C') {
                put_packet(s, "T02");
            } else {
1256
                gdb_continue(s);
pbrook authored
1257
1258
1259
            }
        }
        break;
1260
    case 'g':
1261
1262
1263
1264
1265
1266
        len = 0;
        for (addr = 0; addr < num_g_regs; addr++) {
            reg_size = gdb_read_register(env, mem_buf + len, addr);
            len += reg_size;
        }
        memtohex(buf, mem_buf, len);
1267
1268
1269
        put_packet(s, buf);
        break;
    case 'G':
1270
        registers = mem_buf;
1271
1272
        len = strlen(p) / 2;
        hextomem((uint8_t *)registers, p, len);
1273
1274
1275
1276
1277
        for (addr = 0; addr < num_g_regs && len > 0; addr++) {
            reg_size = gdb_write_register(env, registers, addr);
            len -= reg_size;
            registers += reg_size;
        }
1278
1279
1280
        put_packet(s, "OK");
        break;
    case 'm':
1281
        addr = strtoull(p, (char **)&p, 16);
1282
1283
        if (*p == ',')
            p++;
1284
        len = strtoull(p, NULL, 16);
1285
1286
1287
1288
1289
1290
        if (cpu_memory_rw_debug(env, addr, mem_buf, len, 0) != 0) {
            put_packet (s, "E14");
        } else {
            memtohex(buf, mem_buf, len);
            put_packet(s, buf);
        }
1291
1292
        break;
    case 'M':
1293
        addr = strtoull(p, (char **)&p, 16);
1294
1295
        if (*p == ',')
            p++;
1296
        len = strtoull(p, (char **)&p, 16);
1297
        if (*p == ':')
1298
1299
1300
            p++;
        hextomem(mem_buf, p, len);
        if (cpu_memory_rw_debug(env, addr, mem_buf, len, 1) != 0)
1301
            put_packet(s, "E14");
1302
1303
1304
        else
            put_packet(s, "OK");
        break;
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
    case 'p':
        /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
           This works, but can be very slow.  Anything new enough to
           understand XML also knows how to use this properly.  */
        if (!gdb_has_xml)
            goto unknown_command;
        addr = strtoull(p, (char **)&p, 16);
        reg_size = gdb_read_register(env, mem_buf, addr);
        if (reg_size) {
            memtohex(buf, mem_buf, reg_size);
            put_packet(s, buf);
        } else {
            put_packet(s, "E14");
        }
        break;
    case 'P':
        if (!gdb_has_xml)
            goto unknown_command;
        addr = strtoull(p, (char **)&p, 16);
        if (*p == '=')
            p++;
        reg_size = strlen(p) / 2;
        hextomem(mem_buf, p, reg_size);
        gdb_write_register(env, mem_buf, addr);
        put_packet(s, "OK");
        break;
1331
1332
1333
1334
    case 'Z':
        type = strtoul(p, (char **)&p, 16);
        if (*p == ',')
            p++;
1335
        addr = strtoull(p, (char **)&p, 16);
1336
1337
        if (*p == ',')
            p++;
1338
        len = strtoull(p, (char **)&p, 16);
pbrook authored
1339
1340
1341
        switch (type) {
        case 0:
        case 1:
1342
1343
1344
            if (cpu_breakpoint_insert(env, addr) < 0)
                goto breakpoint_error;
            put_packet(s, "OK");
pbrook authored
1345
            break;
1346
#ifndef CONFIG_USER_ONLY
pbrook authored
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
        case 2:
            type = PAGE_WRITE;
            goto insert_watchpoint;
        case 3:
            type = PAGE_READ;
            goto insert_watchpoint;
        case 4:
            type = PAGE_READ | PAGE_WRITE;
        insert_watchpoint:
            if (cpu_watchpoint_insert(env, addr, type) < 0)
1357
1358
                goto breakpoint_error;
            put_packet(s, "OK");
pbrook authored
1359
            break;
1360
#endif
pbrook authored
1361
1362
1363
        default:
            put_packet(s, "");
            break;
1364
1365
        }
        break;
pbrook authored
1366
1367
1368
1369
    breakpoint_error:
        put_packet(s, "E22");
        break;
1370
1371
1372
1373
    case 'z':
        type = strtoul(p, (char **)&p, 16);
        if (*p == ',')
            p++;
1374
        addr = strtoull(p, (char **)&p, 16);
1375
1376
        if (*p == ',')
            p++;
1377
        len = strtoull(p, (char **)&p, 16);
1378
1379
1380
        if (type == 0 || type == 1) {
            cpu_breakpoint_remove(env, addr);
            put_packet(s, "OK");
1381
#ifndef CONFIG_USER_ONLY
pbrook authored
1382
        } else if (type >= 2 || type <= 4) {
1383
1384
1385
            cpu_watchpoint_remove(env, addr);
            put_packet(s, "OK");
#endif
1386
        } else {
pbrook authored
1387
            put_packet(s, "");
1388
1389
        }
        break;
1390
    case 'q':
1391
1392
1393
1394
    case 'Q':
        /* parse any 'q' packets here */
        if (!strcmp(p,"qemu.sstepbits")) {
            /* Query Breakpoint bit definitions */
1395
1396
1397
1398
            snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
                     SSTEP_ENABLE,
                     SSTEP_NOIRQ,
                     SSTEP_NOTIMER);
1399
1400
1401
1402
1403
1404
1405
            put_packet(s, buf);
            break;
        } else if (strncmp(p,"qemu.sstep",10) == 0) {
            /* Display or change the sstep_flags */
            p += 10;
            if (*p != '=') {
                /* Display current setting */
1406
                snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
                put_packet(s, buf);
                break;
            }
            p++;
            type = strtoul(p, (char **)&p, 16);
            sstep_flags = type;
            put_packet(s, "OK");
            break;
        }
#ifdef CONFIG_LINUX_USER
        else if (strncmp(p, "Offsets", 7) == 0) {
1418
1419
            TaskState *ts = env->opaque;
1420
1421
1422
1423
1424
1425
            snprintf(buf, sizeof(buf),
                     "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
                     ";Bss=" TARGET_ABI_FMT_lx,
                     ts->info->code_offset,
                     ts->info->data_offset,
                     ts->info->data_offset);
1426
1427
1428
1429
            put_packet(s, buf);
            break;
        }
#endif
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
        if (strncmp(p, "Supported", 9) == 0) {
            sprintf(buf, "PacketSize=%x", MAX_PACKET_LENGTH);
#ifdef GDB_CORE_XML
            strcat(buf, ";qXfer:features:read+");
#endif
            put_packet(s, buf);
            break;
        }
#ifdef GDB_CORE_XML
        if (strncmp(p, "Xfer:features:read:", 19) == 0) {
            const char *xml;
            target_ulong total_len;

            gdb_has_xml = 1;
            p += 19;
            xml = get_feature_xml(env, p, &p);
            if (!xml) {
                sprintf(buf, "E00");
                put_packet(s, buf);
                break;
            }

            if (*p == ':')
                p++;
            addr = strtoul(p, (char **)&p, 16);
            if (*p == ',')
                p++;
            len = strtoul(p, (char **)&p, 16);

            total_len = strlen(xml);
            if (addr > total_len) {
                sprintf(buf, "E00");
                put_packet(s, buf);
                break;
            }
            if (len > (MAX_PACKET_LENGTH - 5) / 2)
                len = (MAX_PACKET_LENGTH - 5) / 2;
            if (len < total_len - addr) {
                buf[0] = 'm';
                len = memtox(buf + 1, xml + addr, len);
            } else {
                buf[0] = 'l';
                len = memtox(buf + 1, xml + addr, total_len - addr);
            }
            put_packet_binary(s, buf, len + 1);
            break;
        }
#endif
        /* Unrecognised 'q' command.  */
        goto unknown_command;
1481
    default:
1482
    unknown_command:
1483
1484
1485
1486
1487
1488
1489
1490
        /* put empty packet */
        buf[0] = '\0';
        put_packet(s, buf);
        break;
    }
    return RS_IDLE;
}
bellard authored
1491
1492
extern void tb_flush(CPUState *env);
1493
#ifndef CONFIG_USER_ONLY
1494
1495
1496
1497
1498
1499
static void gdb_vm_stopped(void *opaque, int reason)
{
    GDBState *s = opaque;
    char buf[256];
    int ret;
pbrook authored
1500
1501
1502
    if (s->state == RS_SYSCALL)
        return;
1503
    /* disable single step if it was enable */
bellard authored
1504
    cpu_single_step(s->env, 0);
1505
bellard authored
1506
    if (reason == EXCP_DEBUG) {
1507
        if (s->env->watchpoint_hit) {
1508
1509
            snprintf(buf, sizeof(buf), "T%02xwatch:" TARGET_FMT_lx ";",
                     SIGTRAP,
1510
1511
1512
1513
1514
                     s->env->watchpoint[s->env->watchpoint_hit - 1].vaddr);
            put_packet(s, buf);
            s->env->watchpoint_hit = 0;
            return;
        }
bellard authored
1515
	tb_flush(s->env);
1516
        ret = SIGTRAP;
1517
1518
1519
    } else if (reason == EXCP_INTERRUPT) {
        ret = SIGINT;
    } else {
1520
        ret = 0;
1521
    }
1522
1523
1524
    snprintf(buf, sizeof(buf), "S%02x", ret);
    put_packet(s, buf);
}
1525
#endif
1526
pbrook authored
1527
1528
/* Send a gdb syscall request.
   This accepts limited printf-style format specifiers, specifically:
pbrook authored
1529
1530
1531
    %x  - target_ulong argument printed in hex.
    %lx - 64-bit argument printed in hex.
    %s  - string pointer (target_ulong) and length (int) pair.  */
1532
void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
pbrook authored
1533
1534
1535
1536
1537
{
    va_list va;
    char buf[256];
    char *p;
    target_ulong addr;
pbrook authored
1538
    uint64_t i64;
pbrook authored
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
    GDBState *s;

    s = gdb_syscall_state;
    if (!s)
        return;
    gdb_current_syscall_cb = cb;
    s->state = RS_SYSCALL;
#ifndef CONFIG_USER_ONLY
    vm_stop(EXCP_DEBUG);
#endif
    s->state = RS_IDLE;
    va_start(va, fmt);
    p = buf;
    *(p++) = 'F';
    while (*fmt) {
        if (*fmt == '%') {
            fmt++;
            switch (*fmt++) {
            case 'x':
                addr = va_arg(va, target_ulong);
1559
                p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx, addr);
pbrook authored
1560
                break;
pbrook authored
1561
1562
1563
1564
            case 'l':
                if (*(fmt++) != 'x')
                    goto bad_format;
                i64 = va_arg(va, uint64_t);
1565
                p += snprintf(p, &buf[sizeof(buf)] - p, "%" PRIx64, i64);
pbrook authored
1566
                break;
pbrook authored
1567
1568
            case 's':
                addr = va_arg(va, target_ulong);
1569
1570
                p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx "/%x",
                              addr, va_arg(va, int));
pbrook authored
1571
1572
                break;
            default:
pbrook authored
1573
            bad_format:
pbrook authored
1574
1575
1576
1577
1578
1579
1580
1581
                fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
                        fmt - 1);
                break;
            }
        } else {
            *(p++) = *(fmt++);
        }
    }
1582
    *p = 0;
pbrook authored
1583
1584
1585
1586
1587
1588
1589
1590
1591
    va_end(va);
    put_packet(s, buf);
#ifdef CONFIG_USER_ONLY
    gdb_handlesig(s->env, 0);
#else
    cpu_interrupt(s->env, CPU_INTERRUPT_EXIT);
#endif
}
bellard authored
1592
static void gdb_read_byte(GDBState *s, int ch)
1593
{
bellard authored
1594
    CPUState *env = s->env;
1595
    int i, csum;
1596
    uint8_t reply;
1597
1598
#ifndef CONFIG_USER_ONLY
1599
1600
1601
1602
1603
1604
1605
    if (s->last_packet_len) {
        /* Waiting for a response to the last packet.  If we see the start
           of a new command then abandon the previous response.  */
        if (ch == '-') {
#ifdef DEBUG_GDB
            printf("Got NACK, retransmitting\n");
#endif
1606
            put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
        }
#ifdef DEBUG_GDB
        else if (ch == '+')
            printf("Got ACK\n");
        else
            printf("Got '%c' when expecting ACK/NACK\n", ch);
#endif
        if (ch == '+' || ch == '$')
            s->last_packet_len = 0;
        if (ch != '$')
            return;
    }
1619
1620
1621
1622
    if (vm_running) {
        /* when the CPU is running, we cannot do anything except stop
           it when receiving a char */
        vm_stop(EXCP_INTERRUPT);
1623
    } else
1624
#endif
bellard authored
1625
    {
1626
1627
1628
1629
1630
        switch(s->state) {
        case RS_IDLE:
            if (ch == '$') {
                s->line_buf_index = 0;
                s->state = RS_GETLINE;
1631
            }
bellard authored
1632
            break;
1633
1634
1635
1636
1637
        case RS_GETLINE:
            if (ch == '#') {
            s->state = RS_CHKSUM1;
            } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
                s->state = RS_IDLE;
bellard authored
1638
            } else {
1639
            s->line_buf[s->line_buf_index++] = ch;
bellard authored
1640
1641
            }
            break;
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
        case RS_CHKSUM1:
            s->line_buf[s->line_buf_index] = '\0';
            s->line_csum = fromhex(ch) << 4;
            s->state = RS_CHKSUM2;
            break;
        case RS_CHKSUM2:
            s->line_csum |= fromhex(ch);
            csum = 0;
            for(i = 0; i < s->line_buf_index; i++) {
                csum += s->line_buf[i];
            }
            if (s->line_csum != (csum & 0xff)) {
1654
1655
                reply = '-';
                put_buffer(s, &reply, 1);
1656
                s->state = RS_IDLE;
bellard authored
1657
            } else {
1658
1659
                reply = '+';
                put_buffer(s, &reply, 1);
1660
                s->state = gdb_handle_packet(s, env, s->line_buf);
bellard authored
1661
1662
            }
            break;
pbrook authored
1663
1664
        default:
            abort();
1665
1666
1667
1668
        }
    }
}
1669
1670
1671
1672
1673
1674
1675
1676
1677
#ifdef CONFIG_USER_ONLY
int
gdb_handlesig (CPUState *env, int sig)
{
  GDBState *s;
  char buf[256];
  int n;

  s = &gdbserver_state;
1678
1679
  if (gdbserver_fd < 0 || s->fd < 0)
    return sig;
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689

  /* disable single step if it was enabled */
  cpu_single_step(env, 0);
  tb_flush(env);

  if (sig != 0)
    {
      snprintf(buf, sizeof(buf), "S%02x", sig);
      put_packet(s, buf);
    }
1690
1691
1692
1693
  /* put_packet() might have detected that the peer terminated the 
     connection.  */
  if (s->fd < 0)
      return sig;
1694
1695
1696

  sig = 0;
  s->state = RS_IDLE;
bellard authored
1697
1698
  s->running_state = 0;
  while (s->running_state == 0) {
1699
1700
1701
1702
1703
1704
      n = read (s->fd, buf, 256);
      if (n > 0)
        {
          int i;

          for (i = 0; i < n; i++)
bellard authored
1705
            gdb_read_byte (s, buf[i]);
1706
1707
1708
1709
1710
1711
1712
        }
      else if (n == 0 || errno != EAGAIN)
        {
          /* XXX: Connection closed.  Should probably wait for annother
             connection before continuing.  */
          return sig;
        }
bellard authored
1713
  }
1714
1715
  sig = s->signal;
  s->signal = 0;
1716
1717
  return sig;
}
1718
1719
1720
1721
1722
1723
1724
1725

/* Tell the remote gdb that the process has exited.  */
void gdb_exit(CPUState *env, int code)
{
  GDBState *s;
  char buf[4];

  s = &gdbserver_state;
1726
1727
  if (gdbserver_fd < 0 || s->fd < 0)
    return;
1728
1729
1730
1731
1732

  snprintf(buf, sizeof(buf), "W%02x", code);
  put_packet(s, buf);
}
1733
bellard authored
1734
static void gdb_accept(void *opaque)
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
{
    GDBState *s;
    struct sockaddr_in sockaddr;
    socklen_t len;
    int val, fd;

    for(;;) {
        len = sizeof(sockaddr);
        fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
        if (fd < 0 && errno != EINTR) {
            perror("accept");
            return;
        } else if (fd >= 0) {
bellard authored
1748
1749
1750
            break;
        }
    }
1751
1752
1753

    /* set short latency */
    val = 1;
bellard authored
1754
    setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
1755
1756
1757
    s = &gdbserver_state;
    memset (s, 0, sizeof (GDBState));
bellard authored
1758
    s->env = first_cpu; /* XXX: allow to change CPU */
1759
    s->fd = fd;
1760
    gdb_has_xml = 0;
1761
pbrook authored
1762
1763
    gdb_syscall_state = s;
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
    fcntl(fd, F_SETFL, O_NONBLOCK);
}

static int gdbserver_open(int port)
{
    struct sockaddr_in sockaddr;
    int fd, val, ret;

    fd = socket(PF_INET, SOCK_STREAM, 0);
    if (fd < 0) {
        perror("socket");
        return -1;
    }

    /* allow fast reuse */
    val = 1;
bellard authored
1780
    setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803

    sockaddr.sin_family = AF_INET;
    sockaddr.sin_port = htons(port);
    sockaddr.sin_addr.s_addr = 0;
    ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
    if (ret < 0) {
        perror("bind");
        return -1;
    }
    ret = listen(fd, 0);
    if (ret < 0) {
        perror("listen");
        return -1;
    }
    return fd;
}

int gdbserver_start(int port)
{
    gdbserver_fd = gdbserver_open(port);
    if (gdbserver_fd < 0)
        return -1;
    /* accept connections */
bellard authored
1804
    gdb_accept (NULL);
1805
1806
    return 0;
}
1807
#else
ths authored
1808
static int gdb_chr_can_receive(void *opaque)
1809
{
1810
1811
1812
  /* We can handle an arbitrarily large amount of data.
   Pick the maximum packet size, which is as good as anything.  */
  return MAX_PACKET_LENGTH;
1813
1814
}
ths authored
1815
static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
{
    GDBState *s = opaque;
    int i;

    for (i = 0; i < size; i++) {
        gdb_read_byte(s, buf[i]);
    }
}

static void gdb_chr_event(void *opaque, int event)
{
    switch (event) {
    case CHR_EVENT_RESET:
        vm_stop(EXCP_INTERRUPT);
pbrook authored
1830
        gdb_syscall_state = opaque;
1831
        gdb_has_xml = 0;
1832
1833
1834
1835
1836
1837
        break;
    default:
        break;
    }
}
1838
int gdbserver_start(const char *port)
1839
1840
{
    GDBState *s;
1841
1842
1843
1844
1845
1846
1847
    char gdbstub_port_name[128];
    int port_num;
    char *p;
    CharDriverState *chr;

    if (!port || !*port)
      return -1;
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
    port_num = strtol(port, &p, 10);
    if (*p == 0) {
        /* A numeric value is interpreted as a port number.  */
        snprintf(gdbstub_port_name, sizeof(gdbstub_port_name),
                 "tcp::%d,nowait,nodelay,server", port_num);
        port = gdbstub_port_name;
    }

    chr = qemu_chr_open(port);
1858
1859
1860
1861
1862
1863
1864
1865
1866
    if (!chr)
        return -1;

    s = qemu_mallocz(sizeof(GDBState));
    if (!s) {
        return -1;
    }
    s->env = first_cpu; /* XXX: allow to change CPU */
    s->chr = chr;
ths authored
1867
    qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
1868
1869
                          gdb_chr_event, s);
    qemu_add_vm_stop_handler(gdb_vm_stopped, s);
bellard authored
1870
1871
    return 0;
}
1872
#endif