Blame view

gdbstub.c 51.9 KB
bellard authored
1
2
/*
 * gdb server stub
3
 *
bellard authored
4
 * Copyright (c) 2003-2005 Fabrice Bellard
bellard authored
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
20
#include "config.h"
21
#include "qemu-common.h"
22
23
24
25
26
27
28
#ifdef CONFIG_USER_ONLY
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
29
#include <fcntl.h>
30
31
32

#include "qemu.h"
#else
pbrook authored
33
34
35
#include "qemu-char.h"
#include "sysemu.h"
#include "gdbstub.h"
36
#endif
37
38
39
#define MAX_PACKET_LENGTH 4096
bellard authored
40
41
42
43
44
45
46
47
48
49
#include "qemu_socket.h"
#ifdef _WIN32
/* XXX: these constants may be independent of the host ones even for Unix */
#ifndef SIGTRAP
#define SIGTRAP 5
#endif
#ifndef SIGINT
#define SIGINT 2
#endif
#else
bellard authored
50
#include <signal.h>
bellard authored
51
#endif
bellard authored
52
bellard authored
53
//#define DEBUG_GDB
bellard authored
54
55
56
57
58
59
60
61
62
63
typedef struct GDBRegisterState {
    int base_reg;
    int num_regs;
    gdb_reg_cb get_reg;
    gdb_reg_cb set_reg;
    const char *xml;
    struct GDBRegisterState *next;
} GDBRegisterState;
64
65
66
67
68
enum RSState {
    RS_IDLE,
    RS_GETLINE,
    RS_CHKSUM1,
    RS_CHKSUM2,
pbrook authored
69
    RS_SYSCALL,
70
71
};
typedef struct GDBState {
72
73
74
    CPUState *c_cpu; /* current CPU for step/continue ops */
    CPUState *g_cpu; /* current CPU for other ops */
    CPUState *query_cpu; /* for q{f|s}ThreadInfo */
bellard authored
75
    enum RSState state; /* parsing state */
76
    char line_buf[MAX_PACKET_LENGTH];
77
78
    int line_buf_index;
    int line_csum;
79
    uint8_t last_packet[MAX_PACKET_LENGTH + 4];
80
    int last_packet_len;
81
    int signal;
bellard authored
82
#ifdef CONFIG_USER_ONLY
83
    int fd;
bellard authored
84
    int running_state;
85
86
#else
    CharDriverState *chr;
bellard authored
87
#endif
88
} GDBState;
bellard authored
89
90
91
92
93
94
/* By default use no IRQs and no timers while single stepping so as to
 * make single stepping like an ICE HW step.
 */
static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
95
96
static GDBState *gdbserver_state;
97
98
99
100
101
/* This is an ugly hack to cope with both new and old gdb.
   If gdb sends qXfer:features:read then assume we're talking to a newish
   gdb that understands target descriptions.  */
static int gdb_has_xml;
102
#ifdef CONFIG_USER_ONLY
103
104
105
/* XXX: This is not thread safe.  Do we care?  */
static int gdbserver_fd = -1;
106
static int get_char(GDBState *s)
bellard authored
107
108
109
110
111
{
    uint8_t ch;
    int ret;

    for(;;) {
bellard authored
112
        ret = recv(s->fd, &ch, 1, 0);
bellard authored
113
        if (ret < 0) {
114
115
            if (errno == ECONNRESET)
                s->fd = -1;
bellard authored
116
117
118
            if (errno != EINTR && errno != EAGAIN)
                return -1;
        } else if (ret == 0) {
119
120
            close(s->fd);
            s->fd = -1;
bellard authored
121
122
123
124
125
126
127
            return -1;
        } else {
            break;
        }
    }
    return ch;
}
128
#endif
bellard authored
129
pbrook authored
130
131
132
133
134
135
136
137
138
139
140
141
142
static gdb_syscall_complete_cb gdb_current_syscall_cb;

enum {
    GDB_SYS_UNKNOWN,
    GDB_SYS_ENABLED,
    GDB_SYS_DISABLED,
} gdb_syscall_mode;

/* If gdb is connected when the first semihosting syscall occurs then use
   remote gdb syscalls.  Otherwise use native file IO.  */
int use_gdb_syscalls(void)
{
    if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
143
144
        gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
                                            : GDB_SYS_DISABLED);
pbrook authored
145
146
147
148
    }
    return gdb_syscall_mode == GDB_SYS_ENABLED;
}
149
150
151
152
153
154
155
156
157
158
/* Resume execution.  */
static inline void gdb_continue(GDBState *s)
{
#ifdef CONFIG_USER_ONLY
    s->running_state = 1;
#else
    vm_start();
#endif
}
159
static void put_buffer(GDBState *s, const uint8_t *buf, int len)
bellard authored
160
{
161
#ifdef CONFIG_USER_ONLY
bellard authored
162
163
164
    int ret;

    while (len > 0) {
bellard authored
165
        ret = send(s->fd, buf, len, 0);
bellard authored
166
167
168
169
170
171
172
173
        if (ret < 0) {
            if (errno != EINTR && errno != EAGAIN)
                return;
        } else {
            buf += ret;
            len -= ret;
        }
    }
174
175
176
#else
    qemu_chr_write(s->chr, buf, len);
#endif
bellard authored
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
}

static inline int fromhex(int v)
{
    if (v >= '0' && v <= '9')
        return v - '0';
    else if (v >= 'A' && v <= 'F')
        return v - 'A' + 10;
    else if (v >= 'a' && v <= 'f')
        return v - 'a' + 10;
    else
        return 0;
}

static inline int tohex(int v)
{
    if (v < 10)
        return v + '0';
    else
        return v - 10 + 'a';
}

static void memtohex(char *buf, const uint8_t *mem, int len)
{
    int i, c;
    char *q;
    q = buf;
    for(i = 0; i < len; i++) {
        c = mem[i];
        *q++ = tohex(c >> 4);
        *q++ = tohex(c & 0xf);
    }
    *q = '\0';
}

static void hextomem(uint8_t *mem, const char *buf, int len)
{
    int i;

    for(i = 0; i < len; i++) {
        mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
        buf += 2;
    }
}

/* return -1 if error, 0 if OK */
223
static int put_packet_binary(GDBState *s, const char *buf, int len)
bellard authored
224
{
225
    int csum, i;
226
    uint8_t *p;
bellard authored
227
228

    for(;;) {
229
230
231
232
        p = s->last_packet;
        *(p++) = '$';
        memcpy(p, buf, len);
        p += len;
bellard authored
233
234
235
236
        csum = 0;
        for(i = 0; i < len; i++) {
            csum += buf[i];
        }
237
238
239
        *(p++) = '#';
        *(p++) = tohex((csum >> 4) & 0xf);
        *(p++) = tohex((csum) & 0xf);
bellard authored
240
241
        s->last_packet_len = p - s->last_packet;
242
        put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
bellard authored
243
244
245
246
#ifdef CONFIG_USER_ONLY
        i = get_char(s);
        if (i < 0)
bellard authored
247
            return -1;
248
        if (i == '+')
bellard authored
249
            break;
250
251
252
#else
        break;
#endif
bellard authored
253
254
255
256
    }
    return 0;
}
257
258
259
260
261
262
/* return -1 if error, 0 if OK */
static int put_packet(GDBState *s, const char *buf)
{
#ifdef DEBUG_GDB
    printf("reply='%s'\n", buf);
#endif
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
    return put_packet_binary(s, buf, strlen(buf));
}

/* The GDB remote protocol transfers values in target byte order.  This means
   we can use the raw memory access routines to access the value buffer.
   Conveniently, these also handle the case where the buffer is mis-aligned.
 */
#define GET_REG8(val) do { \
    stb_p(mem_buf, val); \
    return 1; \
    } while(0)
#define GET_REG16(val) do { \
    stw_p(mem_buf, val); \
    return 2; \
    } while(0)
#define GET_REG32(val) do { \
    stl_p(mem_buf, val); \
    return 4; \
    } while(0)
#define GET_REG64(val) do { \
    stq_p(mem_buf, val); \
    return 8; \
    } while(0)

#if TARGET_LONG_BITS == 64
#define GET_REGL(val) GET_REG64(val)
#define ldtul_p(addr) ldq_p(addr)
#else
#define GET_REGL(val) GET_REG32(val)
#define ldtul_p(addr) ldl_p(addr)
294
295
#endif
296
#if defined(TARGET_I386)
297
298

#ifdef TARGET_X86_64
299
300
301
302
static const int gpr_map[16] = {
    R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
    8, 9, 10, 11, 12, 13, 14, 15
};
303
#else
304
static const int gpr_map[8] = {0, 1, 2, 3, 4, 5, 6, 7};
305
306
#endif
307
308
309
#define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)

static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
310
{
311
312
313
314
315
316
    if (n < CPU_NB_REGS) {
        GET_REGL(env->regs[gpr_map[n]]);
    } else if (n >= CPU_NB_REGS + 8 && n < CPU_NB_REGS + 16) {
        /* FIXME: byteswap float values.  */
#ifdef USE_X86LDOUBLE
        memcpy(mem_buf, &env->fpregs[n - (CPU_NB_REGS + 8)], 10);
317
#else
318
        memset(mem_buf, 0, 10);
319
#endif
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
        return 10;
    } else if (n >= CPU_NB_REGS + 24) {
        n -= CPU_NB_REGS + 24;
        if (n < CPU_NB_REGS) {
            stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0));
            stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1));
            return 16;
        } else if (n == CPU_NB_REGS) {
            GET_REG32(env->mxcsr);
        } 
    } else {
        n -= CPU_NB_REGS;
        switch (n) {
        case 0: GET_REGL(env->eip);
        case 1: GET_REG32(env->eflags);
        case 2: GET_REG32(env->segs[R_CS].selector);
        case 3: GET_REG32(env->segs[R_SS].selector);
        case 4: GET_REG32(env->segs[R_DS].selector);
        case 5: GET_REG32(env->segs[R_ES].selector);
        case 6: GET_REG32(env->segs[R_FS].selector);
        case 7: GET_REG32(env->segs[R_GS].selector);
        /* 8...15 x87 regs.  */
        case 16: GET_REG32(env->fpuc);
        case 17: GET_REG32((env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11);
        case 18: GET_REG32(0); /* ftag */
        case 19: GET_REG32(0); /* fiseg */
        case 20: GET_REG32(0); /* fioff */
        case 21: GET_REG32(0); /* foseg */
        case 22: GET_REG32(0); /* fooff */
        case 23: GET_REG32(0); /* fop */
        /* 24+ xmm regs.  */
        }
352
    }
353
    return 0;
bellard authored
354
355
}
356
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int i)
bellard authored
357
{
358
    uint32_t tmp;
bellard authored
359
360
361
362
363
364
365
366
    if (i < CPU_NB_REGS) {
        env->regs[gpr_map[i]] = ldtul_p(mem_buf);
        return sizeof(target_ulong);
    } else if (i >= CPU_NB_REGS + 8 && i < CPU_NB_REGS + 16) {
        i -= CPU_NB_REGS + 8;
#ifdef USE_X86LDOUBLE
        memcpy(&env->fpregs[i], mem_buf, 10);
367
#endif
368
369
370
371
372
373
374
375
376
377
        return 10;
    } else if (i >= CPU_NB_REGS + 24) {
        i -= CPU_NB_REGS + 24;
        if (i < CPU_NB_REGS) {
            env->xmm_regs[i].XMM_Q(0) = ldq_p(mem_buf);
            env->xmm_regs[i].XMM_Q(1) = ldq_p(mem_buf + 8);
            return 16;
        } else if (i == CPU_NB_REGS) {
            env->mxcsr = ldl_p(mem_buf);
            return 4;
378
        }
379
380
381
382
383
384
385
386
387
388
389
390
391
392
    } else {
        i -= CPU_NB_REGS;
        switch (i) {
        case 0: env->eip = ldtul_p(mem_buf); return sizeof(target_ulong);
        case 1: env->eflags = ldl_p(mem_buf); return 4;
#if defined(CONFIG_USER_ONLY)
#define LOAD_SEG(index, sreg)\
            tmp = ldl_p(mem_buf);\
            if (tmp != env->segs[sreg].selector)\
                cpu_x86_load_seg(env, sreg, tmp);
#else
/* FIXME: Honor segment registers.  Needs to avoid raising an exception
   when the selector is invalid.  */
#define LOAD_SEG(index, sreg) do {} while(0)
bellard authored
393
#endif
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
        case 2: LOAD_SEG(10, R_CS); return 4;
        case 3: LOAD_SEG(11, R_SS); return 4;
        case 4: LOAD_SEG(12, R_DS); return 4;
        case 5: LOAD_SEG(13, R_ES); return 4;
        case 6: LOAD_SEG(14, R_FS); return 4;
        case 7: LOAD_SEG(15, R_GS); return 4;
        /* 8...15 x87 regs.  */
        case 16: env->fpuc = ldl_p(mem_buf); return 4;
        case 17:
                 tmp = ldl_p(mem_buf);
                 env->fpstt = (tmp >> 11) & 7;
                 env->fpus = tmp & ~0x3800;
                 return 4;
        case 18: /* ftag */ return 4;
        case 19: /* fiseg */ return 4;
        case 20: /* fioff */ return 4;
        case 21: /* foseg */ return 4;
        case 22: /* fooff */ return 4;
        case 23: /* fop */ return 4;
        /* 24+ xmm regs.  */
414
415
        }
    }
416
417
    /* Unrecognised register.  */
    return 0;
bellard authored
418
419
}
bellard authored
420
421
#elif defined (TARGET_PPC)
422
#define NUM_CORE_REGS 71
bellard authored
423
424
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
bellard authored
425
{
426
427
428
429
430
    if (n < 32) {
        /* gprs */
        GET_REGL(env->gpr[n]);
    } else if (n < 64) {
        /* fprs */
431
        stfq_p(mem_buf, env->fpr[n-32]);
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
        return 8;
    } else {
        switch (n) {
        case 64: GET_REGL(env->nip);
        case 65: GET_REGL(env->msr);
        case 66:
            {
                uint32_t cr = 0;
                int i;
                for (i = 0; i < 8; i++)
                    cr |= env->crf[i] << (32 - ((i + 1) * 4));
                GET_REG32(cr);
            }
        case 67: GET_REGL(env->lr);
        case 68: GET_REGL(env->ctr);
447
        case 69: GET_REGL(env->xer);
448
449
450
451
452
        case 70: GET_REG32(0); /* fpscr */
        }
    }
    return 0;
}
bellard authored
453
454
455
456
457
458
459
460
461
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
{
    if (n < 32) {
        /* gprs */
        env->gpr[n] = ldtul_p(mem_buf);
        return sizeof(target_ulong);
    } else if (n < 64) {
        /* fprs */
462
        env->fpr[n-32] = ldfq_p(mem_buf);
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
        return 8;
    } else {
        switch (n) {
        case 64:
            env->nip = ldtul_p(mem_buf);
            return sizeof(target_ulong);
        case 65:
            ppc_store_msr(env, ldtul_p(mem_buf));
            return sizeof(target_ulong);
        case 66:
            {
                uint32_t cr = ldl_p(mem_buf);
                int i;
                for (i = 0; i < 8; i++)
                    env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
                return 4;
            }
        case 67:
            env->lr = ldtul_p(mem_buf);
            return sizeof(target_ulong);
        case 68:
            env->ctr = ldtul_p(mem_buf);
            return sizeof(target_ulong);
        case 69:
487
488
            env->xer = ldtul_p(mem_buf);
            return sizeof(target_ulong);
489
490
491
492
493
494
        case 70:
            /* fpscr */
            return 4;
        }
    }
    return 0;
495
}
496
497
#elif defined (TARGET_SPARC)
498
499
500

#if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
#define NUM_CORE_REGS 86
501
#else
502
#define NUM_CORE_REGS 73
503
#endif
504
505
#ifdef TARGET_ABI32
506
#define GET_REGA(val) GET_REG32(val)
507
#else
508
#define GET_REGA(val) GET_REGL(val)
509
#endif
510
511
512
513
514
515
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
{
    if (n < 8) {
        /* g0..g7 */
        GET_REGA(env->gregs[n]);
516
    }
517
518
519
    if (n < 32) {
        /* register window */
        GET_REGA(env->regwptr[n - 8]);
520
    }
521
522
523
524
#if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
    if (n < 64) {
        /* fprs */
        GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
525
526
    }
    /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
527
528
529
530
531
532
533
534
535
536
537
    switch (n) {
    case 64: GET_REGA(env->y);
    case 65: GET_REGA(GET_PSR(env));
    case 66: GET_REGA(env->wim);
    case 67: GET_REGA(env->tbr);
    case 68: GET_REGA(env->pc);
    case 69: GET_REGA(env->npc);
    case 70: GET_REGA(env->fsr);
    case 71: GET_REGA(0); /* csr */
    case 72: GET_REGA(0);
    }
bellard authored
538
#else
539
540
541
542
543
544
545
    if (n < 64) {
        /* f0-f31 */
        GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
    }
    if (n < 80) {
        /* f32-f62 (double width, even numbers only) */
        uint64_t val;
546
547
548
549
        val = (uint64_t)*((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) << 32;
        val |= *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]);
        GET_REG64(val);
bellard authored
550
    }
551
552
553
554
    switch (n) {
    case 80: GET_REGL(env->pc);
    case 81: GET_REGL(env->npc);
    case 82: GET_REGL(((uint64_t)GET_CCR(env) << 32) |
555
556
557
                           ((env->asi & 0xff) << 24) |
                           ((env->pstate & 0xfff) << 8) |
                           GET_CWP64(env));
558
559
560
561
    case 83: GET_REGL(env->fsr);
    case 84: GET_REGL(env->fprs);
    case 85: GET_REGL(env->y);
    }
bellard authored
562
#endif
563
    return 0;
564
565
}
566
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
567
{
568
569
570
571
#if defined(TARGET_ABI32)
    abi_ulong tmp;

    tmp = ldl_p(mem_buf);
572
#else
573
574
575
    target_ulong tmp;

    tmp = ldtul_p(mem_buf);
576
#endif
577
578
579
580
581
582
583
    if (n < 8) {
        /* g0..g7 */
        env->gregs[n] = tmp;
    } else if (n < 32) {
        /* register window */
        env->regwptr[n - 8] = tmp;
584
    }
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
#if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
    else if (n < 64) {
        /* fprs */
        *((uint32_t *)&env->fpr[n - 32]) = tmp;
    } else {
        /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
        switch (n) {
        case 64: env->y = tmp; break;
        case 65: PUT_PSR(env, tmp); break;
        case 66: env->wim = tmp; break;
        case 67: env->tbr = tmp; break;
        case 68: env->pc = tmp; break;
        case 69: env->npc = tmp; break;
        case 70: env->fsr = tmp; break;
        default: return 0;
        }
601
    }
602
    return 4;
bellard authored
603
#else
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
    else if (n < 64) {
        /* f0-f31 */
        env->fpr[n] = ldfl_p(mem_buf);
        return 4;
    } else if (n < 80) {
        /* f32-f62 (double width, even numbers only) */
        *((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) = tmp >> 32;
        *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]) = tmp;
    } else {
        switch (n) {
        case 80: env->pc = tmp; break;
        case 81: env->npc = tmp; break;
        case 82:
	    PUT_CCR(env, tmp >> 32);
	    env->asi = (tmp >> 24) & 0xff;
	    env->pstate = (tmp >> 8) & 0xfff;
	    PUT_CWP64(env, tmp & 0xff);
	    break;
        case 83: env->fsr = tmp; break;
        case 84: env->fprs = tmp; break;
        case 85: env->y = tmp; break;
        default: return 0;
        }
627
    }
628
    return 8;
bellard authored
629
#endif
bellard authored
630
}
631
#elif defined (TARGET_ARM)
bellard authored
632
633
634
635
636
637
638
639
/* Old gdb always expect FPA registers.  Newer (xml-aware) gdb only expect
   whatever the target description contains.  Due to a historical mishap
   the FPA registers appear in between core integer regs and the CPSR.
   We hack round this by giving the FPA regs zero size when talking to a
   newer gdb.  */
#define NUM_CORE_REGS 26
#define GDB_CORE_XML "arm-core.xml"
pbrook authored
640
641
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
pbrook authored
642
{
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
    if (n < 16) {
        /* Core integer register.  */
        GET_REG32(env->regs[n]);
    }
    if (n < 24) {
        /* FPA registers.  */
        if (gdb_has_xml)
            return 0;
        memset(mem_buf, 0, 12);
        return 12;
    }
    switch (n) {
    case 24:
        /* FPA status register.  */
        if (gdb_has_xml)
            return 0;
        GET_REG32(0);
    case 25:
        /* CPSR */
        GET_REG32(cpsr_read(env));
    }
    /* Unknown register.  */
    return 0;
pbrook authored
666
}
667
668
669
670
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
{
    uint32_t tmp;
671
672
    tmp = ldl_p(mem_buf);
673
674
675
676
677
    /* Mask out low bit of PC to workaround gdb bugs.  This will probably
       cause problems if we ever implement the Jazelle DBX extensions.  */
    if (n == 15)
        tmp &= ~1;
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
    if (n < 16) {
        /* Core integer register.  */
        env->regs[n] = tmp;
        return 4;
    }
    if (n < 24) { /* 16-23 */
        /* FPA registers (ignored).  */
        if (gdb_has_xml)
            return 0;
        return 12;
    }
    switch (n) {
    case 24:
        /* FPA status register (ignored).  */
        if (gdb_has_xml)
            return 0;
        return 4;
    case 25:
        /* CPSR */
        cpsr_write (env, tmp, 0xffffffff);
        return 4;
    }
    /* Unknown register.  */
    return 0;
}
704
705
#elif defined (TARGET_M68K)
706
707
#define NUM_CORE_REGS 18
708
709
#define GDB_CORE_XML "cf-core.xml"
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
{
    if (n < 8) {
        /* D0-D7 */
        GET_REG32(env->dregs[n]);
    } else if (n < 16) {
        /* A0-A7 */
        GET_REG32(env->aregs[n - 8]);
    } else {
	switch (n) {
        case 16: GET_REG32(env->sr);
        case 17: GET_REG32(env->pc);
        }
    }
    /* FP registers not included here because they vary between
       ColdFire and m68k.  Use XML bits for these.  */
    return 0;
}
729
730
731
732
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
{
    uint32_t tmp;
733
734
    tmp = ldl_p(mem_buf);
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
    if (n < 8) {
        /* D0-D7 */
        env->dregs[n] = tmp;
    } else if (n < 8) {
        /* A0-A7 */
        env->aregs[n - 8] = tmp;
    } else {
        switch (n) {
        case 16: env->sr = tmp; break;
        case 17: env->pc = tmp; break;
        default: return 0;
        }
    }
    return 4;
}
#elif defined (TARGET_MIPS)
ths authored
752
753
#define NUM_CORE_REGS 73
ths authored
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
{
    if (n < 32) {
        GET_REGL(env->active_tc.gpr[n]);
    }
    if (env->CP0_Config1 & (1 << CP0C1_FP)) {
        if (n >= 38 && n < 70) {
            if (env->CP0_Status & (1 << CP0St_FR))
		GET_REGL(env->active_fpu.fpr[n - 38].d);
            else
		GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]);
        }
        switch (n) {
        case 70: GET_REGL((int32_t)env->active_fpu.fcr31);
        case 71: GET_REGL((int32_t)env->active_fpu.fcr0);
        }
    }
    switch (n) {
    case 32: GET_REGL((int32_t)env->CP0_Status);
    case 33: GET_REGL(env->active_tc.LO[0]);
    case 34: GET_REGL(env->active_tc.HI[0]);
    case 35: GET_REGL(env->CP0_BadVAddr);
    case 36: GET_REGL((int32_t)env->CP0_Cause);
    case 37: GET_REGL(env->active_tc.PC);
    case 72: GET_REGL(0); /* fp */
    case 89: GET_REGL((int32_t)env->CP0_PRid);
    }
    if (n >= 73 && n <= 88) {
	/* 16 embedded regs.  */
	GET_REGL(0);
    }
786
787
    return 0;
788
789
}
790
791
792
793
794
795
796
797
798
/* convert MIPS rounding mode in FCR31 to IEEE library */
static unsigned int ieee_rm[] =
  {
    float_round_nearest_even,
    float_round_to_zero,
    float_round_up,
    float_round_down
  };
#define RESTORE_ROUNDING_MODE \
799
    set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
800
801
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
802
{
803
    target_ulong tmp;
804
805
    tmp = ldtul_p(mem_buf);
806
807
808
809
810
811
812
813
    if (n < 32) {
        env->active_tc.gpr[n] = tmp;
        return sizeof(target_ulong);
    }
    if (env->CP0_Config1 & (1 << CP0C1_FP)
            && n >= 38 && n < 73) {
        if (n < 70) {
ths authored
814
            if (env->CP0_Status & (1 << CP0St_FR))
815
              env->active_fpu.fpr[n - 38].d = tmp;
ths authored
816
            else
817
818
819
820
821
822
823
              env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp;
        }
        switch (n) {
        case 70:
            env->active_fpu.fcr31 = tmp & 0xFF83FFFF;
            /* set rounding mode */
            RESTORE_ROUNDING_MODE;
824
#ifndef CONFIG_SOFTFLOAT
825
826
            /* no floating point exception for native float */
            SET_FP_ENABLE(env->active_fpu.fcr31, 0);
827
#endif
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
            break;
        case 71: env->active_fpu.fcr0 = tmp; break;
        }
        return sizeof(target_ulong);
    }
    switch (n) {
    case 32: env->CP0_Status = tmp; break;
    case 33: env->active_tc.LO[0] = tmp; break;
    case 34: env->active_tc.HI[0] = tmp; break;
    case 35: env->CP0_BadVAddr = tmp; break;
    case 36: env->CP0_Cause = tmp; break;
    case 37: env->active_tc.PC = tmp; break;
    case 72: /* fp, ignored */ break;
    default: 
	if (n > 89)
	    return 0;
	/* Other registers are readonly.  Ignore writes.  */
	break;
    }

    return sizeof(target_ulong);
849
}
bellard authored
850
#elif defined (TARGET_SH4)
851
852

/* Hint: Use "set architecture sh4" in GDB to see fpu registers */
853
854
855
/* FIXME: We should use XML for this.  */

#define NUM_CORE_REGS 59
856
857
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
bellard authored
858
{
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
    if (n < 8) {
        if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
            GET_REGL(env->gregs[n + 16]);
        } else {
            GET_REGL(env->gregs[n]);
        }
    } else if (n < 16) {
        GET_REGL(env->gregs[n - 8]);
    } else if (n >= 25 && n < 41) {
	GET_REGL(env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
    } else if (n >= 43 && n < 51) {
	GET_REGL(env->gregs[n - 43]);
    } else if (n >= 51 && n < 59) {
	GET_REGL(env->gregs[n - (51 - 16)]);
    }
    switch (n) {
    case 16: GET_REGL(env->pc);
    case 17: GET_REGL(env->pr);
    case 18: GET_REGL(env->gbr);
    case 19: GET_REGL(env->vbr);
    case 20: GET_REGL(env->mach);
    case 21: GET_REGL(env->macl);
    case 22: GET_REGL(env->sr);
    case 23: GET_REGL(env->fpul);
    case 24: GET_REGL(env->fpscr);
    case 41: GET_REGL(env->ssr);
    case 42: GET_REGL(env->spc);
    }

    return 0;
bellard authored
889
890
}
891
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
bellard authored
892
{
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
    uint32_t tmp;

    tmp = ldl_p(mem_buf);

    if (n < 8) {
        if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
            env->gregs[n + 16] = tmp;
        } else {
            env->gregs[n] = tmp;
        }
	return 4;
    } else if (n < 16) {
        env->gregs[n - 8] = tmp;
	return 4;
    } else if (n >= 25 && n < 41) {
	env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)] = tmp;
    } else if (n >= 43 && n < 51) {
	env->gregs[n - 43] = tmp;
	return 4;
    } else if (n >= 51 && n < 59) {
	env->gregs[n - (51 - 16)] = tmp;
	return 4;
    }
    switch (n) {
    case 16: env->pc = tmp;
    case 17: env->pr = tmp;
    case 18: env->gbr = tmp;
    case 19: env->vbr = tmp;
    case 20: env->mach = tmp;
    case 21: env->macl = tmp;
    case 22: env->sr = tmp;
    case 23: env->fpul = tmp;
    case 24: env->fpscr = tmp;
    case 41: env->ssr = tmp;
    case 42: env->spc = tmp;
    default: return 0;
    }

    return 4;
bellard authored
932
}
933
934
#elif defined (TARGET_CRIS)
935
936
937
#define NUM_CORE_REGS 49

static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
938
{
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
    uint8_t srs;

    srs = env->pregs[PR_SRS];
    if (n < 16) {
	GET_REG32(env->regs[n]);
    }

    if (n >= 21 && n < 32) {
	GET_REG32(env->pregs[n - 16]);
    }
    if (n >= 33 && n < 49) {
	GET_REG32(env->sregs[srs][n - 33]);
    }
    switch (n) {
    case 16: GET_REG8(env->pregs[0]);
    case 17: GET_REG8(env->pregs[1]);
    case 18: GET_REG32(env->pregs[2]);
    case 19: GET_REG8(srs);
    case 20: GET_REG16(env->pregs[4]);
    case 32: GET_REG32(env->pc);
    }

    return 0;
962
}
963
964

static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
965
{
966
967
968
969
970
971
972
973
974
975
976
    uint32_t tmp;

    if (n > 49)
	return 0;

    tmp = ldl_p(mem_buf);

    if (n < 16) {
	env->regs[n] = tmp;
    }
977
978
979
980
981
    if (n >= 21 && n < 32) {
	env->pregs[n - 16] = tmp;
    }

    /* FIXME: Should support function regs be writable?  */
982
983
984
    switch (n) {
    case 16: return 1;
    case 17: return 1;
985
    case 18: env->pregs[PR_PID] = tmp; break;
986
987
988
989
990
991
    case 19: return 1;
    case 20: return 2;
    case 32: env->pc = tmp; break;
    }

    return 4;
992
}
993
994
995
996
997
#else

#define NUM_CORE_REGS 0

static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
998
{
999
    return 0;
1000
1001
}
1002
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1003
{
1004
1005
    return 0;
}
1006
1007
#endif
1008
1009
static int num_g_regs = NUM_CORE_REGS;
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
#ifdef GDB_CORE_XML
/* Encode data using the encoding for 'x' packets.  */
static int memtox(char *buf, const char *mem, int len)
{
    char *p = buf;
    char c;

    while (len--) {
        c = *(mem++);
        switch (c) {
        case '#': case '$': case '*': case '}':
            *(p++) = '}';
            *(p++) = c ^ 0x20;
            break;
        default:
            *(p++) = c;
            break;
        }
    }
    return p - buf;
}
1032
1033
const char *get_feature_xml(const char *p, const char **newp)
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
{
    extern const char *const xml_builtin[][2];
    size_t len;
    int i;
    const char *name;
    static char target_xml[1024];

    len = 0;
    while (p[len] && p[len] != ':')
        len++;
    *newp = p + len;

    name = NULL;
    if (strncmp(p, "target.xml", len) == 0) {
        /* Generate the XML description for this CPU.  */
        if (!target_xml[0]) {
            GDBRegisterState *r;
1052
1053
1054
1055
1056
1057
            snprintf(target_xml, sizeof(target_xml),
                     "<?xml version=\"1.0\"?>"
                     "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
                     "<target>"
                     "<xi:include href=\"%s\"/>",
                     GDB_CORE_XML);
1058
1059
            for (r = first_cpu->gdb_regs; r; r = r->next) {
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
                strcat(target_xml, "<xi:include href=\"");
                strcat(target_xml, r->xml);
                strcat(target_xml, "\"/>");
            }
            strcat(target_xml, "</target>");
        }
        return target_xml;
    }
    for (i = 0; ; i++) {
        name = xml_builtin[i][0];
        if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
            break;
    }
    return name ? xml_builtin[i][1] : NULL;
}
#endif
1076
1077
1078
1079
static int gdb_read_register(CPUState *env, uint8_t *mem_buf, int reg)
{
    GDBRegisterState *r;
1080
1081
1082
    if (reg < NUM_CORE_REGS)
        return cpu_gdb_read_register(env, mem_buf, reg);
1083
1084
1085
1086
1087
1088
1089
    for (r = env->gdb_regs; r; r = r->next) {
        if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
            return r->get_reg(env, mem_buf, reg - r->base_reg);
        }
    }
    return 0;
1090
1091
}
1092
static int gdb_write_register(CPUState *env, uint8_t *mem_buf, int reg)
1093
{
1094
    GDBRegisterState *r;
1095
1096
1097
1098
1099
1100
1101
1102
1103
    if (reg < NUM_CORE_REGS)
        return cpu_gdb_write_register(env, mem_buf, reg);

    for (r = env->gdb_regs; r; r = r->next) {
        if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
            return r->set_reg(env, mem_buf, reg - r->base_reg);
        }
    }
bellard authored
1104
1105
1106
    return 0;
}
1107
1108
1109
1110
1111
1112
1113
1114
1115
/* Register a supplemental set of CPU registers.  If g_pos is nonzero it
   specifies the first register number and these registers are included in
   a standard "g" packet.  Direction is relative to gdb, i.e. get_reg is
   gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
 */

void gdb_register_coprocessor(CPUState * env,
                             gdb_reg_cb get_reg, gdb_reg_cb set_reg,
                             int num_regs, const char *xml, int g_pos)
bellard authored
1116
{
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
    GDBRegisterState *s;
    GDBRegisterState **p;
    static int last_reg = NUM_CORE_REGS;

    s = (GDBRegisterState *)qemu_mallocz(sizeof(GDBRegisterState));
    s->base_reg = last_reg;
    s->num_regs = num_regs;
    s->get_reg = get_reg;
    s->set_reg = set_reg;
    s->xml = xml;
    p = &env->gdb_regs;
    while (*p) {
        /* Check for duplicates.  */
        if (strcmp((*p)->xml, xml) == 0)
            return;
        p = &(*p)->next;
    }
    /* Add to end of list.  */
    last_reg += num_regs;
    *p = s;
    if (g_pos) {
        if (g_pos != s->base_reg) {
            fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n"
                    "Expected %d got %d\n", xml, g_pos, s->base_reg);
        } else {
            num_g_regs = last_reg;
        }
    }
bellard authored
1145
1146
}
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
/* GDB breakpoint/watchpoint types */
#define GDB_BREAKPOINT_SW        0
#define GDB_BREAKPOINT_HW        1
#define GDB_WATCHPOINT_WRITE     2
#define GDB_WATCHPOINT_READ      3
#define GDB_WATCHPOINT_ACCESS    4

#ifndef CONFIG_USER_ONLY
static const int xlat_gdb_type[] = {
    [GDB_WATCHPOINT_WRITE]  = BP_GDB | BP_MEM_WRITE,
    [GDB_WATCHPOINT_READ]   = BP_GDB | BP_MEM_READ,
    [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
};
#endif
1162
static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
1163
{
1164
1165
1166
    CPUState *env;
    int err = 0;
1167
1168
1169
    switch (type) {
    case GDB_BREAKPOINT_SW:
    case GDB_BREAKPOINT_HW:
1170
1171
1172
1173
1174
1175
        for (env = first_cpu; env != NULL; env = env->next_cpu) {
            err = cpu_breakpoint_insert(env, addr, BP_GDB, NULL);
            if (err)
                break;
        }
        return err;
1176
1177
1178
1179
#ifndef CONFIG_USER_ONLY
    case GDB_WATCHPOINT_WRITE:
    case GDB_WATCHPOINT_READ:
    case GDB_WATCHPOINT_ACCESS:
1180
1181
1182
1183
1184
1185
1186
        for (env = first_cpu; env != NULL; env = env->next_cpu) {
            err = cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type],
                                        NULL);
            if (err)
                break;
        }
        return err;
1187
1188
1189
1190
1191
1192
#endif
    default:
        return -ENOSYS;
    }
}
1193
static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
1194
{
1195
1196
1197
    CPUState *env;
    int err = 0;
1198
1199
1200
    switch (type) {
    case GDB_BREAKPOINT_SW:
    case GDB_BREAKPOINT_HW:
1201
1202
1203
1204
1205
1206
        for (env = first_cpu; env != NULL; env = env->next_cpu) {
            err = cpu_breakpoint_remove(env, addr, BP_GDB);
            if (err)
                break;
        }
        return err;
1207
1208
1209
1210
#ifndef CONFIG_USER_ONLY
    case GDB_WATCHPOINT_WRITE:
    case GDB_WATCHPOINT_READ:
    case GDB_WATCHPOINT_ACCESS:
1211
1212
1213
1214
1215
1216
        for (env = first_cpu; env != NULL; env = env->next_cpu) {
            err = cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]);
            if (err)
                break;
        }
        return err;
1217
1218
1219
1220
1221
1222
#endif
    default:
        return -ENOSYS;
    }
}
1223
static void gdb_breakpoint_remove_all(void)
1224
{
1225
1226
1227
1228
    CPUState *env;

    for (env = first_cpu; env != NULL; env = env->next_cpu) {
        cpu_breakpoint_remove_all(env, BP_GDB);
1229
#ifndef CONFIG_USER_ONLY
1230
        cpu_watchpoint_remove_all(env, BP_GDB);
1231
#endif
1232
    }
1233
1234
}
1235
static int gdb_handle_packet(GDBState *s, const char *line_buf)
bellard authored
1236
{
1237
    CPUState *env;
bellard authored
1238
    const char *p;
1239
    int ch, reg_size, type, res, thread;
1240
1241
1242
    char buf[MAX_PACKET_LENGTH];
    uint8_t mem_buf[MAX_PACKET_LENGTH];
    uint8_t *registers;
1243
    target_ulong addr, len;
1244
1245
1246
1247
1248
1249
1250
1251
#ifdef DEBUG_GDB
    printf("command='%s'\n", line_buf);
#endif
    p = line_buf;
    ch = *p++;
    switch(ch) {
    case '?':
1252
        /* TODO: Make this return the correct value for user-mode.  */
1253
1254
        snprintf(buf, sizeof(buf), "T%02xthread:%02x;", SIGTRAP,
                 s->c_cpu->cpu_index+1);
1255
        put_packet(s, buf);
1256
1257
1258
1259
        /* Remove all the breakpoints when this query is issued,
         * because gdb is doing and initial connect and the state
         * should be cleaned up.
         */
1260
        gdb_breakpoint_remove_all();
1261
1262
1263
        break;
    case 'c':
        if (*p != '\0') {
1264
            addr = strtoull(p, (char **)&p, 16);
bellard authored
1265
#if defined(TARGET_I386)
1266
            s->c_cpu->eip = addr;
bellard authored
1267
#elif defined (TARGET_PPC)
1268
            s->c_cpu->nip = addr;
bellard authored
1269
#elif defined (TARGET_SPARC)
1270
1271
            s->c_cpu->pc = addr;
            s->c_cpu->npc = addr + 4;
1272
#elif defined (TARGET_ARM)
1273
            s->c_cpu->regs[15] = addr;
bellard authored
1274
#elif defined (TARGET_SH4)
1275
            s->c_cpu->pc = addr;
1276
#elif defined (TARGET_MIPS)
1277
            s->c_cpu->active_tc.PC = addr;
1278
#elif defined (TARGET_CRIS)
1279
            s->c_cpu->pc = addr;
bellard authored
1280
#endif
1281
        }
1282
        gdb_continue(s);
bellard authored
1283
	return RS_IDLE;
1284
1285
1286
1287
    case 'C':
        s->signal = strtoul(p, (char **)&p, 16);
        gdb_continue(s);
        return RS_IDLE;
1288
1289
1290
1291
1292
1293
    case 'k':
        /* Kill the target */
        fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
        exit(0);
    case 'D':
        /* Detach packet */
1294
        gdb_breakpoint_remove_all();
1295
1296
1297
        gdb_continue(s);
        put_packet(s, "OK");
        break;
1298
1299
    case 's':
        if (*p != '\0') {
1300
            addr = strtoull(p, (char **)&p, 16);
1301
#if defined(TARGET_I386)
1302
            s->c_cpu->eip = addr;
bellard authored
1303
#elif defined (TARGET_PPC)
1304
            s->c_cpu->nip = addr;
bellard authored
1305
#elif defined (TARGET_SPARC)
1306
1307
            s->c_cpu->pc = addr;
            s->c_cpu->npc = addr + 4;
1308
#elif defined (TARGET_ARM)
1309
            s->c_cpu->regs[15] = addr;
bellard authored
1310
#elif defined (TARGET_SH4)
1311
            s->c_cpu->pc = addr;
1312
#elif defined (TARGET_MIPS)
1313
            s->c_cpu->active_tc.PC = addr;
1314
#elif defined (TARGET_CRIS)
1315
            s->c_cpu->pc = addr;
1316
#endif
1317
        }
1318
        cpu_single_step(s->c_cpu, sstep_flags);
1319
        gdb_continue(s);
bellard authored
1320
	return RS_IDLE;
pbrook authored
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
    case 'F':
        {
            target_ulong ret;
            target_ulong err;

            ret = strtoull(p, (char **)&p, 16);
            if (*p == ',') {
                p++;
                err = strtoull(p, (char **)&p, 16);
            } else {
                err = 0;
            }
            if (*p == ',')
                p++;
            type = *p;
            if (gdb_current_syscall_cb)
1337
                gdb_current_syscall_cb(s->c_cpu, ret, err);
pbrook authored
1338
1339
1340
            if (type == 'C') {
                put_packet(s, "T02");
            } else {
1341
                gdb_continue(s);
pbrook authored
1342
1343
1344
            }
        }
        break;
1345
    case 'g':
1346
1347
        len = 0;
        for (addr = 0; addr < num_g_regs; addr++) {
1348
            reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr);
1349
1350
1351
            len += reg_size;
        }
        memtohex(buf, mem_buf, len);
1352
1353
1354
        put_packet(s, buf);
        break;
    case 'G':
1355
        registers = mem_buf;
1356
1357
        len = strlen(p) / 2;
        hextomem((uint8_t *)registers, p, len);
1358
        for (addr = 0; addr < num_g_regs && len > 0; addr++) {
1359
            reg_size = gdb_write_register(s->g_cpu, registers, addr);
1360
1361
1362
            len -= reg_size;
            registers += reg_size;
        }
1363
1364
1365
        put_packet(s, "OK");
        break;
    case 'm':
1366
        addr = strtoull(p, (char **)&p, 16);
1367
1368
        if (*p == ',')
            p++;
1369
        len = strtoull(p, NULL, 16);
1370
        if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 0) != 0) {
1371
1372
1373
1374
1375
            put_packet (s, "E14");
        } else {
            memtohex(buf, mem_buf, len);
            put_packet(s, buf);
        }
1376
1377
        break;
    case 'M':
1378
        addr = strtoull(p, (char **)&p, 16);
1379
1380
        if (*p == ',')
            p++;
1381
        len = strtoull(p, (char **)&p, 16);
1382
        if (*p == ':')
1383
1384
            p++;
        hextomem(mem_buf, p, len);
1385
        if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 1) != 0)
1386
            put_packet(s, "E14");
1387
1388
1389
        else
            put_packet(s, "OK");
        break;
1390
1391
1392
1393
1394
1395
1396
    case 'p':
        /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
           This works, but can be very slow.  Anything new enough to
           understand XML also knows how to use this properly.  */
        if (!gdb_has_xml)
            goto unknown_command;
        addr = strtoull(p, (char **)&p, 16);
1397
        reg_size = gdb_read_register(s->g_cpu, mem_buf, addr);
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
        if (reg_size) {
            memtohex(buf, mem_buf, reg_size);
            put_packet(s, buf);
        } else {
            put_packet(s, "E14");
        }
        break;
    case 'P':
        if (!gdb_has_xml)
            goto unknown_command;
        addr = strtoull(p, (char **)&p, 16);
        if (*p == '=')
            p++;
        reg_size = strlen(p) / 2;
        hextomem(mem_buf, p, reg_size);
1413
        gdb_write_register(s->g_cpu, mem_buf, addr);
1414
1415
        put_packet(s, "OK");
        break;
1416
1417
1418
1419
1420
    case 'Z':
    case 'z':
        type = strtoul(p, (char **)&p, 16);
        if (*p == ',')
            p++;
1421
        addr = strtoull(p, (char **)&p, 16);
1422
1423
        if (*p == ',')
            p++;
1424
        len = strtoull(p, (char **)&p, 16);
1425
        if (ch == 'Z')
1426
            res = gdb_breakpoint_insert(addr, len, type);
1427
        else
1428
            res = gdb_breakpoint_remove(addr, len, type);
1429
1430
1431
        if (res >= 0)
             put_packet(s, "OK");
        else if (res == -ENOSYS)
pbrook authored
1432
            put_packet(s, "");
1433
1434
        else
            put_packet(s, "E22");
1435
        break;
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
    case 'H':
        type = *p++;
        thread = strtoull(p, (char **)&p, 16);
        if (thread == -1 || thread == 0) {
            put_packet(s, "OK");
            break;
        }
        for (env = first_cpu; env != NULL; env = env->next_cpu)
            if (env->cpu_index + 1 == thread)
                break;
        if (env == NULL) {
            put_packet(s, "E22");
            break;
        }
        switch (type) {
        case 'c':
            s->c_cpu = env;
            put_packet(s, "OK");
            break;
        case 'g':
            s->g_cpu = env;
            put_packet(s, "OK");
            break;
        default:
             put_packet(s, "E22");
             break;
        }
        break;
    case 'T':
        thread = strtoull(p, (char **)&p, 16);
#ifndef CONFIG_USER_ONLY
        if (thread > 0 && thread < smp_cpus + 1)
#else
        if (thread == 1)
#endif
             put_packet(s, "OK");
        else
            put_packet(s, "E22");
        break;
1475
    case 'q':
1476
1477
1478
1479
    case 'Q':
        /* parse any 'q' packets here */
        if (!strcmp(p,"qemu.sstepbits")) {
            /* Query Breakpoint bit definitions */
1480
1481
1482
1483
            snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
                     SSTEP_ENABLE,
                     SSTEP_NOIRQ,
                     SSTEP_NOTIMER);
1484
1485
1486
1487
1488
1489
1490
            put_packet(s, buf);
            break;
        } else if (strncmp(p,"qemu.sstep",10) == 0) {
            /* Display or change the sstep_flags */
            p += 10;
            if (*p != '=') {
                /* Display current setting */
1491
                snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
1492
1493
1494
1495
1496
1497
1498
1499
                put_packet(s, buf);
                break;
            }
            p++;
            type = strtoul(p, (char **)&p, 16);
            sstep_flags = type;
            put_packet(s, "OK");
            break;
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
        } else if (strcmp(p,"C") == 0) {
            /* "Current thread" remains vague in the spec, so always return
             *  the first CPU (gdb returns the first thread). */
            put_packet(s, "QC1");
            break;
        } else if (strcmp(p,"fThreadInfo") == 0) {
            s->query_cpu = first_cpu;
            goto report_cpuinfo;
        } else if (strcmp(p,"sThreadInfo") == 0) {
        report_cpuinfo:
            if (s->query_cpu) {
                snprintf(buf, sizeof(buf), "m%x", s->query_cpu->cpu_index+1);
                put_packet(s, buf);
                s->query_cpu = s->query_cpu->next_cpu;
            } else
                put_packet(s, "l");
            break;
        } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
            thread = strtoull(p+16, (char **)&p, 16);
            for (env = first_cpu; env != NULL; env = env->next_cpu)
                if (env->cpu_index + 1 == thread) {
                    len = snprintf((char *)mem_buf, sizeof(mem_buf),
                                   "CPU#%d [%s]", env->cpu_index,
                                   env->halted ? "halted " : "running");
                    memtohex(buf, mem_buf, len);
                    put_packet(s, buf);
                    break;
                }
            break;
1529
1530
1531
        }
#ifdef CONFIG_LINUX_USER
        else if (strncmp(p, "Offsets", 7) == 0) {
1532
            TaskState *ts = s->c_cpu->opaque;
1533
1534
1535
1536
1537
1538
1539
            snprintf(buf, sizeof(buf),
                     "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
                     ";Bss=" TARGET_ABI_FMT_lx,
                     ts->info->code_offset,
                     ts->info->data_offset,
                     ts->info->data_offset);
1540
1541
1542
1543
            put_packet(s, buf);
            break;
        }
#endif
1544
        if (strncmp(p, "Supported", 9) == 0) {
1545
            snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
#ifdef GDB_CORE_XML
            strcat(buf, ";qXfer:features:read+");
#endif
            put_packet(s, buf);
            break;
        }
#ifdef GDB_CORE_XML
        if (strncmp(p, "Xfer:features:read:", 19) == 0) {
            const char *xml;
            target_ulong total_len;

            gdb_has_xml = 1;
            p += 19;
1559
            xml = get_feature_xml(p, &p);
1560
            if (!xml) {
1561
                snprintf(buf, sizeof(buf), "E00");
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
                put_packet(s, buf);
                break;
            }

            if (*p == ':')
                p++;
            addr = strtoul(p, (char **)&p, 16);
            if (*p == ',')
                p++;
            len = strtoul(p, (char **)&p, 16);

            total_len = strlen(xml);
            if (addr > total_len) {
1575
                snprintf(buf, sizeof(buf), "E00");
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
                put_packet(s, buf);
                break;
            }
            if (len > (MAX_PACKET_LENGTH - 5) / 2)
                len = (MAX_PACKET_LENGTH - 5) / 2;
            if (len < total_len - addr) {
                buf[0] = 'm';
                len = memtox(buf + 1, xml + addr, len);
            } else {
                buf[0] = 'l';
                len = memtox(buf + 1, xml + addr, total_len - addr);
            }
            put_packet_binary(s, buf, len + 1);
            break;
        }
#endif
        /* Unrecognised 'q' command.  */
        goto unknown_command;
1595
    default:
1596
    unknown_command:
1597
1598
1599
1600
1601
1602
1603
1604
        /* put empty packet */
        buf[0] = '\0';
        put_packet(s, buf);
        break;
    }
    return RS_IDLE;
}
bellard authored
1605
1606
extern void tb_flush(CPUState *env);
1607
1608
1609
1610
1611
1612
void gdb_set_stop_cpu(CPUState *env)
{
    gdbserver_state->c_cpu = env;
    gdbserver_state->g_cpu = env;
}
1613
#ifndef CONFIG_USER_ONLY
1614
1615
static void gdb_vm_stopped(void *opaque, int reason)
{
1616
1617
    GDBState *s = gdbserver_state;
    CPUState *env = s->c_cpu;
1618
    char buf[256];
1619
    const char *type;
1620
1621
    int ret;
pbrook authored
1622
1623
1624
    if (s->state == RS_SYSCALL)
        return;
1625
    /* disable single step if it was enable */
1626
    cpu_single_step(env, 0);
1627
bellard authored
1628
    if (reason == EXCP_DEBUG) {
1629
1630
        if (env->watchpoint_hit) {
            switch (env->watchpoint_hit->flags & BP_MEM_ACCESS) {
1631
            case BP_MEM_READ:
1632
1633
                type = "r";
                break;
1634
            case BP_MEM_ACCESS:
1635
1636
1637
1638
1639
1640
                type = "a";
                break;
            default:
                type = "";
                break;
            }
1641
1642
1643
1644
            snprintf(buf, sizeof(buf),
                     "T%02xthread:%02x;%swatch:" TARGET_FMT_lx ";",
                     SIGTRAP, env->cpu_index+1, type,
                     env->watchpoint_hit->vaddr);
1645
            put_packet(s, buf);
1646
            env->watchpoint_hit = NULL;
1647
1648
            return;
        }
1649
	tb_flush(env);
1650
        ret = SIGTRAP;
1651
1652
1653
    } else if (reason == EXCP_INTERRUPT) {
        ret = SIGINT;
    } else {
1654
        ret = 0;
1655
    }
1656
    snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, env->cpu_index+1);
1657
1658
    put_packet(s, buf);
}
1659
#endif
1660
pbrook authored
1661
1662
/* Send a gdb syscall request.
   This accepts limited printf-style format specifiers, specifically:
pbrook authored
1663
1664
1665
    %x  - target_ulong argument printed in hex.
    %lx - 64-bit argument printed in hex.
    %s  - string pointer (target_ulong) and length (int) pair.  */
1666
void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
pbrook authored
1667
1668
1669
1670
1671
{
    va_list va;
    char buf[256];
    char *p;
    target_ulong addr;
pbrook authored
1672
    uint64_t i64;
pbrook authored
1673
1674
    GDBState *s;
1675
    s = gdbserver_state;
pbrook authored
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
    if (!s)
        return;
    gdb_current_syscall_cb = cb;
    s->state = RS_SYSCALL;
#ifndef CONFIG_USER_ONLY
    vm_stop(EXCP_DEBUG);
#endif
    s->state = RS_IDLE;
    va_start(va, fmt);
    p = buf;
    *(p++) = 'F';
    while (*fmt) {
        if (*fmt == '%') {
            fmt++;
            switch (*fmt++) {
            case 'x':
                addr = va_arg(va, target_ulong);
1693
                p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx, addr);
pbrook authored
1694
                break;
pbrook authored
1695
1696
1697
1698
            case 'l':
                if (*(fmt++) != 'x')
                    goto bad_format;
                i64 = va_arg(va, uint64_t);
1699
                p += snprintf(p, &buf[sizeof(buf)] - p, "%" PRIx64, i64);
pbrook authored
1700
                break;
pbrook authored
1701
1702
            case 's':
                addr = va_arg(va, target_ulong);
1703
1704
                p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx "/%x",
                              addr, va_arg(va, int));
pbrook authored
1705
1706
                break;
            default:
pbrook authored
1707
            bad_format:
pbrook authored
1708
1709
1710
1711
1712
1713
1714
1715
                fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
                        fmt - 1);
                break;
            }
        } else {
            *(p++) = *(fmt++);
        }
    }
1716
    *p = 0;
pbrook authored
1717
1718
1719
    va_end(va);
    put_packet(s, buf);
#ifdef CONFIG_USER_ONLY
1720
    gdb_handlesig(s->c_cpu, 0);
pbrook authored
1721
#else
1722
    cpu_interrupt(s->c_cpu, CPU_INTERRUPT_EXIT);
pbrook authored
1723
1724
1725
#endif
}
bellard authored
1726
static void gdb_read_byte(GDBState *s, int ch)
1727
1728
{
    int i, csum;
1729
    uint8_t reply;
1730
1731
#ifndef CONFIG_USER_ONLY
1732
1733
1734
1735
1736
1737
1738
    if (s->last_packet_len) {
        /* Waiting for a response to the last packet.  If we see the start
           of a new command then abandon the previous response.  */
        if (ch == '-') {
#ifdef DEBUG_GDB
            printf("Got NACK, retransmitting\n");
#endif
1739
            put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
        }
#ifdef DEBUG_GDB
        else if (ch == '+')
            printf("Got ACK\n");
        else
            printf("Got '%c' when expecting ACK/NACK\n", ch);
#endif
        if (ch == '+' || ch == '$')
            s->last_packet_len = 0;
        if (ch != '$')
            return;
    }
1752
1753
1754
1755
    if (vm_running) {
        /* when the CPU is running, we cannot do anything except stop
           it when receiving a char */
        vm_stop(EXCP_INTERRUPT);
1756
    } else
1757
#endif
bellard authored
1758
    {
1759
1760
1761
1762
1763
        switch(s->state) {
        case RS_IDLE:
            if (ch == '$') {
                s->line_buf_index = 0;
                s->state = RS_GETLINE;
1764
            }
bellard authored
1765
            break;
1766
1767
1768
1769
1770
        case RS_GETLINE:
            if (ch == '#') {
            s->state = RS_CHKSUM1;
            } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
                s->state = RS_IDLE;
bellard authored
1771
            } else {
1772
            s->line_buf[s->line_buf_index++] = ch;
bellard authored
1773
1774
            }
            break;
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
        case RS_CHKSUM1:
            s->line_buf[s->line_buf_index] = '\0';
            s->line_csum = fromhex(ch) << 4;
            s->state = RS_CHKSUM2;
            break;
        case RS_CHKSUM2:
            s->line_csum |= fromhex(ch);
            csum = 0;
            for(i = 0; i < s->line_buf_index; i++) {
                csum += s->line_buf[i];
            }
            if (s->line_csum != (csum & 0xff)) {
1787
1788
                reply = '-';
                put_buffer(s, &reply, 1);
1789
                s->state = RS_IDLE;
bellard authored
1790
            } else {
1791
1792
                reply = '+';
                put_buffer(s, &reply, 1);
1793
                s->state = gdb_handle_packet(s, s->line_buf);
bellard authored
1794
1795
            }
            break;
pbrook authored
1796
1797
        default:
            abort();
1798
1799
1800
1801
        }
    }
}
1802
1803
1804
1805
1806
1807
1808
1809
#ifdef CONFIG_USER_ONLY
int
gdb_handlesig (CPUState *env, int sig)
{
  GDBState *s;
  char buf[256];
  int n;
1810
  s = gdbserver_state;
1811
1812
  if (gdbserver_fd < 0 || s->fd < 0)
    return sig;
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822

  /* disable single step if it was enabled */
  cpu_single_step(env, 0);
  tb_flush(env);

  if (sig != 0)
    {
      snprintf(buf, sizeof(buf), "S%02x", sig);
      put_packet(s, buf);
    }
1823
1824
1825
1826
  /* put_packet() might have detected that the peer terminated the 
     connection.  */
  if (s->fd < 0)
      return sig;
1827
1828
1829

  sig = 0;
  s->state = RS_IDLE;
bellard authored
1830
1831
  s->running_state = 0;
  while (s->running_state == 0) {
1832
1833
1834
1835
1836
1837
      n = read (s->fd, buf, 256);
      if (n > 0)
        {
          int i;

          for (i = 0; i < n; i++)
bellard authored
1838
            gdb_read_byte (s, buf[i]);
1839
1840
1841
1842
1843
1844
1845
        }
      else if (n == 0 || errno != EAGAIN)
        {
          /* XXX: Connection closed.  Should probably wait for annother
             connection before continuing.  */
          return sig;
        }
bellard authored
1846
  }
1847
1848
  sig = s->signal;
  s->signal = 0;
1849
1850
  return sig;
}
1851
1852
1853
1854
1855
1856
1857

/* Tell the remote gdb that the process has exited.  */
void gdb_exit(CPUState *env, int code)
{
  GDBState *s;
  char buf[4];
1858
  s = gdbserver_state;
1859
1860
  if (gdbserver_fd < 0 || s->fd < 0)
    return;
1861
1862
1863
1864
1865

  snprintf(buf, sizeof(buf), "W%02x", code);
  put_packet(s, buf);
}
1866
1867
static void gdb_accept(void)
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
{
    GDBState *s;
    struct sockaddr_in sockaddr;
    socklen_t len;
    int val, fd;

    for(;;) {
        len = sizeof(sockaddr);
        fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
        if (fd < 0 && errno != EINTR) {
            perror("accept");
            return;
        } else if (fd >= 0) {
bellard authored
1881
1882
1883
            break;
        }
    }
1884
1885
1886

    /* set short latency */
    val = 1;
bellard authored
1887
    setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
1888
1889
1890
1891
1892
1893
1894
1895
    s = qemu_mallocz(sizeof(GDBState));
    if (!s) {
        errno = ENOMEM;
        perror("accept");
        return;
    }
1896
    memset (s, 0, sizeof (GDBState));
1897
1898
    s->c_cpu = first_cpu;
    s->g_cpu = first_cpu;
1899
    s->fd = fd;
1900
    gdb_has_xml = 0;
1901
1902
    gdbserver_state = s;
pbrook authored
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
    fcntl(fd, F_SETFL, O_NONBLOCK);
}

static int gdbserver_open(int port)
{
    struct sockaddr_in sockaddr;
    int fd, val, ret;

    fd = socket(PF_INET, SOCK_STREAM, 0);
    if (fd < 0) {
        perror("socket");
        return -1;
    }

    /* allow fast reuse */
    val = 1;
bellard authored
1920
    setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

    sockaddr.sin_family = AF_INET;
    sockaddr.sin_port = htons(port);
    sockaddr.sin_addr.s_addr = 0;
    ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
    if (ret < 0) {
        perror("bind");
        return -1;
    }
    ret = listen(fd, 0);
    if (ret < 0) {
        perror("listen");
        return -1;
    }
    return fd;
}

int gdbserver_start(int port)
{
    gdbserver_fd = gdbserver_open(port);
    if (gdbserver_fd < 0)
        return -1;
    /* accept connections */
1944
    gdb_accept();
1945
1946
    return 0;
}
1947
#else
ths authored
1948
static int gdb_chr_can_receive(void *opaque)
1949
{
1950
1951
1952
  /* We can handle an arbitrarily large amount of data.
   Pick the maximum packet size, which is as good as anything.  */
  return MAX_PACKET_LENGTH;
1953
1954
}
ths authored
1955
static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
1956
1957
1958
1959
{
    int i;

    for (i = 0; i < size; i++) {
1960
        gdb_read_byte(gdbserver_state, buf[i]);
1961
1962
1963
1964
1965
1966
1967
1968
    }
}

static void gdb_chr_event(void *opaque, int event)
{
    switch (event) {
    case CHR_EVENT_RESET:
        vm_stop(EXCP_INTERRUPT);
1969
        gdb_has_xml = 0;
1970
1971
1972
1973
1974
1975
        break;
    default:
        break;
    }
}
1976
int gdbserver_start(const char *port)
1977
1978
{
    GDBState *s;
1979
1980
1981
1982
1983
1984
1985
    char gdbstub_port_name[128];
    int port_num;
    char *p;
    CharDriverState *chr;

    if (!port || !*port)
      return -1;
1986
1987
1988
1989
1990
1991
1992
1993
1994
    port_num = strtol(port, &p, 10);
    if (*p == 0) {
        /* A numeric value is interpreted as a port number.  */
        snprintf(gdbstub_port_name, sizeof(gdbstub_port_name),
                 "tcp::%d,nowait,nodelay,server", port_num);
        port = gdbstub_port_name;
    }
1995
    chr = qemu_chr_open("gdb", port);
1996
1997
1998
1999
2000
2001
2002
    if (!chr)
        return -1;

    s = qemu_mallocz(sizeof(GDBState));
    if (!s) {
        return -1;
    }
2003
2004
    s->c_cpu = first_cpu;
    s->g_cpu = first_cpu;
2005
    s->chr = chr;
2006
    gdbserver_state = s;
ths authored
2007
    qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
2008
2009
                          gdb_chr_event, NULL);
    qemu_add_vm_stop_handler(gdb_vm_stopped, NULL);
bellard authored
2010
2011
    return 0;
}
2012
#endif