Blame view

gdbstub.c 57.3 KB
bellard authored
1
2
/*
 * gdb server stub
3
 *
bellard authored
4
 * Copyright (c) 2003-2005 Fabrice Bellard
bellard authored
5
6
7
8
9
10
11
12
13
14
15
16
17
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA  02110-1301 USA
bellard authored
19
 */
20
#include "config.h"
21
#include "qemu-common.h"
22
23
24
25
26
27
28
#ifdef CONFIG_USER_ONLY
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
29
#include <fcntl.h>
30
31
32

#include "qemu.h"
#else
pbrook authored
33
34
35
#include "qemu-char.h"
#include "sysemu.h"
#include "gdbstub.h"
36
#endif
37
38
39
#define MAX_PACKET_LENGTH 4096
bellard authored
40
#include "qemu_socket.h"
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209


enum {
    GDB_SIGNAL_0 = 0,
    GDB_SIGNAL_INT = 2,
    GDB_SIGNAL_TRAP = 5,
    GDB_SIGNAL_UNKNOWN = 143
};

#ifdef CONFIG_USER_ONLY

/* Map target signal numbers to GDB protocol signal numbers and vice
 * versa.  For user emulation's currently supported systems, we can
 * assume most signals are defined.
 */

static int gdb_signal_table[] = {
    0,
    TARGET_SIGHUP,
    TARGET_SIGINT,
    TARGET_SIGQUIT,
    TARGET_SIGILL,
    TARGET_SIGTRAP,
    TARGET_SIGABRT,
    -1, /* SIGEMT */
    TARGET_SIGFPE,
    TARGET_SIGKILL,
    TARGET_SIGBUS,
    TARGET_SIGSEGV,
    TARGET_SIGSYS,
    TARGET_SIGPIPE,
    TARGET_SIGALRM,
    TARGET_SIGTERM,
    TARGET_SIGURG,
    TARGET_SIGSTOP,
    TARGET_SIGTSTP,
    TARGET_SIGCONT,
    TARGET_SIGCHLD,
    TARGET_SIGTTIN,
    TARGET_SIGTTOU,
    TARGET_SIGIO,
    TARGET_SIGXCPU,
    TARGET_SIGXFSZ,
    TARGET_SIGVTALRM,
    TARGET_SIGPROF,
    TARGET_SIGWINCH,
    -1, /* SIGLOST */
    TARGET_SIGUSR1,
    TARGET_SIGUSR2,
    TARGET_SIGPWR,
    -1, /* SIGPOLL */
    -1,
    -1,
    -1,
    -1,
    -1,
    -1,
    -1,
    -1,
    -1,
    -1,
    -1,
    __SIGRTMIN + 1,
    __SIGRTMIN + 2,
    __SIGRTMIN + 3,
    __SIGRTMIN + 4,
    __SIGRTMIN + 5,
    __SIGRTMIN + 6,
    __SIGRTMIN + 7,
    __SIGRTMIN + 8,
    __SIGRTMIN + 9,
    __SIGRTMIN + 10,
    __SIGRTMIN + 11,
    __SIGRTMIN + 12,
    __SIGRTMIN + 13,
    __SIGRTMIN + 14,
    __SIGRTMIN + 15,
    __SIGRTMIN + 16,
    __SIGRTMIN + 17,
    __SIGRTMIN + 18,
    __SIGRTMIN + 19,
    __SIGRTMIN + 20,
    __SIGRTMIN + 21,
    __SIGRTMIN + 22,
    __SIGRTMIN + 23,
    __SIGRTMIN + 24,
    __SIGRTMIN + 25,
    __SIGRTMIN + 26,
    __SIGRTMIN + 27,
    __SIGRTMIN + 28,
    __SIGRTMIN + 29,
    __SIGRTMIN + 30,
    __SIGRTMIN + 31,
    -1, /* SIGCANCEL */
    __SIGRTMIN,
    __SIGRTMIN + 32,
    __SIGRTMIN + 33,
    __SIGRTMIN + 34,
    __SIGRTMIN + 35,
    __SIGRTMIN + 36,
    __SIGRTMIN + 37,
    __SIGRTMIN + 38,
    __SIGRTMIN + 39,
    __SIGRTMIN + 40,
    __SIGRTMIN + 41,
    __SIGRTMIN + 42,
    __SIGRTMIN + 43,
    __SIGRTMIN + 44,
    __SIGRTMIN + 45,
    __SIGRTMIN + 46,
    __SIGRTMIN + 47,
    __SIGRTMIN + 48,
    __SIGRTMIN + 49,
    __SIGRTMIN + 50,
    __SIGRTMIN + 51,
    __SIGRTMIN + 52,
    __SIGRTMIN + 53,
    __SIGRTMIN + 54,
    __SIGRTMIN + 55,
    __SIGRTMIN + 56,
    __SIGRTMIN + 57,
    __SIGRTMIN + 58,
    __SIGRTMIN + 59,
    __SIGRTMIN + 60,
    __SIGRTMIN + 61,
    __SIGRTMIN + 62,
    __SIGRTMIN + 63,
    __SIGRTMIN + 64,
    __SIGRTMIN + 65,
    __SIGRTMIN + 66,
    __SIGRTMIN + 67,
    __SIGRTMIN + 68,
    __SIGRTMIN + 69,
    __SIGRTMIN + 70,
    __SIGRTMIN + 71,
    __SIGRTMIN + 72,
    __SIGRTMIN + 73,
    __SIGRTMIN + 74,
    __SIGRTMIN + 75,
    __SIGRTMIN + 76,
    __SIGRTMIN + 77,
    __SIGRTMIN + 78,
    __SIGRTMIN + 79,
    __SIGRTMIN + 80,
    __SIGRTMIN + 81,
    __SIGRTMIN + 82,
    __SIGRTMIN + 83,
    __SIGRTMIN + 84,
    __SIGRTMIN + 85,
    __SIGRTMIN + 86,
    __SIGRTMIN + 87,
    __SIGRTMIN + 88,
    __SIGRTMIN + 89,
    __SIGRTMIN + 90,
    __SIGRTMIN + 91,
    __SIGRTMIN + 92,
    __SIGRTMIN + 93,
    __SIGRTMIN + 94,
    __SIGRTMIN + 95,
    -1, /* SIGINFO */
    -1, /* UNKNOWN */
    -1, /* DEFAULT */
    -1,
    -1,
    -1,
    -1,
    -1,
    -1
};
bellard authored
210
#else
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
/* In system mode we only need SIGINT and SIGTRAP; other signals
   are not yet supported.  */

enum {
    TARGET_SIGINT = 2,
    TARGET_SIGTRAP = 5
};

static int gdb_signal_table[] = {
    -1,
    -1,
    TARGET_SIGINT,
    -1,
    -1,
    TARGET_SIGTRAP
};
#endif

#ifdef CONFIG_USER_ONLY
static int target_signal_to_gdb (int sig)
{
    int i;
    for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
        if (gdb_signal_table[i] == sig)
            return i;
    return GDB_SIGNAL_UNKNOWN;
}
bellard authored
238
#endif
bellard authored
239
240
241
242
243
244
245
246
247
static int gdb_signal_to_target (int sig)
{
    if (sig < ARRAY_SIZE (gdb_signal_table))
        return gdb_signal_table[sig];
    else
        return -1;
}
bellard authored
248
//#define DEBUG_GDB
bellard authored
249
250
251
252
253
254
255
256
257
258
typedef struct GDBRegisterState {
    int base_reg;
    int num_regs;
    gdb_reg_cb get_reg;
    gdb_reg_cb set_reg;
    const char *xml;
    struct GDBRegisterState *next;
} GDBRegisterState;
259
260
261
262
263
enum RSState {
    RS_IDLE,
    RS_GETLINE,
    RS_CHKSUM1,
    RS_CHKSUM2,
pbrook authored
264
    RS_SYSCALL,
265
266
};
typedef struct GDBState {
267
268
269
    CPUState *c_cpu; /* current CPU for step/continue ops */
    CPUState *g_cpu; /* current CPU for other ops */
    CPUState *query_cpu; /* for q{f|s}ThreadInfo */
bellard authored
270
    enum RSState state; /* parsing state */
271
    char line_buf[MAX_PACKET_LENGTH];
272
273
    int line_buf_index;
    int line_csum;
274
    uint8_t last_packet[MAX_PACKET_LENGTH + 4];
275
    int last_packet_len;
276
    int signal;
bellard authored
277
#ifdef CONFIG_USER_ONLY
278
    int fd;
bellard authored
279
    int running_state;
280
281
#else
    CharDriverState *chr;
bellard authored
282
#endif
283
} GDBState;
bellard authored
284
285
286
287
288
289
/* By default use no IRQs and no timers while single stepping so as to
 * make single stepping like an ICE HW step.
 */
static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
290
291
static GDBState *gdbserver_state;
292
293
294
295
296
/* This is an ugly hack to cope with both new and old gdb.
   If gdb sends qXfer:features:read then assume we're talking to a newish
   gdb that understands target descriptions.  */
static int gdb_has_xml;
297
#ifdef CONFIG_USER_ONLY
298
299
300
/* XXX: This is not thread safe.  Do we care?  */
static int gdbserver_fd = -1;
301
static int get_char(GDBState *s)
bellard authored
302
303
304
305
306
{
    uint8_t ch;
    int ret;

    for(;;) {
bellard authored
307
        ret = recv(s->fd, &ch, 1, 0);
bellard authored
308
        if (ret < 0) {
309
310
            if (errno == ECONNRESET)
                s->fd = -1;
bellard authored
311
312
313
            if (errno != EINTR && errno != EAGAIN)
                return -1;
        } else if (ret == 0) {
314
315
            close(s->fd);
            s->fd = -1;
bellard authored
316
317
318
319
320
321
322
            return -1;
        } else {
            break;
        }
    }
    return ch;
}
323
#endif
bellard authored
324
pbrook authored
325
326
327
328
329
330
331
332
333
334
335
336
337
static gdb_syscall_complete_cb gdb_current_syscall_cb;

enum {
    GDB_SYS_UNKNOWN,
    GDB_SYS_ENABLED,
    GDB_SYS_DISABLED,
} gdb_syscall_mode;

/* If gdb is connected when the first semihosting syscall occurs then use
   remote gdb syscalls.  Otherwise use native file IO.  */
int use_gdb_syscalls(void)
{
    if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
338
339
        gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
                                            : GDB_SYS_DISABLED);
pbrook authored
340
341
342
343
    }
    return gdb_syscall_mode == GDB_SYS_ENABLED;
}
344
345
346
347
348
349
350
351
352
353
/* Resume execution.  */
static inline void gdb_continue(GDBState *s)
{
#ifdef CONFIG_USER_ONLY
    s->running_state = 1;
#else
    vm_start();
#endif
}
354
static void put_buffer(GDBState *s, const uint8_t *buf, int len)
bellard authored
355
{
356
#ifdef CONFIG_USER_ONLY
bellard authored
357
358
359
    int ret;

    while (len > 0) {
bellard authored
360
        ret = send(s->fd, buf, len, 0);
bellard authored
361
362
363
364
365
366
367
368
        if (ret < 0) {
            if (errno != EINTR && errno != EAGAIN)
                return;
        } else {
            buf += ret;
            len -= ret;
        }
    }
369
370
371
#else
    qemu_chr_write(s->chr, buf, len);
#endif
bellard authored
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
}

static inline int fromhex(int v)
{
    if (v >= '0' && v <= '9')
        return v - '0';
    else if (v >= 'A' && v <= 'F')
        return v - 'A' + 10;
    else if (v >= 'a' && v <= 'f')
        return v - 'a' + 10;
    else
        return 0;
}

static inline int tohex(int v)
{
    if (v < 10)
        return v + '0';
    else
        return v - 10 + 'a';
}

static void memtohex(char *buf, const uint8_t *mem, int len)
{
    int i, c;
    char *q;
    q = buf;
    for(i = 0; i < len; i++) {
        c = mem[i];
        *q++ = tohex(c >> 4);
        *q++ = tohex(c & 0xf);
    }
    *q = '\0';
}

static void hextomem(uint8_t *mem, const char *buf, int len)
{
    int i;

    for(i = 0; i < len; i++) {
        mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
        buf += 2;
    }
}

/* return -1 if error, 0 if OK */
418
static int put_packet_binary(GDBState *s, const char *buf, int len)
bellard authored
419
{
420
    int csum, i;
421
    uint8_t *p;
bellard authored
422
423

    for(;;) {
424
425
426
427
        p = s->last_packet;
        *(p++) = '$';
        memcpy(p, buf, len);
        p += len;
bellard authored
428
429
430
431
        csum = 0;
        for(i = 0; i < len; i++) {
            csum += buf[i];
        }
432
433
434
        *(p++) = '#';
        *(p++) = tohex((csum >> 4) & 0xf);
        *(p++) = tohex((csum) & 0xf);
bellard authored
435
436
        s->last_packet_len = p - s->last_packet;
437
        put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
bellard authored
438
439
440
441
#ifdef CONFIG_USER_ONLY
        i = get_char(s);
        if (i < 0)
bellard authored
442
            return -1;
443
        if (i == '+')
bellard authored
444
            break;
445
446
447
#else
        break;
#endif
bellard authored
448
449
450
451
    }
    return 0;
}
452
453
454
455
456
457
/* return -1 if error, 0 if OK */
static int put_packet(GDBState *s, const char *buf)
{
#ifdef DEBUG_GDB
    printf("reply='%s'\n", buf);
#endif
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
    return put_packet_binary(s, buf, strlen(buf));
}

/* The GDB remote protocol transfers values in target byte order.  This means
   we can use the raw memory access routines to access the value buffer.
   Conveniently, these also handle the case where the buffer is mis-aligned.
 */
#define GET_REG8(val) do { \
    stb_p(mem_buf, val); \
    return 1; \
    } while(0)
#define GET_REG16(val) do { \
    stw_p(mem_buf, val); \
    return 2; \
    } while(0)
#define GET_REG32(val) do { \
    stl_p(mem_buf, val); \
    return 4; \
    } while(0)
#define GET_REG64(val) do { \
    stq_p(mem_buf, val); \
    return 8; \
    } while(0)

#if TARGET_LONG_BITS == 64
#define GET_REGL(val) GET_REG64(val)
#define ldtul_p(addr) ldq_p(addr)
#else
#define GET_REGL(val) GET_REG32(val)
#define ldtul_p(addr) ldl_p(addr)
489
490
#endif
491
#if defined(TARGET_I386)
492
493

#ifdef TARGET_X86_64
494
495
496
497
static const int gpr_map[16] = {
    R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
    8, 9, 10, 11, 12, 13, 14, 15
};
498
#else
499
static const int gpr_map[8] = {0, 1, 2, 3, 4, 5, 6, 7};
500
501
#endif
502
503
504
#define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)

static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
505
{
506
507
508
509
510
511
    if (n < CPU_NB_REGS) {
        GET_REGL(env->regs[gpr_map[n]]);
    } else if (n >= CPU_NB_REGS + 8 && n < CPU_NB_REGS + 16) {
        /* FIXME: byteswap float values.  */
#ifdef USE_X86LDOUBLE
        memcpy(mem_buf, &env->fpregs[n - (CPU_NB_REGS + 8)], 10);
512
#else
513
        memset(mem_buf, 0, 10);
514
#endif
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
        return 10;
    } else if (n >= CPU_NB_REGS + 24) {
        n -= CPU_NB_REGS + 24;
        if (n < CPU_NB_REGS) {
            stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0));
            stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1));
            return 16;
        } else if (n == CPU_NB_REGS) {
            GET_REG32(env->mxcsr);
        } 
    } else {
        n -= CPU_NB_REGS;
        switch (n) {
        case 0: GET_REGL(env->eip);
        case 1: GET_REG32(env->eflags);
        case 2: GET_REG32(env->segs[R_CS].selector);
        case 3: GET_REG32(env->segs[R_SS].selector);
        case 4: GET_REG32(env->segs[R_DS].selector);
        case 5: GET_REG32(env->segs[R_ES].selector);
        case 6: GET_REG32(env->segs[R_FS].selector);
        case 7: GET_REG32(env->segs[R_GS].selector);
        /* 8...15 x87 regs.  */
        case 16: GET_REG32(env->fpuc);
        case 17: GET_REG32((env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11);
        case 18: GET_REG32(0); /* ftag */
        case 19: GET_REG32(0); /* fiseg */
        case 20: GET_REG32(0); /* fioff */
        case 21: GET_REG32(0); /* foseg */
        case 22: GET_REG32(0); /* fooff */
        case 23: GET_REG32(0); /* fop */
        /* 24+ xmm regs.  */
        }
547
    }
548
    return 0;
bellard authored
549
550
}
551
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int i)
bellard authored
552
{
553
    uint32_t tmp;
bellard authored
554
555
556
557
558
559
560
561
    if (i < CPU_NB_REGS) {
        env->regs[gpr_map[i]] = ldtul_p(mem_buf);
        return sizeof(target_ulong);
    } else if (i >= CPU_NB_REGS + 8 && i < CPU_NB_REGS + 16) {
        i -= CPU_NB_REGS + 8;
#ifdef USE_X86LDOUBLE
        memcpy(&env->fpregs[i], mem_buf, 10);
562
#endif
563
564
565
566
567
568
569
570
571
572
        return 10;
    } else if (i >= CPU_NB_REGS + 24) {
        i -= CPU_NB_REGS + 24;
        if (i < CPU_NB_REGS) {
            env->xmm_regs[i].XMM_Q(0) = ldq_p(mem_buf);
            env->xmm_regs[i].XMM_Q(1) = ldq_p(mem_buf + 8);
            return 16;
        } else if (i == CPU_NB_REGS) {
            env->mxcsr = ldl_p(mem_buf);
            return 4;
573
        }
574
575
576
577
578
579
580
581
582
583
584
585
586
587
    } else {
        i -= CPU_NB_REGS;
        switch (i) {
        case 0: env->eip = ldtul_p(mem_buf); return sizeof(target_ulong);
        case 1: env->eflags = ldl_p(mem_buf); return 4;
#if defined(CONFIG_USER_ONLY)
#define LOAD_SEG(index, sreg)\
            tmp = ldl_p(mem_buf);\
            if (tmp != env->segs[sreg].selector)\
                cpu_x86_load_seg(env, sreg, tmp);
#else
/* FIXME: Honor segment registers.  Needs to avoid raising an exception
   when the selector is invalid.  */
#define LOAD_SEG(index, sreg) do {} while(0)
bellard authored
588
#endif
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
        case 2: LOAD_SEG(10, R_CS); return 4;
        case 3: LOAD_SEG(11, R_SS); return 4;
        case 4: LOAD_SEG(12, R_DS); return 4;
        case 5: LOAD_SEG(13, R_ES); return 4;
        case 6: LOAD_SEG(14, R_FS); return 4;
        case 7: LOAD_SEG(15, R_GS); return 4;
        /* 8...15 x87 regs.  */
        case 16: env->fpuc = ldl_p(mem_buf); return 4;
        case 17:
                 tmp = ldl_p(mem_buf);
                 env->fpstt = (tmp >> 11) & 7;
                 env->fpus = tmp & ~0x3800;
                 return 4;
        case 18: /* ftag */ return 4;
        case 19: /* fiseg */ return 4;
        case 20: /* fioff */ return 4;
        case 21: /* foseg */ return 4;
        case 22: /* fooff */ return 4;
        case 23: /* fop */ return 4;
        /* 24+ xmm regs.  */
609
610
        }
    }
611
612
    /* Unrecognised register.  */
    return 0;
bellard authored
613
614
}
bellard authored
615
616
#elif defined (TARGET_PPC)
617
#define NUM_CORE_REGS 71
bellard authored
618
619
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
bellard authored
620
{
621
622
623
624
625
    if (n < 32) {
        /* gprs */
        GET_REGL(env->gpr[n]);
    } else if (n < 64) {
        /* fprs */
626
        stfq_p(mem_buf, env->fpr[n-32]);
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
        return 8;
    } else {
        switch (n) {
        case 64: GET_REGL(env->nip);
        case 65: GET_REGL(env->msr);
        case 66:
            {
                uint32_t cr = 0;
                int i;
                for (i = 0; i < 8; i++)
                    cr |= env->crf[i] << (32 - ((i + 1) * 4));
                GET_REG32(cr);
            }
        case 67: GET_REGL(env->lr);
        case 68: GET_REGL(env->ctr);
642
        case 69: GET_REGL(env->xer);
643
644
645
646
647
        case 70: GET_REG32(0); /* fpscr */
        }
    }
    return 0;
}
bellard authored
648
649
650
651
652
653
654
655
656
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
{
    if (n < 32) {
        /* gprs */
        env->gpr[n] = ldtul_p(mem_buf);
        return sizeof(target_ulong);
    } else if (n < 64) {
        /* fprs */
657
        env->fpr[n-32] = ldfq_p(mem_buf);
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
        return 8;
    } else {
        switch (n) {
        case 64:
            env->nip = ldtul_p(mem_buf);
            return sizeof(target_ulong);
        case 65:
            ppc_store_msr(env, ldtul_p(mem_buf));
            return sizeof(target_ulong);
        case 66:
            {
                uint32_t cr = ldl_p(mem_buf);
                int i;
                for (i = 0; i < 8; i++)
                    env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
                return 4;
            }
        case 67:
            env->lr = ldtul_p(mem_buf);
            return sizeof(target_ulong);
        case 68:
            env->ctr = ldtul_p(mem_buf);
            return sizeof(target_ulong);
        case 69:
682
683
            env->xer = ldtul_p(mem_buf);
            return sizeof(target_ulong);
684
685
686
687
688
689
        case 70:
            /* fpscr */
            return 4;
        }
    }
    return 0;
690
}
691
692
#elif defined (TARGET_SPARC)
693
694
695

#if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
#define NUM_CORE_REGS 86
696
#else
697
#define NUM_CORE_REGS 72
698
#endif
699
700
#ifdef TARGET_ABI32
701
#define GET_REGA(val) GET_REG32(val)
702
#else
703
#define GET_REGA(val) GET_REGL(val)
704
#endif
705
706
707
708
709
710
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
{
    if (n < 8) {
        /* g0..g7 */
        GET_REGA(env->gregs[n]);
711
    }
712
713
714
    if (n < 32) {
        /* register window */
        GET_REGA(env->regwptr[n - 8]);
715
    }
716
717
718
719
#if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
    if (n < 64) {
        /* fprs */
        GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
720
721
    }
    /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
722
723
724
725
726
727
728
729
730
    switch (n) {
    case 64: GET_REGA(env->y);
    case 65: GET_REGA(GET_PSR(env));
    case 66: GET_REGA(env->wim);
    case 67: GET_REGA(env->tbr);
    case 68: GET_REGA(env->pc);
    case 69: GET_REGA(env->npc);
    case 70: GET_REGA(env->fsr);
    case 71: GET_REGA(0); /* csr */
731
    default: GET_REGA(0);
732
    }
bellard authored
733
#else
734
735
736
737
738
739
740
    if (n < 64) {
        /* f0-f31 */
        GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
    }
    if (n < 80) {
        /* f32-f62 (double width, even numbers only) */
        uint64_t val;
741
742
743
744
        val = (uint64_t)*((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) << 32;
        val |= *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]);
        GET_REG64(val);
bellard authored
745
    }
746
747
748
749
    switch (n) {
    case 80: GET_REGL(env->pc);
    case 81: GET_REGL(env->npc);
    case 82: GET_REGL(((uint64_t)GET_CCR(env) << 32) |
750
751
752
                           ((env->asi & 0xff) << 24) |
                           ((env->pstate & 0xfff) << 8) |
                           GET_CWP64(env));
753
754
755
756
    case 83: GET_REGL(env->fsr);
    case 84: GET_REGL(env->fprs);
    case 85: GET_REGL(env->y);
    }
bellard authored
757
#endif
758
    return 0;
759
760
}
761
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
762
{
763
764
765
766
#if defined(TARGET_ABI32)
    abi_ulong tmp;

    tmp = ldl_p(mem_buf);
767
#else
768
769
770
    target_ulong tmp;

    tmp = ldtul_p(mem_buf);
771
#endif
772
773
774
775
776
777
778
    if (n < 8) {
        /* g0..g7 */
        env->gregs[n] = tmp;
    } else if (n < 32) {
        /* register window */
        env->regwptr[n - 8] = tmp;
779
    }
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
#if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
    else if (n < 64) {
        /* fprs */
        *((uint32_t *)&env->fpr[n - 32]) = tmp;
    } else {
        /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
        switch (n) {
        case 64: env->y = tmp; break;
        case 65: PUT_PSR(env, tmp); break;
        case 66: env->wim = tmp; break;
        case 67: env->tbr = tmp; break;
        case 68: env->pc = tmp; break;
        case 69: env->npc = tmp; break;
        case 70: env->fsr = tmp; break;
        default: return 0;
        }
796
    }
797
    return 4;
bellard authored
798
#else
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
    else if (n < 64) {
        /* f0-f31 */
        env->fpr[n] = ldfl_p(mem_buf);
        return 4;
    } else if (n < 80) {
        /* f32-f62 (double width, even numbers only) */
        *((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) = tmp >> 32;
        *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]) = tmp;
    } else {
        switch (n) {
        case 80: env->pc = tmp; break;
        case 81: env->npc = tmp; break;
        case 82:
	    PUT_CCR(env, tmp >> 32);
	    env->asi = (tmp >> 24) & 0xff;
	    env->pstate = (tmp >> 8) & 0xfff;
	    PUT_CWP64(env, tmp & 0xff);
	    break;
        case 83: env->fsr = tmp; break;
        case 84: env->fprs = tmp; break;
        case 85: env->y = tmp; break;
        default: return 0;
        }
822
    }
823
    return 8;
bellard authored
824
#endif
bellard authored
825
}
826
#elif defined (TARGET_ARM)
bellard authored
827
828
829
830
831
832
833
834
/* Old gdb always expect FPA registers.  Newer (xml-aware) gdb only expect
   whatever the target description contains.  Due to a historical mishap
   the FPA registers appear in between core integer regs and the CPSR.
   We hack round this by giving the FPA regs zero size when talking to a
   newer gdb.  */
#define NUM_CORE_REGS 26
#define GDB_CORE_XML "arm-core.xml"
pbrook authored
835
836
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
pbrook authored
837
{
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
    if (n < 16) {
        /* Core integer register.  */
        GET_REG32(env->regs[n]);
    }
    if (n < 24) {
        /* FPA registers.  */
        if (gdb_has_xml)
            return 0;
        memset(mem_buf, 0, 12);
        return 12;
    }
    switch (n) {
    case 24:
        /* FPA status register.  */
        if (gdb_has_xml)
            return 0;
        GET_REG32(0);
    case 25:
        /* CPSR */
        GET_REG32(cpsr_read(env));
    }
    /* Unknown register.  */
    return 0;
pbrook authored
861
}
862
863
864
865
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
{
    uint32_t tmp;
866
867
    tmp = ldl_p(mem_buf);
868
869
870
871
872
    /* Mask out low bit of PC to workaround gdb bugs.  This will probably
       cause problems if we ever implement the Jazelle DBX extensions.  */
    if (n == 15)
        tmp &= ~1;
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
    if (n < 16) {
        /* Core integer register.  */
        env->regs[n] = tmp;
        return 4;
    }
    if (n < 24) { /* 16-23 */
        /* FPA registers (ignored).  */
        if (gdb_has_xml)
            return 0;
        return 12;
    }
    switch (n) {
    case 24:
        /* FPA status register (ignored).  */
        if (gdb_has_xml)
            return 0;
        return 4;
    case 25:
        /* CPSR */
        cpsr_write (env, tmp, 0xffffffff);
        return 4;
    }
    /* Unknown register.  */
    return 0;
}
899
900
#elif defined (TARGET_M68K)
901
902
#define NUM_CORE_REGS 18
903
904
#define GDB_CORE_XML "cf-core.xml"
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
{
    if (n < 8) {
        /* D0-D7 */
        GET_REG32(env->dregs[n]);
    } else if (n < 16) {
        /* A0-A7 */
        GET_REG32(env->aregs[n - 8]);
    } else {
	switch (n) {
        case 16: GET_REG32(env->sr);
        case 17: GET_REG32(env->pc);
        }
    }
    /* FP registers not included here because they vary between
       ColdFire and m68k.  Use XML bits for these.  */
    return 0;
}
924
925
926
927
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
{
    uint32_t tmp;
928
929
    tmp = ldl_p(mem_buf);
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
    if (n < 8) {
        /* D0-D7 */
        env->dregs[n] = tmp;
    } else if (n < 8) {
        /* A0-A7 */
        env->aregs[n - 8] = tmp;
    } else {
        switch (n) {
        case 16: env->sr = tmp; break;
        case 17: env->pc = tmp; break;
        default: return 0;
        }
    }
    return 4;
}
#elif defined (TARGET_MIPS)
ths authored
947
948
#define NUM_CORE_REGS 73
ths authored
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
{
    if (n < 32) {
        GET_REGL(env->active_tc.gpr[n]);
    }
    if (env->CP0_Config1 & (1 << CP0C1_FP)) {
        if (n >= 38 && n < 70) {
            if (env->CP0_Status & (1 << CP0St_FR))
		GET_REGL(env->active_fpu.fpr[n - 38].d);
            else
		GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]);
        }
        switch (n) {
        case 70: GET_REGL((int32_t)env->active_fpu.fcr31);
        case 71: GET_REGL((int32_t)env->active_fpu.fcr0);
        }
    }
    switch (n) {
    case 32: GET_REGL((int32_t)env->CP0_Status);
    case 33: GET_REGL(env->active_tc.LO[0]);
    case 34: GET_REGL(env->active_tc.HI[0]);
    case 35: GET_REGL(env->CP0_BadVAddr);
    case 36: GET_REGL((int32_t)env->CP0_Cause);
    case 37: GET_REGL(env->active_tc.PC);
    case 72: GET_REGL(0); /* fp */
    case 89: GET_REGL((int32_t)env->CP0_PRid);
    }
    if (n >= 73 && n <= 88) {
	/* 16 embedded regs.  */
	GET_REGL(0);
    }
981
982
    return 0;
983
984
}
985
986
987
988
989
990
991
992
993
/* convert MIPS rounding mode in FCR31 to IEEE library */
static unsigned int ieee_rm[] =
  {
    float_round_nearest_even,
    float_round_to_zero,
    float_round_up,
    float_round_down
  };
#define RESTORE_ROUNDING_MODE \
994
    set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
995
996
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
997
{
998
    target_ulong tmp;
999
1000
    tmp = ldtul_p(mem_buf);
1001
1002
1003
1004
1005
1006
1007
1008
    if (n < 32) {
        env->active_tc.gpr[n] = tmp;
        return sizeof(target_ulong);
    }
    if (env->CP0_Config1 & (1 << CP0C1_FP)
            && n >= 38 && n < 73) {
        if (n < 70) {
ths authored
1009
            if (env->CP0_Status & (1 << CP0St_FR))
1010
              env->active_fpu.fpr[n - 38].d = tmp;
ths authored
1011
            else
1012
1013
1014
1015
1016
1017
1018
              env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp;
        }
        switch (n) {
        case 70:
            env->active_fpu.fcr31 = tmp & 0xFF83FFFF;
            /* set rounding mode */
            RESTORE_ROUNDING_MODE;
1019
#ifndef CONFIG_SOFTFLOAT
1020
1021
            /* no floating point exception for native float */
            SET_FP_ENABLE(env->active_fpu.fcr31, 0);
1022
#endif
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
            break;
        case 71: env->active_fpu.fcr0 = tmp; break;
        }
        return sizeof(target_ulong);
    }
    switch (n) {
    case 32: env->CP0_Status = tmp; break;
    case 33: env->active_tc.LO[0] = tmp; break;
    case 34: env->active_tc.HI[0] = tmp; break;
    case 35: env->CP0_BadVAddr = tmp; break;
    case 36: env->CP0_Cause = tmp; break;
    case 37: env->active_tc.PC = tmp; break;
    case 72: /* fp, ignored */ break;
    default: 
	if (n > 89)
	    return 0;
	/* Other registers are readonly.  Ignore writes.  */
	break;
    }

    return sizeof(target_ulong);
1044
}
bellard authored
1045
#elif defined (TARGET_SH4)
1046
1047

/* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1048
1049
1050
/* FIXME: We should use XML for this.  */

#define NUM_CORE_REGS 59
1051
1052
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
bellard authored
1053
{
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
    if (n < 8) {
        if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
            GET_REGL(env->gregs[n + 16]);
        } else {
            GET_REGL(env->gregs[n]);
        }
    } else if (n < 16) {
        GET_REGL(env->gregs[n - 8]);
    } else if (n >= 25 && n < 41) {
	GET_REGL(env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
    } else if (n >= 43 && n < 51) {
	GET_REGL(env->gregs[n - 43]);
    } else if (n >= 51 && n < 59) {
	GET_REGL(env->gregs[n - (51 - 16)]);
    }
    switch (n) {
    case 16: GET_REGL(env->pc);
    case 17: GET_REGL(env->pr);
    case 18: GET_REGL(env->gbr);
    case 19: GET_REGL(env->vbr);
    case 20: GET_REGL(env->mach);
    case 21: GET_REGL(env->macl);
    case 22: GET_REGL(env->sr);
    case 23: GET_REGL(env->fpul);
    case 24: GET_REGL(env->fpscr);
    case 41: GET_REGL(env->ssr);
    case 42: GET_REGL(env->spc);
    }

    return 0;
bellard authored
1084
1085
}
1086
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
bellard authored
1087
{
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
    uint32_t tmp;

    tmp = ldl_p(mem_buf);

    if (n < 8) {
        if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
            env->gregs[n + 16] = tmp;
        } else {
            env->gregs[n] = tmp;
        }
	return 4;
    } else if (n < 16) {
        env->gregs[n - 8] = tmp;
	return 4;
    } else if (n >= 25 && n < 41) {
	env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)] = tmp;
    } else if (n >= 43 && n < 51) {
	env->gregs[n - 43] = tmp;
	return 4;
    } else if (n >= 51 && n < 59) {
	env->gregs[n - (51 - 16)] = tmp;
	return 4;
    }
    switch (n) {
    case 16: env->pc = tmp;
    case 17: env->pr = tmp;
    case 18: env->gbr = tmp;
    case 19: env->vbr = tmp;
    case 20: env->mach = tmp;
    case 21: env->macl = tmp;
    case 22: env->sr = tmp;
    case 23: env->fpul = tmp;
    case 24: env->fpscr = tmp;
    case 41: env->ssr = tmp;
    case 42: env->spc = tmp;
    default: return 0;
    }

    return 4;
bellard authored
1127
}
1128
1129
#elif defined (TARGET_CRIS)
1130
1131
1132
#define NUM_CORE_REGS 49

static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1133
{
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
    uint8_t srs;

    srs = env->pregs[PR_SRS];
    if (n < 16) {
	GET_REG32(env->regs[n]);
    }

    if (n >= 21 && n < 32) {
	GET_REG32(env->pregs[n - 16]);
    }
    if (n >= 33 && n < 49) {
	GET_REG32(env->sregs[srs][n - 33]);
    }
    switch (n) {
    case 16: GET_REG8(env->pregs[0]);
    case 17: GET_REG8(env->pregs[1]);
    case 18: GET_REG32(env->pregs[2]);
    case 19: GET_REG8(srs);
    case 20: GET_REG16(env->pregs[4]);
    case 32: GET_REG32(env->pc);
    }

    return 0;
1157
}
1158
1159

static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1160
{
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
    uint32_t tmp;

    if (n > 49)
	return 0;

    tmp = ldl_p(mem_buf);

    if (n < 16) {
	env->regs[n] = tmp;
    }
1172
1173
1174
1175
1176
    if (n >= 21 && n < 32) {
	env->pregs[n - 16] = tmp;
    }

    /* FIXME: Should support function regs be writable?  */
1177
1178
1179
    switch (n) {
    case 16: return 1;
    case 17: return 1;
1180
    case 18: env->pregs[PR_PID] = tmp; break;
1181
1182
1183
1184
1185
1186
    case 19: return 1;
    case 20: return 2;
    case 32: env->pc = tmp; break;
    }

    return 4;
1187
}
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
#elif defined (TARGET_ALPHA)

#define NUM_CORE_REGS 65

static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
{
    if (n < 31) {
       GET_REGL(env->ir[n]);
    }
    else if (n == 31) {
       GET_REGL(0);
    }
    else if (n<63) {
       uint64_t val;

       val=*((uint64_t *)&env->fir[n-32]);
       GET_REGL(val);
    }
    else if (n==63) {
       GET_REGL(env->fpcr);
    }
    else if (n==64) {
       GET_REGL(env->pc);
    }
    else {
       GET_REGL(0);
    }

    return 0;
}

static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
{
    target_ulong tmp;
    tmp = ldtul_p(mem_buf);

    if (n < 31) {
        env->ir[n] = tmp;
    }

    if (n > 31 && n < 63) {
        env->fir[n - 32] = ldfl_p(mem_buf);
    }

    if (n == 64 ) {
       env->pc=tmp;
    }

    return 8;
}
1238
1239
1240
1241
1242
#else

#define NUM_CORE_REGS 0

static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1243
{
1244
    return 0;
1245
1246
}
1247
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1248
{
1249
1250
    return 0;
}
1251
1252
#endif
1253
1254
static int num_g_regs = NUM_CORE_REGS;
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
#ifdef GDB_CORE_XML
/* Encode data using the encoding for 'x' packets.  */
static int memtox(char *buf, const char *mem, int len)
{
    char *p = buf;
    char c;

    while (len--) {
        c = *(mem++);
        switch (c) {
        case '#': case '$': case '*': case '}':
            *(p++) = '}';
            *(p++) = c ^ 0x20;
            break;
        default:
            *(p++) = c;
            break;
        }
    }
    return p - buf;
}
1277
aurel32 authored
1278
static const char *get_feature_xml(const char *p, const char **newp)
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
{
    extern const char *const xml_builtin[][2];
    size_t len;
    int i;
    const char *name;
    static char target_xml[1024];

    len = 0;
    while (p[len] && p[len] != ':')
        len++;
    *newp = p + len;

    name = NULL;
    if (strncmp(p, "target.xml", len) == 0) {
        /* Generate the XML description for this CPU.  */
        if (!target_xml[0]) {
            GDBRegisterState *r;
1297
1298
1299
1300
1301
1302
            snprintf(target_xml, sizeof(target_xml),
                     "<?xml version=\"1.0\"?>"
                     "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
                     "<target>"
                     "<xi:include href=\"%s\"/>",
                     GDB_CORE_XML);
1303
1304
            for (r = first_cpu->gdb_regs; r; r = r->next) {
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
                strcat(target_xml, "<xi:include href=\"");
                strcat(target_xml, r->xml);
                strcat(target_xml, "\"/>");
            }
            strcat(target_xml, "</target>");
        }
        return target_xml;
    }
    for (i = 0; ; i++) {
        name = xml_builtin[i][0];
        if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
            break;
    }
    return name ? xml_builtin[i][1] : NULL;
}
#endif
1321
1322
1323
1324
static int gdb_read_register(CPUState *env, uint8_t *mem_buf, int reg)
{
    GDBRegisterState *r;
1325
1326
1327
    if (reg < NUM_CORE_REGS)
        return cpu_gdb_read_register(env, mem_buf, reg);
1328
1329
1330
1331
1332
1333
1334
    for (r = env->gdb_regs; r; r = r->next) {
        if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
            return r->get_reg(env, mem_buf, reg - r->base_reg);
        }
    }
    return 0;
1335
1336
}
1337
static int gdb_write_register(CPUState *env, uint8_t *mem_buf, int reg)
1338
{
1339
    GDBRegisterState *r;
1340
1341
1342
1343
1344
1345
1346
1347
1348
    if (reg < NUM_CORE_REGS)
        return cpu_gdb_write_register(env, mem_buf, reg);

    for (r = env->gdb_regs; r; r = r->next) {
        if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
            return r->set_reg(env, mem_buf, reg - r->base_reg);
        }
    }
bellard authored
1349
1350
1351
    return 0;
}
1352
1353
1354
1355
1356
1357
1358
1359
1360
/* Register a supplemental set of CPU registers.  If g_pos is nonzero it
   specifies the first register number and these registers are included in
   a standard "g" packet.  Direction is relative to gdb, i.e. get_reg is
   gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
 */

void gdb_register_coprocessor(CPUState * env,
                             gdb_reg_cb get_reg, gdb_reg_cb set_reg,
                             int num_regs, const char *xml, int g_pos)
bellard authored
1361
{
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
    GDBRegisterState *s;
    GDBRegisterState **p;
    static int last_reg = NUM_CORE_REGS;

    s = (GDBRegisterState *)qemu_mallocz(sizeof(GDBRegisterState));
    s->base_reg = last_reg;
    s->num_regs = num_regs;
    s->get_reg = get_reg;
    s->set_reg = set_reg;
    s->xml = xml;
    p = &env->gdb_regs;
    while (*p) {
        /* Check for duplicates.  */
        if (strcmp((*p)->xml, xml) == 0)
            return;
        p = &(*p)->next;
    }
    /* Add to end of list.  */
    last_reg += num_regs;
    *p = s;
    if (g_pos) {
        if (g_pos != s->base_reg) {
            fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n"
                    "Expected %d got %d\n", xml, g_pos, s->base_reg);
        } else {
            num_g_regs = last_reg;
        }
    }
bellard authored
1390
1391
}
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
/* GDB breakpoint/watchpoint types */
#define GDB_BREAKPOINT_SW        0
#define GDB_BREAKPOINT_HW        1
#define GDB_WATCHPOINT_WRITE     2
#define GDB_WATCHPOINT_READ      3
#define GDB_WATCHPOINT_ACCESS    4

#ifndef CONFIG_USER_ONLY
static const int xlat_gdb_type[] = {
    [GDB_WATCHPOINT_WRITE]  = BP_GDB | BP_MEM_WRITE,
    [GDB_WATCHPOINT_READ]   = BP_GDB | BP_MEM_READ,
    [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
};
#endif
1407
static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
1408
{
1409
1410
1411
    CPUState *env;
    int err = 0;
1412
1413
1414
    switch (type) {
    case GDB_BREAKPOINT_SW:
    case GDB_BREAKPOINT_HW:
1415
1416
1417
1418
1419
1420
        for (env = first_cpu; env != NULL; env = env->next_cpu) {
            err = cpu_breakpoint_insert(env, addr, BP_GDB, NULL);
            if (err)
                break;
        }
        return err;
1421
1422
1423
1424
#ifndef CONFIG_USER_ONLY
    case GDB_WATCHPOINT_WRITE:
    case GDB_WATCHPOINT_READ:
    case GDB_WATCHPOINT_ACCESS:
1425
1426
1427
1428
1429
1430
1431
        for (env = first_cpu; env != NULL; env = env->next_cpu) {
            err = cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type],
                                        NULL);
            if (err)
                break;
        }
        return err;
1432
1433
1434
1435
1436
1437
#endif
    default:
        return -ENOSYS;
    }
}
1438
static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
1439
{
1440
1441
1442
    CPUState *env;
    int err = 0;
1443
1444
1445
    switch (type) {
    case GDB_BREAKPOINT_SW:
    case GDB_BREAKPOINT_HW:
1446
1447
1448
1449
1450
1451
        for (env = first_cpu; env != NULL; env = env->next_cpu) {
            err = cpu_breakpoint_remove(env, addr, BP_GDB);
            if (err)
                break;
        }
        return err;
1452
1453
1454
1455
#ifndef CONFIG_USER_ONLY
    case GDB_WATCHPOINT_WRITE:
    case GDB_WATCHPOINT_READ:
    case GDB_WATCHPOINT_ACCESS:
1456
1457
1458
1459
1460
1461
        for (env = first_cpu; env != NULL; env = env->next_cpu) {
            err = cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]);
            if (err)
                break;
        }
        return err;
1462
1463
1464
1465
1466
1467
#endif
    default:
        return -ENOSYS;
    }
}
1468
static void gdb_breakpoint_remove_all(void)
1469
{
1470
1471
1472
1473
    CPUState *env;

    for (env = first_cpu; env != NULL; env = env->next_cpu) {
        cpu_breakpoint_remove_all(env, BP_GDB);
1474
#ifndef CONFIG_USER_ONLY
1475
        cpu_watchpoint_remove_all(env, BP_GDB);
1476
#endif
1477
    }
1478
1479
}
1480
static int gdb_handle_packet(GDBState *s, const char *line_buf)
bellard authored
1481
{
1482
    CPUState *env;
bellard authored
1483
    const char *p;
1484
    int ch, reg_size, type, res, thread;
1485
1486
1487
    char buf[MAX_PACKET_LENGTH];
    uint8_t mem_buf[MAX_PACKET_LENGTH];
    uint8_t *registers;
1488
    target_ulong addr, len;
1489
1490
1491
1492
1493
1494
1495
1496
#ifdef DEBUG_GDB
    printf("command='%s'\n", line_buf);
#endif
    p = line_buf;
    ch = *p++;
    switch(ch) {
    case '?':
1497
        /* TODO: Make this return the correct value for user-mode.  */
1498
        snprintf(buf, sizeof(buf), "T%02xthread:%02x;", GDB_SIGNAL_TRAP,
1499
                 s->c_cpu->cpu_index+1);
1500
        put_packet(s, buf);
1501
1502
1503
1504
        /* Remove all the breakpoints when this query is issued,
         * because gdb is doing and initial connect and the state
         * should be cleaned up.
         */
1505
        gdb_breakpoint_remove_all();
1506
1507
1508
        break;
    case 'c':
        if (*p != '\0') {
1509
            addr = strtoull(p, (char **)&p, 16);
bellard authored
1510
#if defined(TARGET_I386)
1511
            s->c_cpu->eip = addr;
bellard authored
1512
#elif defined (TARGET_PPC)
1513
            s->c_cpu->nip = addr;
bellard authored
1514
#elif defined (TARGET_SPARC)
1515
1516
            s->c_cpu->pc = addr;
            s->c_cpu->npc = addr + 4;
1517
#elif defined (TARGET_ARM)
1518
            s->c_cpu->regs[15] = addr;
bellard authored
1519
#elif defined (TARGET_SH4)
1520
            s->c_cpu->pc = addr;
1521
#elif defined (TARGET_MIPS)
1522
            s->c_cpu->active_tc.PC = addr;
1523
#elif defined (TARGET_CRIS)
1524
            s->c_cpu->pc = addr;
1525
1526
#elif defined (TARGET_ALPHA)
            s->c_cpu->pc = addr;
bellard authored
1527
#endif
1528
        }
1529
        s->signal = 0;
1530
        gdb_continue(s);
bellard authored
1531
	return RS_IDLE;
1532
    case 'C':
1533
1534
1535
        s->signal = gdb_signal_to_target (strtoul(p, (char **)&p, 16));
        if (s->signal == -1)
            s->signal = 0;
1536
1537
        gdb_continue(s);
        return RS_IDLE;
1538
1539
1540
1541
1542
1543
    case 'k':
        /* Kill the target */
        fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
        exit(0);
    case 'D':
        /* Detach packet */
1544
        gdb_breakpoint_remove_all();
1545
1546
1547
        gdb_continue(s);
        put_packet(s, "OK");
        break;
1548
1549
    case 's':
        if (*p != '\0') {
1550
            addr = strtoull(p, (char **)&p, 16);
1551
#if defined(TARGET_I386)
1552
            s->c_cpu->eip = addr;
bellard authored
1553
#elif defined (TARGET_PPC)
1554
            s->c_cpu->nip = addr;
bellard authored
1555
#elif defined (TARGET_SPARC)
1556
1557
            s->c_cpu->pc = addr;
            s->c_cpu->npc = addr + 4;
1558
#elif defined (TARGET_ARM)
1559
            s->c_cpu->regs[15] = addr;
bellard authored
1560
#elif defined (TARGET_SH4)
1561
            s->c_cpu->pc = addr;
1562
#elif defined (TARGET_MIPS)
1563
            s->c_cpu->active_tc.PC = addr;
1564
#elif defined (TARGET_CRIS)
1565
            s->c_cpu->pc = addr;
1566
1567
#elif defined (TARGET_ALPHA)
            s->c_cpu->pc = addr;
1568
#endif
1569
        }
1570
        cpu_single_step(s->c_cpu, sstep_flags);
1571
        gdb_continue(s);
bellard authored
1572
	return RS_IDLE;
pbrook authored
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
    case 'F':
        {
            target_ulong ret;
            target_ulong err;

            ret = strtoull(p, (char **)&p, 16);
            if (*p == ',') {
                p++;
                err = strtoull(p, (char **)&p, 16);
            } else {
                err = 0;
            }
            if (*p == ',')
                p++;
            type = *p;
            if (gdb_current_syscall_cb)
1589
                gdb_current_syscall_cb(s->c_cpu, ret, err);
pbrook authored
1590
1591
1592
            if (type == 'C') {
                put_packet(s, "T02");
            } else {
1593
                gdb_continue(s);
pbrook authored
1594
1595
1596
            }
        }
        break;
1597
    case 'g':
1598
1599
        len = 0;
        for (addr = 0; addr < num_g_regs; addr++) {
1600
            reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr);
1601
1602
1603
            len += reg_size;
        }
        memtohex(buf, mem_buf, len);
1604
1605
1606
        put_packet(s, buf);
        break;
    case 'G':
1607
        registers = mem_buf;
1608
1609
        len = strlen(p) / 2;
        hextomem((uint8_t *)registers, p, len);
1610
        for (addr = 0; addr < num_g_regs && len > 0; addr++) {
1611
            reg_size = gdb_write_register(s->g_cpu, registers, addr);
1612
1613
1614
            len -= reg_size;
            registers += reg_size;
        }
1615
1616
1617
        put_packet(s, "OK");
        break;
    case 'm':
1618
        addr = strtoull(p, (char **)&p, 16);
1619
1620
        if (*p == ',')
            p++;
1621
        len = strtoull(p, NULL, 16);
1622
        if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 0) != 0) {
1623
1624
1625
1626
1627
            put_packet (s, "E14");
        } else {
            memtohex(buf, mem_buf, len);
            put_packet(s, buf);
        }
1628
1629
        break;
    case 'M':
1630
        addr = strtoull(p, (char **)&p, 16);
1631
1632
        if (*p == ',')
            p++;
1633
        len = strtoull(p, (char **)&p, 16);
1634
        if (*p == ':')
1635
1636
            p++;
        hextomem(mem_buf, p, len);
1637
        if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 1) != 0)
1638
            put_packet(s, "E14");
1639
1640
1641
        else
            put_packet(s, "OK");
        break;
1642
1643
1644
1645
1646
1647
1648
    case 'p':
        /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
           This works, but can be very slow.  Anything new enough to
           understand XML also knows how to use this properly.  */
        if (!gdb_has_xml)
            goto unknown_command;
        addr = strtoull(p, (char **)&p, 16);
1649
        reg_size = gdb_read_register(s->g_cpu, mem_buf, addr);
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
        if (reg_size) {
            memtohex(buf, mem_buf, reg_size);
            put_packet(s, buf);
        } else {
            put_packet(s, "E14");
        }
        break;
    case 'P':
        if (!gdb_has_xml)
            goto unknown_command;
        addr = strtoull(p, (char **)&p, 16);
        if (*p == '=')
            p++;
        reg_size = strlen(p) / 2;
        hextomem(mem_buf, p, reg_size);
1665
        gdb_write_register(s->g_cpu, mem_buf, addr);
1666
1667
        put_packet(s, "OK");
        break;
1668
1669
1670
1671
1672
    case 'Z':
    case 'z':
        type = strtoul(p, (char **)&p, 16);
        if (*p == ',')
            p++;
1673
        addr = strtoull(p, (char **)&p, 16);
1674
1675
        if (*p == ',')
            p++;
1676
        len = strtoull(p, (char **)&p, 16);
1677
        if (ch == 'Z')
1678
            res = gdb_breakpoint_insert(addr, len, type);
1679
        else
1680
            res = gdb_breakpoint_remove(addr, len, type);
1681
1682
1683
        if (res >= 0)
             put_packet(s, "OK");
        else if (res == -ENOSYS)
pbrook authored
1684
            put_packet(s, "");
1685
1686
        else
            put_packet(s, "E22");
1687
        break;
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
    case 'H':
        type = *p++;
        thread = strtoull(p, (char **)&p, 16);
        if (thread == -1 || thread == 0) {
            put_packet(s, "OK");
            break;
        }
        for (env = first_cpu; env != NULL; env = env->next_cpu)
            if (env->cpu_index + 1 == thread)
                break;
        if (env == NULL) {
            put_packet(s, "E22");
            break;
        }
        switch (type) {
        case 'c':
            s->c_cpu = env;
            put_packet(s, "OK");
            break;
        case 'g':
            s->g_cpu = env;
            put_packet(s, "OK");
            break;
        default:
             put_packet(s, "E22");
             break;
        }
        break;
    case 'T':
        thread = strtoull(p, (char **)&p, 16);
#ifndef CONFIG_USER_ONLY
        if (thread > 0 && thread < smp_cpus + 1)
#else
        if (thread == 1)
#endif
             put_packet(s, "OK");
        else
            put_packet(s, "E22");
        break;
1727
    case 'q':
1728
1729
1730
1731
    case 'Q':
        /* parse any 'q' packets here */
        if (!strcmp(p,"qemu.sstepbits")) {
            /* Query Breakpoint bit definitions */
1732
1733
1734
1735
            snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
                     SSTEP_ENABLE,
                     SSTEP_NOIRQ,
                     SSTEP_NOTIMER);
1736
1737
1738
1739
1740
1741
1742
            put_packet(s, buf);
            break;
        } else if (strncmp(p,"qemu.sstep",10) == 0) {
            /* Display or change the sstep_flags */
            p += 10;
            if (*p != '=') {
                /* Display current setting */
1743
                snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
1744
1745
1746
1747
1748
1749
1750
1751
                put_packet(s, buf);
                break;
            }
            p++;
            type = strtoul(p, (char **)&p, 16);
            sstep_flags = type;
            put_packet(s, "OK");
            break;
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
        } else if (strcmp(p,"C") == 0) {
            /* "Current thread" remains vague in the spec, so always return
             *  the first CPU (gdb returns the first thread). */
            put_packet(s, "QC1");
            break;
        } else if (strcmp(p,"fThreadInfo") == 0) {
            s->query_cpu = first_cpu;
            goto report_cpuinfo;
        } else if (strcmp(p,"sThreadInfo") == 0) {
        report_cpuinfo:
            if (s->query_cpu) {
                snprintf(buf, sizeof(buf), "m%x", s->query_cpu->cpu_index+1);
                put_packet(s, buf);
                s->query_cpu = s->query_cpu->next_cpu;
            } else
                put_packet(s, "l");
            break;
        } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
            thread = strtoull(p+16, (char **)&p, 16);
            for (env = first_cpu; env != NULL; env = env->next_cpu)
                if (env->cpu_index + 1 == thread) {
                    len = snprintf((char *)mem_buf, sizeof(mem_buf),
                                   "CPU#%d [%s]", env->cpu_index,
                                   env->halted ? "halted " : "running");
                    memtohex(buf, mem_buf, len);
                    put_packet(s, buf);
                    break;
                }
            break;
1781
1782
1783
        }
#ifdef CONFIG_LINUX_USER
        else if (strncmp(p, "Offsets", 7) == 0) {
1784
            TaskState *ts = s->c_cpu->opaque;
1785
1786
1787
1788
1789
1790
1791
            snprintf(buf, sizeof(buf),
                     "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
                     ";Bss=" TARGET_ABI_FMT_lx,
                     ts->info->code_offset,
                     ts->info->data_offset,
                     ts->info->data_offset);
1792
1793
1794
1795
            put_packet(s, buf);
            break;
        }
#endif
1796
        if (strncmp(p, "Supported", 9) == 0) {
1797
            snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
#ifdef GDB_CORE_XML
            strcat(buf, ";qXfer:features:read+");
#endif
            put_packet(s, buf);
            break;
        }
#ifdef GDB_CORE_XML
        if (strncmp(p, "Xfer:features:read:", 19) == 0) {
            const char *xml;
            target_ulong total_len;

            gdb_has_xml = 1;
            p += 19;
1811
            xml = get_feature_xml(p, &p);
1812
            if (!xml) {
1813
                snprintf(buf, sizeof(buf), "E00");
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
                put_packet(s, buf);
                break;
            }

            if (*p == ':')
                p++;
            addr = strtoul(p, (char **)&p, 16);
            if (*p == ',')
                p++;
            len = strtoul(p, (char **)&p, 16);

            total_len = strlen(xml);
            if (addr > total_len) {
1827
                snprintf(buf, sizeof(buf), "E00");
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
                put_packet(s, buf);
                break;
            }
            if (len > (MAX_PACKET_LENGTH - 5) / 2)
                len = (MAX_PACKET_LENGTH - 5) / 2;
            if (len < total_len - addr) {
                buf[0] = 'm';
                len = memtox(buf + 1, xml + addr, len);
            } else {
                buf[0] = 'l';
                len = memtox(buf + 1, xml + addr, total_len - addr);
            }
            put_packet_binary(s, buf, len + 1);
            break;
        }
#endif
        /* Unrecognised 'q' command.  */
        goto unknown_command;
1847
    default:
1848
    unknown_command:
1849
1850
1851
1852
1853
1854
1855
1856
        /* put empty packet */
        buf[0] = '\0';
        put_packet(s, buf);
        break;
    }
    return RS_IDLE;
}
1857
1858
1859
1860
1861
1862
void gdb_set_stop_cpu(CPUState *env)
{
    gdbserver_state->c_cpu = env;
    gdbserver_state->g_cpu = env;
}
1863
#ifndef CONFIG_USER_ONLY
1864
1865
static void gdb_vm_stopped(void *opaque, int reason)
{
1866
1867
    GDBState *s = gdbserver_state;
    CPUState *env = s->c_cpu;
1868
    char buf[256];
1869
    const char *type;
1870
1871
    int ret;
pbrook authored
1872
1873
1874
    if (s->state == RS_SYSCALL)
        return;
1875
    /* disable single step if it was enable */
1876
    cpu_single_step(env, 0);
1877
bellard authored
1878
    if (reason == EXCP_DEBUG) {
1879
1880
        if (env->watchpoint_hit) {
            switch (env->watchpoint_hit->flags & BP_MEM_ACCESS) {
1881
            case BP_MEM_READ:
1882
1883
                type = "r";
                break;
1884
            case BP_MEM_ACCESS:
1885
1886
1887
1888
1889
1890
                type = "a";
                break;
            default:
                type = "";
                break;
            }
1891
1892
            snprintf(buf, sizeof(buf),
                     "T%02xthread:%02x;%swatch:" TARGET_FMT_lx ";",
1893
                     GDB_SIGNAL_TRAP, env->cpu_index+1, type,
1894
                     env->watchpoint_hit->vaddr);
1895
            put_packet(s, buf);
1896
            env->watchpoint_hit = NULL;
1897
1898
            return;
        }
1899
	tb_flush(env);
1900
        ret = GDB_SIGNAL_TRAP;
1901
    } else if (reason == EXCP_INTERRUPT) {
1902
        ret = GDB_SIGNAL_INT;
1903
    } else {
1904
        ret = 0;
1905
    }
1906
    snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, env->cpu_index+1);
1907
1908
    put_packet(s, buf);
}
1909
#endif
1910
pbrook authored
1911
1912
/* Send a gdb syscall request.
   This accepts limited printf-style format specifiers, specifically:
pbrook authored
1913
1914
1915
    %x  - target_ulong argument printed in hex.
    %lx - 64-bit argument printed in hex.
    %s  - string pointer (target_ulong) and length (int) pair.  */
1916
void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
pbrook authored
1917
1918
1919
1920
1921
{
    va_list va;
    char buf[256];
    char *p;
    target_ulong addr;
pbrook authored
1922
    uint64_t i64;
pbrook authored
1923
1924
    GDBState *s;
1925
    s = gdbserver_state;
pbrook authored
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
    if (!s)
        return;
    gdb_current_syscall_cb = cb;
    s->state = RS_SYSCALL;
#ifndef CONFIG_USER_ONLY
    vm_stop(EXCP_DEBUG);
#endif
    s->state = RS_IDLE;
    va_start(va, fmt);
    p = buf;
    *(p++) = 'F';
    while (*fmt) {
        if (*fmt == '%') {
            fmt++;
            switch (*fmt++) {
            case 'x':
                addr = va_arg(va, target_ulong);
1943
                p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx, addr);
pbrook authored
1944
                break;
pbrook authored
1945
1946
1947
1948
            case 'l':
                if (*(fmt++) != 'x')
                    goto bad_format;
                i64 = va_arg(va, uint64_t);
1949
                p += snprintf(p, &buf[sizeof(buf)] - p, "%" PRIx64, i64);
pbrook authored
1950
                break;
pbrook authored
1951
1952
            case 's':
                addr = va_arg(va, target_ulong);
1953
1954
                p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx "/%x",
                              addr, va_arg(va, int));
pbrook authored
1955
1956
                break;
            default:
pbrook authored
1957
            bad_format:
pbrook authored
1958
1959
1960
1961
1962
1963
1964
1965
                fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
                        fmt - 1);
                break;
            }
        } else {
            *(p++) = *(fmt++);
        }
    }
1966
    *p = 0;
pbrook authored
1967
1968
1969
    va_end(va);
    put_packet(s, buf);
#ifdef CONFIG_USER_ONLY
1970
    gdb_handlesig(s->c_cpu, 0);
pbrook authored
1971
#else
1972
    cpu_interrupt(s->c_cpu, CPU_INTERRUPT_EXIT);
pbrook authored
1973
1974
1975
#endif
}
bellard authored
1976
static void gdb_read_byte(GDBState *s, int ch)
1977
1978
{
    int i, csum;
1979
    uint8_t reply;
1980
1981
#ifndef CONFIG_USER_ONLY
1982
1983
1984
1985
1986
1987
1988
    if (s->last_packet_len) {
        /* Waiting for a response to the last packet.  If we see the start
           of a new command then abandon the previous response.  */
        if (ch == '-') {
#ifdef DEBUG_GDB
            printf("Got NACK, retransmitting\n");
#endif
1989
            put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
        }
#ifdef DEBUG_GDB
        else if (ch == '+')
            printf("Got ACK\n");
        else
            printf("Got '%c' when expecting ACK/NACK\n", ch);
#endif
        if (ch == '+' || ch == '$')
            s->last_packet_len = 0;
        if (ch != '$')
            return;
    }
2002
2003
2004
2005
    if (vm_running) {
        /* when the CPU is running, we cannot do anything except stop
           it when receiving a char */
        vm_stop(EXCP_INTERRUPT);
2006
    } else
2007
#endif
bellard authored
2008
    {
2009
2010
2011
2012
2013
        switch(s->state) {
        case RS_IDLE:
            if (ch == '$') {
                s->line_buf_index = 0;
                s->state = RS_GETLINE;
2014
            }
bellard authored
2015
            break;
2016
2017
2018
2019
2020
        case RS_GETLINE:
            if (ch == '#') {
            s->state = RS_CHKSUM1;
            } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
                s->state = RS_IDLE;
bellard authored
2021
            } else {
2022
            s->line_buf[s->line_buf_index++] = ch;
bellard authored
2023
2024
            }
            break;
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
        case RS_CHKSUM1:
            s->line_buf[s->line_buf_index] = '\0';
            s->line_csum = fromhex(ch) << 4;
            s->state = RS_CHKSUM2;
            break;
        case RS_CHKSUM2:
            s->line_csum |= fromhex(ch);
            csum = 0;
            for(i = 0; i < s->line_buf_index; i++) {
                csum += s->line_buf[i];
            }
            if (s->line_csum != (csum & 0xff)) {
2037
2038
                reply = '-';
                put_buffer(s, &reply, 1);
2039
                s->state = RS_IDLE;
bellard authored
2040
            } else {
2041
2042
                reply = '+';
                put_buffer(s, &reply, 1);
2043
                s->state = gdb_handle_packet(s, s->line_buf);
bellard authored
2044
2045
            }
            break;
pbrook authored
2046
2047
        default:
            abort();
2048
2049
2050
2051
        }
    }
}
2052
2053
#ifdef CONFIG_USER_ONLY
int
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
gdb_queuesig (void)
{
    GDBState *s;

    s = gdbserver_state;

    if (gdbserver_fd < 0 || s->fd < 0)
        return 0;
    else
        return 1;
}

int
2067
2068
2069
2070
2071
2072
gdb_handlesig (CPUState *env, int sig)
{
  GDBState *s;
  char buf[256];
  int n;
2073
  s = gdbserver_state;
2074
2075
  if (gdbserver_fd < 0 || s->fd < 0)
    return sig;
2076
2077
2078
2079
2080
2081
2082

  /* disable single step if it was enabled */
  cpu_single_step(env, 0);
  tb_flush(env);

  if (sig != 0)
    {
2083
      snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb (sig));
2084
2085
      put_packet(s, buf);
    }
2086
2087
2088
2089
  /* put_packet() might have detected that the peer terminated the 
     connection.  */
  if (s->fd < 0)
      return sig;
2090
2091
2092

  sig = 0;
  s->state = RS_IDLE;
bellard authored
2093
2094
  s->running_state = 0;
  while (s->running_state == 0) {
2095
2096
2097
2098
2099
2100
      n = read (s->fd, buf, 256);
      if (n > 0)
        {
          int i;

          for (i = 0; i < n; i++)
bellard authored
2101
            gdb_read_byte (s, buf[i]);
2102
2103
2104
2105
2106
2107
2108
        }
      else if (n == 0 || errno != EAGAIN)
        {
          /* XXX: Connection closed.  Should probably wait for annother
             connection before continuing.  */
          return sig;
        }
bellard authored
2109
  }
2110
2111
  sig = s->signal;
  s->signal = 0;
2112
2113
  return sig;
}
2114
2115
2116
2117
2118
2119
2120

/* Tell the remote gdb that the process has exited.  */
void gdb_exit(CPUState *env, int code)
{
  GDBState *s;
  char buf[4];
2121
  s = gdbserver_state;
2122
2123
  if (gdbserver_fd < 0 || s->fd < 0)
    return;
2124
2125
2126
2127
2128

  snprintf(buf, sizeof(buf), "W%02x", code);
  put_packet(s, buf);
}
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
/* Tell the remote gdb that the process has exited due to SIG.  */
void gdb_signalled(CPUState *env, int sig)
{
  GDBState *s;
  char buf[4];

  s = gdbserver_state;
  if (gdbserver_fd < 0 || s->fd < 0)
    return;

  snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb (sig));
  put_packet(s, buf);
}
2142
2143
static void gdb_accept(void)
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
{
    GDBState *s;
    struct sockaddr_in sockaddr;
    socklen_t len;
    int val, fd;

    for(;;) {
        len = sizeof(sockaddr);
        fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
        if (fd < 0 && errno != EINTR) {
            perror("accept");
            return;
        } else if (fd >= 0) {
bellard authored
2157
2158
2159
            break;
        }
    }
2160
2161
2162

    /* set short latency */
    val = 1;
bellard authored
2163
    setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
2164
2165
2166
2167
2168
2169
2170
2171
    s = qemu_mallocz(sizeof(GDBState));
    if (!s) {
        errno = ENOMEM;
        perror("accept");
        return;
    }
2172
    memset (s, 0, sizeof (GDBState));
2173
2174
    s->c_cpu = first_cpu;
    s->g_cpu = first_cpu;
2175
    s->fd = fd;
2176
    gdb_has_xml = 0;
2177
2178
    gdbserver_state = s;
pbrook authored
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
    fcntl(fd, F_SETFL, O_NONBLOCK);
}

static int gdbserver_open(int port)
{
    struct sockaddr_in sockaddr;
    int fd, val, ret;

    fd = socket(PF_INET, SOCK_STREAM, 0);
    if (fd < 0) {
        perror("socket");
        return -1;
    }

    /* allow fast reuse */
    val = 1;
bellard authored
2196
    setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219

    sockaddr.sin_family = AF_INET;
    sockaddr.sin_port = htons(port);
    sockaddr.sin_addr.s_addr = 0;
    ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
    if (ret < 0) {
        perror("bind");
        return -1;
    }
    ret = listen(fd, 0);
    if (ret < 0) {
        perror("listen");
        return -1;
    }
    return fd;
}

int gdbserver_start(int port)
{
    gdbserver_fd = gdbserver_open(port);
    if (gdbserver_fd < 0)
        return -1;
    /* accept connections */
2220
    gdb_accept();
2221
2222
    return 0;
}
2223
2224
2225
2226
2227

/* Disable gdb stub for child processes.  */
void gdbserver_fork(CPUState *env)
{
    GDBState *s = gdbserver_state;
2228
    if (gdbserver_fd < 0 || s->fd < 0)
2229
2230
2231
2232
2233
2234
      return;
    close(s->fd);
    s->fd = -1;
    cpu_breakpoint_remove_all(env, BP_GDB);
    cpu_watchpoint_remove_all(env, BP_GDB);
}
2235
#else
ths authored
2236
static int gdb_chr_can_receive(void *opaque)
2237
{
2238
2239
2240
  /* We can handle an arbitrarily large amount of data.
   Pick the maximum packet size, which is as good as anything.  */
  return MAX_PACKET_LENGTH;
2241
2242
}
ths authored
2243
static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
2244
2245
2246
2247
{
    int i;

    for (i = 0; i < size; i++) {
2248
        gdb_read_byte(gdbserver_state, buf[i]);
2249
2250
2251
2252
2253
2254
2255
2256
    }
}

static void gdb_chr_event(void *opaque, int event)
{
    switch (event) {
    case CHR_EVENT_RESET:
        vm_stop(EXCP_INTERRUPT);
2257
        gdb_has_xml = 0;
2258
2259
2260
2261
2262
2263
        break;
    default:
        break;
    }
}
2264
int gdbserver_start(const char *port)
2265
2266
{
    GDBState *s;
2267
2268
2269
2270
2271
2272
2273
    char gdbstub_port_name[128];
    int port_num;
    char *p;
    CharDriverState *chr;

    if (!port || !*port)
      return -1;
2274
2275
2276
2277
2278
2279
2280
2281
2282
    port_num = strtol(port, &p, 10);
    if (*p == 0) {
        /* A numeric value is interpreted as a port number.  */
        snprintf(gdbstub_port_name, sizeof(gdbstub_port_name),
                 "tcp::%d,nowait,nodelay,server", port_num);
        port = gdbstub_port_name;
    }
2283
    chr = qemu_chr_open("gdb", port);
2284
2285
2286
2287
2288
2289
2290
    if (!chr)
        return -1;

    s = qemu_mallocz(sizeof(GDBState));
    if (!s) {
        return -1;
    }
2291
2292
    s->c_cpu = first_cpu;
    s->g_cpu = first_cpu;
2293
    s->chr = chr;
2294
    gdbserver_state = s;
ths authored
2295
    qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
2296
2297
                          gdb_chr_event, NULL);
    qemu_add_vm_stop_handler(gdb_vm_stopped, NULL);
bellard authored
2298
2299
    return 0;
}
2300
#endif