Blame view

gdbstub.c 63.5 KB
bellard authored
1
2
/*
 * gdb server stub
3
 *
bellard authored
4
 * Copyright (c) 2003-2005 Fabrice Bellard
bellard authored
5
6
7
8
9
10
11
12
13
14
15
16
17
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA  02110-1301 USA
bellard authored
19
 */
20
#include "config.h"
21
#include "qemu-common.h"
22
23
24
25
26
27
28
#ifdef CONFIG_USER_ONLY
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
29
#include <fcntl.h>
30
31
32

#include "qemu.h"
#else
33
#include "monitor.h"
pbrook authored
34
35
36
#include "qemu-char.h"
#include "sysemu.h"
#include "gdbstub.h"
37
#endif
38
39
40
#define MAX_PACKET_LENGTH 4096
bellard authored
41
#include "qemu_socket.h"
42
#include "kvm.h"
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91


enum {
    GDB_SIGNAL_0 = 0,
    GDB_SIGNAL_INT = 2,
    GDB_SIGNAL_TRAP = 5,
    GDB_SIGNAL_UNKNOWN = 143
};

#ifdef CONFIG_USER_ONLY

/* Map target signal numbers to GDB protocol signal numbers and vice
 * versa.  For user emulation's currently supported systems, we can
 * assume most signals are defined.
 */

static int gdb_signal_table[] = {
    0,
    TARGET_SIGHUP,
    TARGET_SIGINT,
    TARGET_SIGQUIT,
    TARGET_SIGILL,
    TARGET_SIGTRAP,
    TARGET_SIGABRT,
    -1, /* SIGEMT */
    TARGET_SIGFPE,
    TARGET_SIGKILL,
    TARGET_SIGBUS,
    TARGET_SIGSEGV,
    TARGET_SIGSYS,
    TARGET_SIGPIPE,
    TARGET_SIGALRM,
    TARGET_SIGTERM,
    TARGET_SIGURG,
    TARGET_SIGSTOP,
    TARGET_SIGTSTP,
    TARGET_SIGCONT,
    TARGET_SIGCHLD,
    TARGET_SIGTTIN,
    TARGET_SIGTTOU,
    TARGET_SIGIO,
    TARGET_SIGXCPU,
    TARGET_SIGXFSZ,
    TARGET_SIGVTALRM,
    TARGET_SIGPROF,
    TARGET_SIGWINCH,
    -1, /* SIGLOST */
    TARGET_SIGUSR1,
    TARGET_SIGUSR2,
blueswir1 authored
92
#ifdef TARGET_SIGPWR
93
    TARGET_SIGPWR,
blueswir1 authored
94
95
96
#else
    -1,
#endif
97
98
99
100
101
102
103
104
105
106
107
108
    -1, /* SIGPOLL */
    -1,
    -1,
    -1,
    -1,
    -1,
    -1,
    -1,
    -1,
    -1,
    -1,
    -1,
blueswir1 authored
109
#ifdef __SIGRTMIN
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
    __SIGRTMIN + 1,
    __SIGRTMIN + 2,
    __SIGRTMIN + 3,
    __SIGRTMIN + 4,
    __SIGRTMIN + 5,
    __SIGRTMIN + 6,
    __SIGRTMIN + 7,
    __SIGRTMIN + 8,
    __SIGRTMIN + 9,
    __SIGRTMIN + 10,
    __SIGRTMIN + 11,
    __SIGRTMIN + 12,
    __SIGRTMIN + 13,
    __SIGRTMIN + 14,
    __SIGRTMIN + 15,
    __SIGRTMIN + 16,
    __SIGRTMIN + 17,
    __SIGRTMIN + 18,
    __SIGRTMIN + 19,
    __SIGRTMIN + 20,
    __SIGRTMIN + 21,
    __SIGRTMIN + 22,
    __SIGRTMIN + 23,
    __SIGRTMIN + 24,
    __SIGRTMIN + 25,
    __SIGRTMIN + 26,
    __SIGRTMIN + 27,
    __SIGRTMIN + 28,
    __SIGRTMIN + 29,
    __SIGRTMIN + 30,
    __SIGRTMIN + 31,
    -1, /* SIGCANCEL */
    __SIGRTMIN,
    __SIGRTMIN + 32,
    __SIGRTMIN + 33,
    __SIGRTMIN + 34,
    __SIGRTMIN + 35,
    __SIGRTMIN + 36,
    __SIGRTMIN + 37,
    __SIGRTMIN + 38,
    __SIGRTMIN + 39,
    __SIGRTMIN + 40,
    __SIGRTMIN + 41,
    __SIGRTMIN + 42,
    __SIGRTMIN + 43,
    __SIGRTMIN + 44,
    __SIGRTMIN + 45,
    __SIGRTMIN + 46,
    __SIGRTMIN + 47,
    __SIGRTMIN + 48,
    __SIGRTMIN + 49,
    __SIGRTMIN + 50,
    __SIGRTMIN + 51,
    __SIGRTMIN + 52,
    __SIGRTMIN + 53,
    __SIGRTMIN + 54,
    __SIGRTMIN + 55,
    __SIGRTMIN + 56,
    __SIGRTMIN + 57,
    __SIGRTMIN + 58,
    __SIGRTMIN + 59,
    __SIGRTMIN + 60,
    __SIGRTMIN + 61,
    __SIGRTMIN + 62,
    __SIGRTMIN + 63,
    __SIGRTMIN + 64,
    __SIGRTMIN + 65,
    __SIGRTMIN + 66,
    __SIGRTMIN + 67,
    __SIGRTMIN + 68,
    __SIGRTMIN + 69,
    __SIGRTMIN + 70,
    __SIGRTMIN + 71,
    __SIGRTMIN + 72,
    __SIGRTMIN + 73,
    __SIGRTMIN + 74,
    __SIGRTMIN + 75,
    __SIGRTMIN + 76,
    __SIGRTMIN + 77,
    __SIGRTMIN + 78,
    __SIGRTMIN + 79,
    __SIGRTMIN + 80,
    __SIGRTMIN + 81,
    __SIGRTMIN + 82,
    __SIGRTMIN + 83,
    __SIGRTMIN + 84,
    __SIGRTMIN + 85,
    __SIGRTMIN + 86,
    __SIGRTMIN + 87,
    __SIGRTMIN + 88,
    __SIGRTMIN + 89,
    __SIGRTMIN + 90,
    __SIGRTMIN + 91,
    __SIGRTMIN + 92,
    __SIGRTMIN + 93,
    __SIGRTMIN + 94,
    __SIGRTMIN + 95,
    -1, /* SIGINFO */
    -1, /* UNKNOWN */
    -1, /* DEFAULT */
    -1,
    -1,
    -1,
    -1,
    -1,
    -1
blueswir1 authored
216
#endif
217
};
bellard authored
218
#else
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
/* In system mode we only need SIGINT and SIGTRAP; other signals
   are not yet supported.  */

enum {
    TARGET_SIGINT = 2,
    TARGET_SIGTRAP = 5
};

static int gdb_signal_table[] = {
    -1,
    -1,
    TARGET_SIGINT,
    -1,
    -1,
    TARGET_SIGTRAP
};
#endif

#ifdef CONFIG_USER_ONLY
static int target_signal_to_gdb (int sig)
{
    int i;
    for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
        if (gdb_signal_table[i] == sig)
            return i;
    return GDB_SIGNAL_UNKNOWN;
}
bellard authored
246
#endif
bellard authored
247
248
249
250
251
252
253
254
255
static int gdb_signal_to_target (int sig)
{
    if (sig < ARRAY_SIZE (gdb_signal_table))
        return gdb_signal_table[sig];
    else
        return -1;
}
bellard authored
256
//#define DEBUG_GDB
bellard authored
257
258
259
260
261
262
263
264
265
266
typedef struct GDBRegisterState {
    int base_reg;
    int num_regs;
    gdb_reg_cb get_reg;
    gdb_reg_cb set_reg;
    const char *xml;
    struct GDBRegisterState *next;
} GDBRegisterState;
267
enum RSState {
268
    RS_INACTIVE,
269
270
271
272
    RS_IDLE,
    RS_GETLINE,
    RS_CHKSUM1,
    RS_CHKSUM2,
pbrook authored
273
    RS_SYSCALL,
274
275
};
typedef struct GDBState {
276
277
278
    CPUState *c_cpu; /* current CPU for step/continue ops */
    CPUState *g_cpu; /* current CPU for other ops */
    CPUState *query_cpu; /* for q{f|s}ThreadInfo */
bellard authored
279
    enum RSState state; /* parsing state */
280
    char line_buf[MAX_PACKET_LENGTH];
281
282
    int line_buf_index;
    int line_csum;
283
    uint8_t last_packet[MAX_PACKET_LENGTH + 4];
284
    int last_packet_len;
285
    int signal;
bellard authored
286
#ifdef CONFIG_USER_ONLY
287
    int fd;
bellard authored
288
    int running_state;
289
290
#else
    CharDriverState *chr;
291
    CharDriverState *mon_chr;
bellard authored
292
#endif
293
} GDBState;
bellard authored
294
295
296
297
298
299
/* By default use no IRQs and no timers while single stepping so as to
 * make single stepping like an ICE HW step.
 */
static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
300
301
static GDBState *gdbserver_state;
302
303
304
305
306
/* This is an ugly hack to cope with both new and old gdb.
   If gdb sends qXfer:features:read then assume we're talking to a newish
   gdb that understands target descriptions.  */
static int gdb_has_xml;
307
#ifdef CONFIG_USER_ONLY
308
309
310
/* XXX: This is not thread safe.  Do we care?  */
static int gdbserver_fd = -1;
311
static int get_char(GDBState *s)
bellard authored
312
313
314
315
316
{
    uint8_t ch;
    int ret;

    for(;;) {
bellard authored
317
        ret = recv(s->fd, &ch, 1, 0);
bellard authored
318
        if (ret < 0) {
319
320
            if (errno == ECONNRESET)
                s->fd = -1;
bellard authored
321
322
323
            if (errno != EINTR && errno != EAGAIN)
                return -1;
        } else if (ret == 0) {
324
325
            close(s->fd);
            s->fd = -1;
bellard authored
326
327
328
329
330
331
332
            return -1;
        } else {
            break;
        }
    }
    return ch;
}
333
#endif
bellard authored
334
pbrook authored
335
336
static gdb_syscall_complete_cb gdb_current_syscall_cb;
337
static enum {
pbrook authored
338
339
340
341
342
343
344
345
346
347
    GDB_SYS_UNKNOWN,
    GDB_SYS_ENABLED,
    GDB_SYS_DISABLED,
} gdb_syscall_mode;

/* If gdb is connected when the first semihosting syscall occurs then use
   remote gdb syscalls.  Otherwise use native file IO.  */
int use_gdb_syscalls(void)
{
    if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
348
349
        gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
                                            : GDB_SYS_DISABLED);
pbrook authored
350
351
352
353
    }
    return gdb_syscall_mode == GDB_SYS_ENABLED;
}
354
355
356
357
358
359
360
361
362
363
/* Resume execution.  */
static inline void gdb_continue(GDBState *s)
{
#ifdef CONFIG_USER_ONLY
    s->running_state = 1;
#else
    vm_start();
#endif
}
364
static void put_buffer(GDBState *s, const uint8_t *buf, int len)
bellard authored
365
{
366
#ifdef CONFIG_USER_ONLY
bellard authored
367
368
369
    int ret;

    while (len > 0) {
bellard authored
370
        ret = send(s->fd, buf, len, 0);
bellard authored
371
372
373
374
375
376
377
378
        if (ret < 0) {
            if (errno != EINTR && errno != EAGAIN)
                return;
        } else {
            buf += ret;
            len -= ret;
        }
    }
379
380
381
#else
    qemu_chr_write(s->chr, buf, len);
#endif
bellard authored
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
}

static inline int fromhex(int v)
{
    if (v >= '0' && v <= '9')
        return v - '0';
    else if (v >= 'A' && v <= 'F')
        return v - 'A' + 10;
    else if (v >= 'a' && v <= 'f')
        return v - 'a' + 10;
    else
        return 0;
}

static inline int tohex(int v)
{
    if (v < 10)
        return v + '0';
    else
        return v - 10 + 'a';
}

static void memtohex(char *buf, const uint8_t *mem, int len)
{
    int i, c;
    char *q;
    q = buf;
    for(i = 0; i < len; i++) {
        c = mem[i];
        *q++ = tohex(c >> 4);
        *q++ = tohex(c & 0xf);
    }
    *q = '\0';
}

static void hextomem(uint8_t *mem, const char *buf, int len)
{
    int i;

    for(i = 0; i < len; i++) {
        mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
        buf += 2;
    }
}

/* return -1 if error, 0 if OK */
428
static int put_packet_binary(GDBState *s, const char *buf, int len)
bellard authored
429
{
430
    int csum, i;
431
    uint8_t *p;
bellard authored
432
433

    for(;;) {
434
435
436
437
        p = s->last_packet;
        *(p++) = '$';
        memcpy(p, buf, len);
        p += len;
bellard authored
438
439
440
441
        csum = 0;
        for(i = 0; i < len; i++) {
            csum += buf[i];
        }
442
443
444
        *(p++) = '#';
        *(p++) = tohex((csum >> 4) & 0xf);
        *(p++) = tohex((csum) & 0xf);
bellard authored
445
446
        s->last_packet_len = p - s->last_packet;
447
        put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
bellard authored
448
449
450
451
#ifdef CONFIG_USER_ONLY
        i = get_char(s);
        if (i < 0)
bellard authored
452
            return -1;
453
        if (i == '+')
bellard authored
454
            break;
455
456
457
#else
        break;
#endif
bellard authored
458
459
460
461
    }
    return 0;
}
462
463
464
465
466
467
/* return -1 if error, 0 if OK */
static int put_packet(GDBState *s, const char *buf)
{
#ifdef DEBUG_GDB
    printf("reply='%s'\n", buf);
#endif
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
    return put_packet_binary(s, buf, strlen(buf));
}

/* The GDB remote protocol transfers values in target byte order.  This means
   we can use the raw memory access routines to access the value buffer.
   Conveniently, these also handle the case where the buffer is mis-aligned.
 */
#define GET_REG8(val) do { \
    stb_p(mem_buf, val); \
    return 1; \
    } while(0)
#define GET_REG16(val) do { \
    stw_p(mem_buf, val); \
    return 2; \
    } while(0)
#define GET_REG32(val) do { \
    stl_p(mem_buf, val); \
    return 4; \
    } while(0)
#define GET_REG64(val) do { \
    stq_p(mem_buf, val); \
    return 8; \
    } while(0)

#if TARGET_LONG_BITS == 64
#define GET_REGL(val) GET_REG64(val)
#define ldtul_p(addr) ldq_p(addr)
#else
#define GET_REGL(val) GET_REG32(val)
#define ldtul_p(addr) ldl_p(addr)
499
500
#endif
501
#if defined(TARGET_I386)
502
503

#ifdef TARGET_X86_64
504
505
506
507
static const int gpr_map[16] = {
    R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
    8, 9, 10, 11, 12, 13, 14, 15
};
508
#else
509
static const int gpr_map[8] = {0, 1, 2, 3, 4, 5, 6, 7};
510
511
#endif
512
513
#define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
514
515
516
517
518
519
520
#define IDX_IP_REG      CPU_NB_REGS
#define IDX_FLAGS_REG   (IDX_IP_REG + 1)
#define IDX_SEG_REGS    (IDX_FLAGS_REG + 1)
#define IDX_FP_REGS     (IDX_SEG_REGS + 6)
#define IDX_XMM_REGS    (IDX_FP_REGS + 16)
#define IDX_MXCSR_REG   (IDX_XMM_REGS + CPU_NB_REGS)
521
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
522
{
523
524
    if (n < CPU_NB_REGS) {
        GET_REGL(env->regs[gpr_map[n]]);
525
    } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
526
#ifdef USE_X86LDOUBLE
527
528
        /* FIXME: byteswap float values - after fixing fpregs layout. */
        memcpy(mem_buf, &env->fpregs[n - IDX_FP_REGS], 10);
529
#else
530
        memset(mem_buf, 0, 10);
531
#endif
532
        return 10;
533
534
535
536
537
    } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
        n -= IDX_XMM_REGS;
        stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0));
        stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1));
        return 16;
538
539
    } else {
        switch (n) {
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
        case IDX_IP_REG:    GET_REGL(env->eip);
        case IDX_FLAGS_REG: GET_REG32(env->eflags);

        case IDX_SEG_REGS:     GET_REG32(env->segs[R_CS].selector);
        case IDX_SEG_REGS + 1: GET_REG32(env->segs[R_SS].selector);
        case IDX_SEG_REGS + 2: GET_REG32(env->segs[R_DS].selector);
        case IDX_SEG_REGS + 3: GET_REG32(env->segs[R_ES].selector);
        case IDX_SEG_REGS + 4: GET_REG32(env->segs[R_FS].selector);
        case IDX_SEG_REGS + 5: GET_REG32(env->segs[R_GS].selector);

        case IDX_FP_REGS + 8:  GET_REG32(env->fpuc);
        case IDX_FP_REGS + 9:  GET_REG32((env->fpus & ~0x3800) |
                                         (env->fpstt & 0x7) << 11);
        case IDX_FP_REGS + 10: GET_REG32(0); /* ftag */
        case IDX_FP_REGS + 11: GET_REG32(0); /* fiseg */
        case IDX_FP_REGS + 12: GET_REG32(0); /* fioff */
        case IDX_FP_REGS + 13: GET_REG32(0); /* foseg */
        case IDX_FP_REGS + 14: GET_REG32(0); /* fooff */
        case IDX_FP_REGS + 15: GET_REG32(0); /* fop */

        case IDX_MXCSR_REG: GET_REG32(env->mxcsr);
561
        }
562
    }
563
    return 0;
bellard authored
564
565
}
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
static int cpu_x86_gdb_load_seg(CPUState *env, int sreg, uint8_t *mem_buf)
{
    uint16_t selector = ldl_p(mem_buf);

    if (selector != env->segs[sreg].selector) {
#if defined(CONFIG_USER_ONLY)
        cpu_x86_load_seg(env, sreg, selector);
#else
        unsigned int limit, flags;
        target_ulong base;

        if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
            base = selector << 4;
            limit = 0xffff;
            flags = 0;
        } else {
            if (!cpu_x86_get_descr_debug(env, selector, &base, &limit, &flags))
                return 4;
        }
        cpu_x86_load_seg_cache(env, sreg, selector, base, limit, flags);
#endif
    }
    return 4;
}
591
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
bellard authored
592
{
593
    uint32_t tmp;
bellard authored
594
595
596
    if (n < CPU_NB_REGS) {
        env->regs[gpr_map[n]] = ldtul_p(mem_buf);
597
        return sizeof(target_ulong);
598
    } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
599
#ifdef USE_X86LDOUBLE
600
601
        /* FIXME: byteswap float values - after fixing fpregs layout. */
        memcpy(&env->fpregs[n - IDX_FP_REGS], mem_buf, 10);
602
#endif
603
        return 10;
604
605
606
607
608
    } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
        n -= IDX_XMM_REGS;
        env->xmm_regs[n].XMM_Q(0) = ldq_p(mem_buf);
        env->xmm_regs[n].XMM_Q(1) = ldq_p(mem_buf + 8);
        return 16;
609
    } else {
610
611
612
613
614
615
616
617
        switch (n) {
        case IDX_IP_REG:
            env->eip = ldtul_p(mem_buf);
            return sizeof(target_ulong);
        case IDX_FLAGS_REG:
            env->eflags = ldl_p(mem_buf);
            return 4;
618
619
620
621
622
623
        case IDX_SEG_REGS:     return cpu_x86_gdb_load_seg(env, R_CS, mem_buf);
        case IDX_SEG_REGS + 1: return cpu_x86_gdb_load_seg(env, R_SS, mem_buf);
        case IDX_SEG_REGS + 2: return cpu_x86_gdb_load_seg(env, R_DS, mem_buf);
        case IDX_SEG_REGS + 3: return cpu_x86_gdb_load_seg(env, R_ES, mem_buf);
        case IDX_SEG_REGS + 4: return cpu_x86_gdb_load_seg(env, R_FS, mem_buf);
        case IDX_SEG_REGS + 5: return cpu_x86_gdb_load_seg(env, R_GS, mem_buf);
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642

        case IDX_FP_REGS + 8:
            env->fpuc = ldl_p(mem_buf);
            return 4;
        case IDX_FP_REGS + 9:
            tmp = ldl_p(mem_buf);
            env->fpstt = (tmp >> 11) & 7;
            env->fpus = tmp & ~0x3800;
            return 4;
        case IDX_FP_REGS + 10: /* ftag */  return 4;
        case IDX_FP_REGS + 11: /* fiseg */ return 4;
        case IDX_FP_REGS + 12: /* fioff */ return 4;
        case IDX_FP_REGS + 13: /* foseg */ return 4;
        case IDX_FP_REGS + 14: /* fooff */ return 4;
        case IDX_FP_REGS + 15: /* fop */   return 4;

        case IDX_MXCSR_REG:
            env->mxcsr = ldl_p(mem_buf);
            return 4;
643
644
        }
    }
645
646
    /* Unrecognised register.  */
    return 0;
bellard authored
647
648
}
bellard authored
649
650
#elif defined (TARGET_PPC)
651
652
653
654
655
/* Old gdb always expects FP registers.  Newer (xml-aware) gdb only
   expects whatever the target description contains.  Due to a
   historical mishap the FP registers appear in between core integer
   regs and PC, MSR, CR, and so forth.  We hack round this by giving the
   FP regs zero size when talking to a newer gdb.  */
656
#define NUM_CORE_REGS 71
657
658
659
660
661
#if defined (TARGET_PPC64)
#define GDB_CORE_XML "power64-core.xml"
#else
#define GDB_CORE_XML "power-core.xml"
#endif
bellard authored
662
663
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
bellard authored
664
{
665
666
667
668
669
    if (n < 32) {
        /* gprs */
        GET_REGL(env->gpr[n]);
    } else if (n < 64) {
        /* fprs */
670
671
        if (gdb_has_xml)
            return 0;
672
        stfq_p(mem_buf, env->fpr[n-32]);
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
        return 8;
    } else {
        switch (n) {
        case 64: GET_REGL(env->nip);
        case 65: GET_REGL(env->msr);
        case 66:
            {
                uint32_t cr = 0;
                int i;
                for (i = 0; i < 8; i++)
                    cr |= env->crf[i] << (32 - ((i + 1) * 4));
                GET_REG32(cr);
            }
        case 67: GET_REGL(env->lr);
        case 68: GET_REGL(env->ctr);
688
        case 69: GET_REGL(env->xer);
689
690
691
692
693
694
        case 70:
            {
                if (gdb_has_xml)
                    return 0;
                GET_REG32(0); /* fpscr */
            }
695
696
697
698
        }
    }
    return 0;
}
bellard authored
699
700
701
702
703
704
705
706
707
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
{
    if (n < 32) {
        /* gprs */
        env->gpr[n] = ldtul_p(mem_buf);
        return sizeof(target_ulong);
    } else if (n < 64) {
        /* fprs */
708
709
        if (gdb_has_xml)
            return 0;
710
        env->fpr[n-32] = ldfq_p(mem_buf);
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
        return 8;
    } else {
        switch (n) {
        case 64:
            env->nip = ldtul_p(mem_buf);
            return sizeof(target_ulong);
        case 65:
            ppc_store_msr(env, ldtul_p(mem_buf));
            return sizeof(target_ulong);
        case 66:
            {
                uint32_t cr = ldl_p(mem_buf);
                int i;
                for (i = 0; i < 8; i++)
                    env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
                return 4;
            }
        case 67:
            env->lr = ldtul_p(mem_buf);
            return sizeof(target_ulong);
        case 68:
            env->ctr = ldtul_p(mem_buf);
            return sizeof(target_ulong);
        case 69:
735
736
            env->xer = ldtul_p(mem_buf);
            return sizeof(target_ulong);
737
738
        case 70:
            /* fpscr */
739
740
            if (gdb_has_xml)
                return 0;
741
742
743
744
            return 4;
        }
    }
    return 0;
745
}
746
747
#elif defined (TARGET_SPARC)
748
749
750

#if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
#define NUM_CORE_REGS 86
751
#else
752
#define NUM_CORE_REGS 72
753
#endif
754
755
#ifdef TARGET_ABI32
756
#define GET_REGA(val) GET_REG32(val)
757
#else
758
#define GET_REGA(val) GET_REGL(val)
759
#endif
760
761
762
763
764
765
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
{
    if (n < 8) {
        /* g0..g7 */
        GET_REGA(env->gregs[n]);
766
    }
767
768
769
    if (n < 32) {
        /* register window */
        GET_REGA(env->regwptr[n - 8]);
770
    }
771
772
773
774
#if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
    if (n < 64) {
        /* fprs */
        GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
775
776
    }
    /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
777
778
779
780
781
782
783
784
785
    switch (n) {
    case 64: GET_REGA(env->y);
    case 65: GET_REGA(GET_PSR(env));
    case 66: GET_REGA(env->wim);
    case 67: GET_REGA(env->tbr);
    case 68: GET_REGA(env->pc);
    case 69: GET_REGA(env->npc);
    case 70: GET_REGA(env->fsr);
    case 71: GET_REGA(0); /* csr */
786
    default: GET_REGA(0);
787
    }
bellard authored
788
#else
789
790
791
792
793
794
795
    if (n < 64) {
        /* f0-f31 */
        GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
    }
    if (n < 80) {
        /* f32-f62 (double width, even numbers only) */
        uint64_t val;
796
797
798
799
        val = (uint64_t)*((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) << 32;
        val |= *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]);
        GET_REG64(val);
bellard authored
800
    }
801
802
803
804
    switch (n) {
    case 80: GET_REGL(env->pc);
    case 81: GET_REGL(env->npc);
    case 82: GET_REGL(((uint64_t)GET_CCR(env) << 32) |
805
806
807
                           ((env->asi & 0xff) << 24) |
                           ((env->pstate & 0xfff) << 8) |
                           GET_CWP64(env));
808
809
810
811
    case 83: GET_REGL(env->fsr);
    case 84: GET_REGL(env->fprs);
    case 85: GET_REGL(env->y);
    }
bellard authored
812
#endif
813
    return 0;
814
815
}
816
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
817
{
818
819
820
821
#if defined(TARGET_ABI32)
    abi_ulong tmp;

    tmp = ldl_p(mem_buf);
822
#else
823
824
825
    target_ulong tmp;

    tmp = ldtul_p(mem_buf);
826
#endif
827
828
829
830
831
832
833
    if (n < 8) {
        /* g0..g7 */
        env->gregs[n] = tmp;
    } else if (n < 32) {
        /* register window */
        env->regwptr[n - 8] = tmp;
834
    }
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
#if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
    else if (n < 64) {
        /* fprs */
        *((uint32_t *)&env->fpr[n - 32]) = tmp;
    } else {
        /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
        switch (n) {
        case 64: env->y = tmp; break;
        case 65: PUT_PSR(env, tmp); break;
        case 66: env->wim = tmp; break;
        case 67: env->tbr = tmp; break;
        case 68: env->pc = tmp; break;
        case 69: env->npc = tmp; break;
        case 70: env->fsr = tmp; break;
        default: return 0;
        }
851
    }
852
    return 4;
bellard authored
853
#else
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
    else if (n < 64) {
        /* f0-f31 */
        env->fpr[n] = ldfl_p(mem_buf);
        return 4;
    } else if (n < 80) {
        /* f32-f62 (double width, even numbers only) */
        *((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) = tmp >> 32;
        *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]) = tmp;
    } else {
        switch (n) {
        case 80: env->pc = tmp; break;
        case 81: env->npc = tmp; break;
        case 82:
	    PUT_CCR(env, tmp >> 32);
	    env->asi = (tmp >> 24) & 0xff;
	    env->pstate = (tmp >> 8) & 0xfff;
	    PUT_CWP64(env, tmp & 0xff);
	    break;
        case 83: env->fsr = tmp; break;
        case 84: env->fprs = tmp; break;
        case 85: env->y = tmp; break;
        default: return 0;
        }
877
    }
878
    return 8;
bellard authored
879
#endif
bellard authored
880
}
881
#elif defined (TARGET_ARM)
bellard authored
882
883
884
885
886
887
888
889
/* Old gdb always expect FPA registers.  Newer (xml-aware) gdb only expect
   whatever the target description contains.  Due to a historical mishap
   the FPA registers appear in between core integer regs and the CPSR.
   We hack round this by giving the FPA regs zero size when talking to a
   newer gdb.  */
#define NUM_CORE_REGS 26
#define GDB_CORE_XML "arm-core.xml"
pbrook authored
890
891
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
pbrook authored
892
{
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
    if (n < 16) {
        /* Core integer register.  */
        GET_REG32(env->regs[n]);
    }
    if (n < 24) {
        /* FPA registers.  */
        if (gdb_has_xml)
            return 0;
        memset(mem_buf, 0, 12);
        return 12;
    }
    switch (n) {
    case 24:
        /* FPA status register.  */
        if (gdb_has_xml)
            return 0;
        GET_REG32(0);
    case 25:
        /* CPSR */
        GET_REG32(cpsr_read(env));
    }
    /* Unknown register.  */
    return 0;
pbrook authored
916
}
917
918
919
920
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
{
    uint32_t tmp;
921
922
    tmp = ldl_p(mem_buf);
923
924
925
926
927
    /* Mask out low bit of PC to workaround gdb bugs.  This will probably
       cause problems if we ever implement the Jazelle DBX extensions.  */
    if (n == 15)
        tmp &= ~1;
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
    if (n < 16) {
        /* Core integer register.  */
        env->regs[n] = tmp;
        return 4;
    }
    if (n < 24) { /* 16-23 */
        /* FPA registers (ignored).  */
        if (gdb_has_xml)
            return 0;
        return 12;
    }
    switch (n) {
    case 24:
        /* FPA status register (ignored).  */
        if (gdb_has_xml)
            return 0;
        return 4;
    case 25:
        /* CPSR */
        cpsr_write (env, tmp, 0xffffffff);
        return 4;
    }
    /* Unknown register.  */
    return 0;
}
954
955
#elif defined (TARGET_M68K)
956
957
#define NUM_CORE_REGS 18
958
959
#define GDB_CORE_XML "cf-core.xml"
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
{
    if (n < 8) {
        /* D0-D7 */
        GET_REG32(env->dregs[n]);
    } else if (n < 16) {
        /* A0-A7 */
        GET_REG32(env->aregs[n - 8]);
    } else {
	switch (n) {
        case 16: GET_REG32(env->sr);
        case 17: GET_REG32(env->pc);
        }
    }
    /* FP registers not included here because they vary between
       ColdFire and m68k.  Use XML bits for these.  */
    return 0;
}
979
980
981
982
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
{
    uint32_t tmp;
983
984
    tmp = ldl_p(mem_buf);
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
    if (n < 8) {
        /* D0-D7 */
        env->dregs[n] = tmp;
    } else if (n < 8) {
        /* A0-A7 */
        env->aregs[n - 8] = tmp;
    } else {
        switch (n) {
        case 16: env->sr = tmp; break;
        case 17: env->pc = tmp; break;
        default: return 0;
        }
    }
    return 4;
}
#elif defined (TARGET_MIPS)
ths authored
1002
1003
#define NUM_CORE_REGS 73
ths authored
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
{
    if (n < 32) {
        GET_REGL(env->active_tc.gpr[n]);
    }
    if (env->CP0_Config1 & (1 << CP0C1_FP)) {
        if (n >= 38 && n < 70) {
            if (env->CP0_Status & (1 << CP0St_FR))
		GET_REGL(env->active_fpu.fpr[n - 38].d);
            else
		GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]);
        }
        switch (n) {
        case 70: GET_REGL((int32_t)env->active_fpu.fcr31);
        case 71: GET_REGL((int32_t)env->active_fpu.fcr0);
        }
    }
    switch (n) {
    case 32: GET_REGL((int32_t)env->CP0_Status);
    case 33: GET_REGL(env->active_tc.LO[0]);
    case 34: GET_REGL(env->active_tc.HI[0]);
    case 35: GET_REGL(env->CP0_BadVAddr);
    case 36: GET_REGL((int32_t)env->CP0_Cause);
    case 37: GET_REGL(env->active_tc.PC);
    case 72: GET_REGL(0); /* fp */
    case 89: GET_REGL((int32_t)env->CP0_PRid);
    }
    if (n >= 73 && n <= 88) {
	/* 16 embedded regs.  */
	GET_REGL(0);
    }
1036
1037
    return 0;
1038
1039
}
1040
1041
1042
1043
1044
1045
1046
1047
1048
/* convert MIPS rounding mode in FCR31 to IEEE library */
static unsigned int ieee_rm[] =
  {
    float_round_nearest_even,
    float_round_to_zero,
    float_round_up,
    float_round_down
  };
#define RESTORE_ROUNDING_MODE \
1049
    set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1050
1051
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1052
{
1053
    target_ulong tmp;
1054
1055
    tmp = ldtul_p(mem_buf);
1056
1057
1058
1059
1060
1061
1062
1063
    if (n < 32) {
        env->active_tc.gpr[n] = tmp;
        return sizeof(target_ulong);
    }
    if (env->CP0_Config1 & (1 << CP0C1_FP)
            && n >= 38 && n < 73) {
        if (n < 70) {
ths authored
1064
            if (env->CP0_Status & (1 << CP0St_FR))
1065
              env->active_fpu.fpr[n - 38].d = tmp;
ths authored
1066
            else
1067
1068
1069
1070
1071
1072
1073
              env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp;
        }
        switch (n) {
        case 70:
            env->active_fpu.fcr31 = tmp & 0xFF83FFFF;
            /* set rounding mode */
            RESTORE_ROUNDING_MODE;
1074
#ifndef CONFIG_SOFTFLOAT
1075
1076
            /* no floating point exception for native float */
            SET_FP_ENABLE(env->active_fpu.fcr31, 0);
1077
#endif
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
            break;
        case 71: env->active_fpu.fcr0 = tmp; break;
        }
        return sizeof(target_ulong);
    }
    switch (n) {
    case 32: env->CP0_Status = tmp; break;
    case 33: env->active_tc.LO[0] = tmp; break;
    case 34: env->active_tc.HI[0] = tmp; break;
    case 35: env->CP0_BadVAddr = tmp; break;
    case 36: env->CP0_Cause = tmp; break;
    case 37: env->active_tc.PC = tmp; break;
    case 72: /* fp, ignored */ break;
    default: 
	if (n > 89)
	    return 0;
	/* Other registers are readonly.  Ignore writes.  */
	break;
    }

    return sizeof(target_ulong);
1099
}
bellard authored
1100
#elif defined (TARGET_SH4)
1101
1102

/* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1103
1104
1105
/* FIXME: We should use XML for this.  */

#define NUM_CORE_REGS 59
1106
1107
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
bellard authored
1108
{
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
    if (n < 8) {
        if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
            GET_REGL(env->gregs[n + 16]);
        } else {
            GET_REGL(env->gregs[n]);
        }
    } else if (n < 16) {
        GET_REGL(env->gregs[n - 8]);
    } else if (n >= 25 && n < 41) {
	GET_REGL(env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
    } else if (n >= 43 && n < 51) {
	GET_REGL(env->gregs[n - 43]);
    } else if (n >= 51 && n < 59) {
	GET_REGL(env->gregs[n - (51 - 16)]);
    }
    switch (n) {
    case 16: GET_REGL(env->pc);
    case 17: GET_REGL(env->pr);
    case 18: GET_REGL(env->gbr);
    case 19: GET_REGL(env->vbr);
    case 20: GET_REGL(env->mach);
    case 21: GET_REGL(env->macl);
    case 22: GET_REGL(env->sr);
    case 23: GET_REGL(env->fpul);
    case 24: GET_REGL(env->fpscr);
    case 41: GET_REGL(env->ssr);
    case 42: GET_REGL(env->spc);
    }

    return 0;
bellard authored
1139
1140
}
1141
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
bellard authored
1142
{
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
    uint32_t tmp;

    tmp = ldl_p(mem_buf);

    if (n < 8) {
        if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
            env->gregs[n + 16] = tmp;
        } else {
            env->gregs[n] = tmp;
        }
	return 4;
    } else if (n < 16) {
        env->gregs[n - 8] = tmp;
	return 4;
    } else if (n >= 25 && n < 41) {
	env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)] = tmp;
    } else if (n >= 43 && n < 51) {
	env->gregs[n - 43] = tmp;
	return 4;
    } else if (n >= 51 && n < 59) {
	env->gregs[n - (51 - 16)] = tmp;
	return 4;
    }
    switch (n) {
    case 16: env->pc = tmp;
    case 17: env->pr = tmp;
    case 18: env->gbr = tmp;
    case 19: env->vbr = tmp;
    case 20: env->mach = tmp;
    case 21: env->macl = tmp;
    case 22: env->sr = tmp;
    case 23: env->fpul = tmp;
    case 24: env->fpscr = tmp;
    case 41: env->ssr = tmp;
    case 42: env->spc = tmp;
    default: return 0;
    }

    return 4;
bellard authored
1182
}
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
#elif defined (TARGET_MICROBLAZE)

#define NUM_CORE_REGS (32 + 5)

static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
{
    if (n < 32) {
	GET_REG32(env->regs[n]);
    } else {
	GET_REG32(env->sregs[n - 32]);
    }
    return 0;
}

static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
{
    uint32_t tmp;

    if (n > NUM_CORE_REGS)
	return 0;

    tmp = ldl_p(mem_buf);

    if (n < 32) {
	env->regs[n] = tmp;
    } else {
	env->sregs[n - 32] = tmp;
    }
    return 4;
}
1213
1214
#elif defined (TARGET_CRIS)
1215
1216
1217
#define NUM_CORE_REGS 49

static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1218
{
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
    uint8_t srs;

    srs = env->pregs[PR_SRS];
    if (n < 16) {
	GET_REG32(env->regs[n]);
    }

    if (n >= 21 && n < 32) {
	GET_REG32(env->pregs[n - 16]);
    }
    if (n >= 33 && n < 49) {
	GET_REG32(env->sregs[srs][n - 33]);
    }
    switch (n) {
    case 16: GET_REG8(env->pregs[0]);
    case 17: GET_REG8(env->pregs[1]);
    case 18: GET_REG32(env->pregs[2]);
    case 19: GET_REG8(srs);
    case 20: GET_REG16(env->pregs[4]);
    case 32: GET_REG32(env->pc);
    }

    return 0;
1242
}
1243
1244

static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1245
{
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
    uint32_t tmp;

    if (n > 49)
	return 0;

    tmp = ldl_p(mem_buf);

    if (n < 16) {
	env->regs[n] = tmp;
    }
1257
1258
1259
1260
1261
    if (n >= 21 && n < 32) {
	env->pregs[n - 16] = tmp;
    }

    /* FIXME: Should support function regs be writable?  */
1262
1263
1264
    switch (n) {
    case 16: return 1;
    case 17: return 1;
1265
    case 18: env->pregs[PR_PID] = tmp; break;
1266
1267
1268
1269
1270
1271
    case 19: return 1;
    case 20: return 2;
    case 32: env->pc = tmp; break;
    }

    return 4;
1272
}
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
#elif defined (TARGET_ALPHA)

#define NUM_CORE_REGS 65

static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
{
    if (n < 31) {
       GET_REGL(env->ir[n]);
    }
    else if (n == 31) {
       GET_REGL(0);
    }
    else if (n<63) {
       uint64_t val;

       val=*((uint64_t *)&env->fir[n-32]);
       GET_REGL(val);
    }
    else if (n==63) {
       GET_REGL(env->fpcr);
    }
    else if (n==64) {
       GET_REGL(env->pc);
    }
    else {
       GET_REGL(0);
    }

    return 0;
}

static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
{
    target_ulong tmp;
    tmp = ldtul_p(mem_buf);

    if (n < 31) {
        env->ir[n] = tmp;
    }

    if (n > 31 && n < 63) {
        env->fir[n - 32] = ldfl_p(mem_buf);
    }

    if (n == 64 ) {
       env->pc=tmp;
    }

    return 8;
}
1323
1324
1325
1326
1327
#else

#define NUM_CORE_REGS 0

static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1328
{
1329
    return 0;
1330
1331
}
1332
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1333
{
1334
1335
    return 0;
}
1336
1337
#endif
1338
1339
static int num_g_regs = NUM_CORE_REGS;
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
#ifdef GDB_CORE_XML
/* Encode data using the encoding for 'x' packets.  */
static int memtox(char *buf, const char *mem, int len)
{
    char *p = buf;
    char c;

    while (len--) {
        c = *(mem++);
        switch (c) {
        case '#': case '$': case '*': case '}':
            *(p++) = '}';
            *(p++) = c ^ 0x20;
            break;
        default:
            *(p++) = c;
            break;
        }
    }
    return p - buf;
}
1362
aurel32 authored
1363
static const char *get_feature_xml(const char *p, const char **newp)
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
{
    extern const char *const xml_builtin[][2];
    size_t len;
    int i;
    const char *name;
    static char target_xml[1024];

    len = 0;
    while (p[len] && p[len] != ':')
        len++;
    *newp = p + len;

    name = NULL;
    if (strncmp(p, "target.xml", len) == 0) {
        /* Generate the XML description for this CPU.  */
        if (!target_xml[0]) {
            GDBRegisterState *r;
1382
1383
1384
1385
1386
1387
            snprintf(target_xml, sizeof(target_xml),
                     "<?xml version=\"1.0\"?>"
                     "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
                     "<target>"
                     "<xi:include href=\"%s\"/>",
                     GDB_CORE_XML);
1388
1389
            for (r = first_cpu->gdb_regs; r; r = r->next) {
1390
1391
1392
                pstrcat(target_xml, sizeof(target_xml), "<xi:include href=\"");
                pstrcat(target_xml, sizeof(target_xml), r->xml);
                pstrcat(target_xml, sizeof(target_xml), "\"/>");
1393
            }
1394
            pstrcat(target_xml, sizeof(target_xml), "</target>");
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
        }
        return target_xml;
    }
    for (i = 0; ; i++) {
        name = xml_builtin[i][0];
        if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
            break;
    }
    return name ? xml_builtin[i][1] : NULL;
}
#endif
1406
1407
1408
1409
static int gdb_read_register(CPUState *env, uint8_t *mem_buf, int reg)
{
    GDBRegisterState *r;
1410
1411
1412
    if (reg < NUM_CORE_REGS)
        return cpu_gdb_read_register(env, mem_buf, reg);
1413
1414
1415
1416
1417
1418
1419
    for (r = env->gdb_regs; r; r = r->next) {
        if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
            return r->get_reg(env, mem_buf, reg - r->base_reg);
        }
    }
    return 0;
1420
1421
}
1422
static int gdb_write_register(CPUState *env, uint8_t *mem_buf, int reg)
1423
{
1424
    GDBRegisterState *r;
1425
1426
1427
1428
1429
1430
1431
1432
1433
    if (reg < NUM_CORE_REGS)
        return cpu_gdb_write_register(env, mem_buf, reg);

    for (r = env->gdb_regs; r; r = r->next) {
        if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
            return r->set_reg(env, mem_buf, reg - r->base_reg);
        }
    }
bellard authored
1434
1435
1436
    return 0;
}
1437
1438
1439
1440
1441
1442
1443
1444
1445
/* Register a supplemental set of CPU registers.  If g_pos is nonzero it
   specifies the first register number and these registers are included in
   a standard "g" packet.  Direction is relative to gdb, i.e. get_reg is
   gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
 */

void gdb_register_coprocessor(CPUState * env,
                             gdb_reg_cb get_reg, gdb_reg_cb set_reg,
                             int num_regs, const char *xml, int g_pos)
bellard authored
1446
{
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
    GDBRegisterState *s;
    GDBRegisterState **p;
    static int last_reg = NUM_CORE_REGS;

    s = (GDBRegisterState *)qemu_mallocz(sizeof(GDBRegisterState));
    s->base_reg = last_reg;
    s->num_regs = num_regs;
    s->get_reg = get_reg;
    s->set_reg = set_reg;
    s->xml = xml;
    p = &env->gdb_regs;
    while (*p) {
        /* Check for duplicates.  */
        if (strcmp((*p)->xml, xml) == 0)
            return;
        p = &(*p)->next;
    }
    /* Add to end of list.  */
    last_reg += num_regs;
    *p = s;
    if (g_pos) {
        if (g_pos != s->base_reg) {
            fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n"
                    "Expected %d got %d\n", xml, g_pos, s->base_reg);
        } else {
            num_g_regs = last_reg;
        }
    }
bellard authored
1475
1476
}
1477
1478
1479
1480
1481
1482
1483
1484
#ifndef CONFIG_USER_ONLY
static const int xlat_gdb_type[] = {
    [GDB_WATCHPOINT_WRITE]  = BP_GDB | BP_MEM_WRITE,
    [GDB_WATCHPOINT_READ]   = BP_GDB | BP_MEM_READ,
    [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
};
#endif
1485
static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
1486
{
1487
1488
1489
    CPUState *env;
    int err = 0;
1490
1491
1492
    if (kvm_enabled())
        return kvm_insert_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1493
1494
1495
    switch (type) {
    case GDB_BREAKPOINT_SW:
    case GDB_BREAKPOINT_HW:
1496
1497
1498
1499
1500
1501
        for (env = first_cpu; env != NULL; env = env->next_cpu) {
            err = cpu_breakpoint_insert(env, addr, BP_GDB, NULL);
            if (err)
                break;
        }
        return err;
1502
1503
1504
1505
#ifndef CONFIG_USER_ONLY
    case GDB_WATCHPOINT_WRITE:
    case GDB_WATCHPOINT_READ:
    case GDB_WATCHPOINT_ACCESS:
1506
1507
1508
1509
1510
1511
1512
        for (env = first_cpu; env != NULL; env = env->next_cpu) {
            err = cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type],
                                        NULL);
            if (err)
                break;
        }
        return err;
1513
1514
1515
1516
1517
1518
#endif
    default:
        return -ENOSYS;
    }
}
1519
static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
1520
{
1521
1522
1523
    CPUState *env;
    int err = 0;
1524
1525
1526
    if (kvm_enabled())
        return kvm_remove_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1527
1528
1529
    switch (type) {
    case GDB_BREAKPOINT_SW:
    case GDB_BREAKPOINT_HW:
1530
1531
1532
1533
1534
1535
        for (env = first_cpu; env != NULL; env = env->next_cpu) {
            err = cpu_breakpoint_remove(env, addr, BP_GDB);
            if (err)
                break;
        }
        return err;
1536
1537
1538
1539
#ifndef CONFIG_USER_ONLY
    case GDB_WATCHPOINT_WRITE:
    case GDB_WATCHPOINT_READ:
    case GDB_WATCHPOINT_ACCESS:
1540
1541
1542
1543
1544
1545
        for (env = first_cpu; env != NULL; env = env->next_cpu) {
            err = cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]);
            if (err)
                break;
        }
        return err;
1546
1547
1548
1549
1550
1551
#endif
    default:
        return -ENOSYS;
    }
}
1552
static void gdb_breakpoint_remove_all(void)
1553
{
1554
1555
    CPUState *env;
1556
1557
1558
1559
1560
    if (kvm_enabled()) {
        kvm_remove_all_breakpoints(gdbserver_state->c_cpu);
        return;
    }
1561
1562
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
        cpu_breakpoint_remove_all(env, BP_GDB);
1563
#ifndef CONFIG_USER_ONLY
1564
        cpu_watchpoint_remove_all(env, BP_GDB);
1565
#endif
1566
    }
1567
1568
}
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
static void gdb_set_cpu_pc(GDBState *s, target_ulong pc)
{
#if defined(TARGET_I386)
    s->c_cpu->eip = pc;
    cpu_synchronize_state(s->c_cpu, 1);
#elif defined (TARGET_PPC)
    s->c_cpu->nip = pc;
#elif defined (TARGET_SPARC)
    s->c_cpu->pc = pc;
    s->c_cpu->npc = pc + 4;
#elif defined (TARGET_ARM)
    s->c_cpu->regs[15] = pc;
#elif defined (TARGET_SH4)
    s->c_cpu->pc = pc;
#elif defined (TARGET_MIPS)
    s->c_cpu->active_tc.PC = pc;
1585
1586
#elif defined (TARGET_MICROBLAZE)
    s->c_cpu->sregs[SR_PC] = pc;
1587
1588
1589
1590
1591
1592
1593
#elif defined (TARGET_CRIS)
    s->c_cpu->pc = pc;
#elif defined (TARGET_ALPHA)
    s->c_cpu->pc = pc;
#endif
}
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
static inline int gdb_id(CPUState *env)
{
#if defined(CONFIG_USER_ONLY) && defined(USE_NPTL)
    return env->host_tid;
#else
    return env->cpu_index + 1;
#endif
}

static CPUState *find_cpu(uint32_t thread_id)
{
    CPUState *env;

    for (env = first_cpu; env != NULL; env = env->next_cpu) {
        if (gdb_id(env) == thread_id) {
            return env;
        }
    }

    return NULL;
}
1616
static int gdb_handle_packet(GDBState *s, const char *line_buf)
bellard authored
1617
{
1618
    CPUState *env;
bellard authored
1619
    const char *p;
1620
1621
    uint32_t thread;
    int ch, reg_size, type, res;
1622
1623
1624
    char buf[MAX_PACKET_LENGTH];
    uint8_t mem_buf[MAX_PACKET_LENGTH];
    uint8_t *registers;
1625
    target_ulong addr, len;
1626
1627
1628
1629
1630
1631
1632
1633
#ifdef DEBUG_GDB
    printf("command='%s'\n", line_buf);
#endif
    p = line_buf;
    ch = *p++;
    switch(ch) {
    case '?':
1634
        /* TODO: Make this return the correct value for user-mode.  */
1635
        snprintf(buf, sizeof(buf), "T%02xthread:%02x;", GDB_SIGNAL_TRAP,
1636
                 gdb_id(s->c_cpu));
1637
        put_packet(s, buf);
1638
1639
1640
1641
        /* Remove all the breakpoints when this query is issued,
         * because gdb is doing and initial connect and the state
         * should be cleaned up.
         */
1642
        gdb_breakpoint_remove_all();
1643
1644
1645
        break;
    case 'c':
        if (*p != '\0') {
1646
            addr = strtoull(p, (char **)&p, 16);
1647
            gdb_set_cpu_pc(s, addr);
1648
        }
1649
        s->signal = 0;
1650
        gdb_continue(s);
bellard authored
1651
	return RS_IDLE;
1652
    case 'C':
1653
1654
1655
        s->signal = gdb_signal_to_target (strtoul(p, (char **)&p, 16));
        if (s->signal == -1)
            s->signal = 0;
1656
1657
        gdb_continue(s);
        return RS_IDLE;
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
    case 'v':
        if (strncmp(p, "Cont", 4) == 0) {
            int res_signal, res_thread;

            p += 4;
            if (*p == '?') {
                put_packet(s, "vCont;c;C;s;S");
                break;
            }
            res = 0;
            res_signal = 0;
            res_thread = 0;
            while (*p) {
                int action, signal;

                if (*p++ != ';') {
                    res = 0;
                    break;
                }
                action = *p++;
                signal = 0;
                if (action == 'C' || action == 'S') {
                    signal = strtoul(p, (char **)&p, 16);
                } else if (action != 'c' && action != 's') {
                    res = 0;
                    break;
                }
                thread = 0;
                if (*p == ':') {
                    thread = strtoull(p+1, (char **)&p, 16);
                }
                action = tolower(action);
                if (res == 0 || (res == 'c' && action == 's')) {
                    res = action;
                    res_signal = signal;
                    res_thread = thread;
                }
            }
            if (res) {
                if (res_thread != -1 && res_thread != 0) {
                    env = find_cpu(res_thread);
                    if (env == NULL) {
                        put_packet(s, "E22");
                        break;
                    }
                    s->c_cpu = env;
                }
                if (res == 's') {
                    cpu_single_step(s->c_cpu, sstep_flags);
                }
                s->signal = res_signal;
                gdb_continue(s);
                return RS_IDLE;
            }
            break;
        } else {
            goto unknown_command;
        }
1716
1717
1718
1719
1720
1721
    case 'k':
        /* Kill the target */
        fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
        exit(0);
    case 'D':
        /* Detach packet */
1722
        gdb_breakpoint_remove_all();
1723
1724
1725
        gdb_continue(s);
        put_packet(s, "OK");
        break;
1726
1727
    case 's':
        if (*p != '\0') {
1728
            addr = strtoull(p, (char **)&p, 16);
1729
            gdb_set_cpu_pc(s, addr);
1730
        }
1731
        cpu_single_step(s->c_cpu, sstep_flags);
1732
        gdb_continue(s);
bellard authored
1733
	return RS_IDLE;
pbrook authored
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
    case 'F':
        {
            target_ulong ret;
            target_ulong err;

            ret = strtoull(p, (char **)&p, 16);
            if (*p == ',') {
                p++;
                err = strtoull(p, (char **)&p, 16);
            } else {
                err = 0;
            }
            if (*p == ',')
                p++;
            type = *p;
            if (gdb_current_syscall_cb)
1750
                gdb_current_syscall_cb(s->c_cpu, ret, err);
pbrook authored
1751
1752
1753
            if (type == 'C') {
                put_packet(s, "T02");
            } else {
1754
                gdb_continue(s);
pbrook authored
1755
1756
1757
            }
        }
        break;
1758
    case 'g':
1759
        cpu_synchronize_state(s->g_cpu, 0);
1760
1761
        len = 0;
        for (addr = 0; addr < num_g_regs; addr++) {
1762
            reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr);
1763
1764
1765
            len += reg_size;
        }
        memtohex(buf, mem_buf, len);
1766
1767
1768
        put_packet(s, buf);
        break;
    case 'G':
1769
        registers = mem_buf;
1770
1771
        len = strlen(p) / 2;
        hextomem((uint8_t *)registers, p, len);
1772
        for (addr = 0; addr < num_g_regs && len > 0; addr++) {
1773
            reg_size = gdb_write_register(s->g_cpu, registers, addr);
1774
1775
1776
            len -= reg_size;
            registers += reg_size;
        }
1777
        cpu_synchronize_state(s->g_cpu, 1);
1778
1779
1780
        put_packet(s, "OK");
        break;
    case 'm':
1781
        addr = strtoull(p, (char **)&p, 16);
1782
1783
        if (*p == ',')
            p++;
1784
        len = strtoull(p, NULL, 16);
1785
        if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 0) != 0) {
1786
1787
1788
1789
1790
            put_packet (s, "E14");
        } else {
            memtohex(buf, mem_buf, len);
            put_packet(s, buf);
        }
1791
1792
        break;
    case 'M':
1793
        addr = strtoull(p, (char **)&p, 16);
1794
1795
        if (*p == ',')
            p++;
1796
        len = strtoull(p, (char **)&p, 16);
1797
        if (*p == ':')
1798
1799
            p++;
        hextomem(mem_buf, p, len);
1800
        if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 1) != 0)
1801
            put_packet(s, "E14");
1802
1803
1804
        else
            put_packet(s, "OK");
        break;
1805
1806
1807
1808
1809
1810
1811
    case 'p':
        /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
           This works, but can be very slow.  Anything new enough to
           understand XML also knows how to use this properly.  */
        if (!gdb_has_xml)
            goto unknown_command;
        addr = strtoull(p, (char **)&p, 16);
1812
        reg_size = gdb_read_register(s->g_cpu, mem_buf, addr);
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
        if (reg_size) {
            memtohex(buf, mem_buf, reg_size);
            put_packet(s, buf);
        } else {
            put_packet(s, "E14");
        }
        break;
    case 'P':
        if (!gdb_has_xml)
            goto unknown_command;
        addr = strtoull(p, (char **)&p, 16);
        if (*p == '=')
            p++;
        reg_size = strlen(p) / 2;
        hextomem(mem_buf, p, reg_size);
1828
        gdb_write_register(s->g_cpu, mem_buf, addr);
1829
1830
        put_packet(s, "OK");
        break;
1831
1832
1833
1834
1835
    case 'Z':
    case 'z':
        type = strtoul(p, (char **)&p, 16);
        if (*p == ',')
            p++;
1836
        addr = strtoull(p, (char **)&p, 16);
1837
1838
        if (*p == ',')
            p++;
1839
        len = strtoull(p, (char **)&p, 16);
1840
        if (ch == 'Z')
1841
            res = gdb_breakpoint_insert(addr, len, type);
1842
        else
1843
            res = gdb_breakpoint_remove(addr, len, type);
1844
1845
1846
        if (res >= 0)
             put_packet(s, "OK");
        else if (res == -ENOSYS)
pbrook authored
1847
            put_packet(s, "");
1848
1849
        else
            put_packet(s, "E22");
1850
        break;
1851
1852
1853
1854
1855
1856
1857
    case 'H':
        type = *p++;
        thread = strtoull(p, (char **)&p, 16);
        if (thread == -1 || thread == 0) {
            put_packet(s, "OK");
            break;
        }
1858
        env = find_cpu(thread);
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
        if (env == NULL) {
            put_packet(s, "E22");
            break;
        }
        switch (type) {
        case 'c':
            s->c_cpu = env;
            put_packet(s, "OK");
            break;
        case 'g':
            s->g_cpu = env;
            put_packet(s, "OK");
            break;
        default:
             put_packet(s, "E22");
             break;
        }
        break;
    case 'T':
        thread = strtoull(p, (char **)&p, 16);
1879
1880
1881
1882
1883
        env = find_cpu(thread);

        if (env != NULL) {
            put_packet(s, "OK");
        } else {
1884
            put_packet(s, "E22");
1885
        }
1886
        break;
1887
    case 'q':
1888
1889
1890
1891
    case 'Q':
        /* parse any 'q' packets here */
        if (!strcmp(p,"qemu.sstepbits")) {
            /* Query Breakpoint bit definitions */
1892
1893
1894
1895
            snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
                     SSTEP_ENABLE,
                     SSTEP_NOIRQ,
                     SSTEP_NOTIMER);
1896
1897
1898
1899
1900
1901
1902
            put_packet(s, buf);
            break;
        } else if (strncmp(p,"qemu.sstep",10) == 0) {
            /* Display or change the sstep_flags */
            p += 10;
            if (*p != '=') {
                /* Display current setting */
1903
                snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
1904
1905
1906
1907
1908
1909
1910
1911
                put_packet(s, buf);
                break;
            }
            p++;
            type = strtoul(p, (char **)&p, 16);
            sstep_flags = type;
            put_packet(s, "OK");
            break;
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
        } else if (strcmp(p,"C") == 0) {
            /* "Current thread" remains vague in the spec, so always return
             *  the first CPU (gdb returns the first thread). */
            put_packet(s, "QC1");
            break;
        } else if (strcmp(p,"fThreadInfo") == 0) {
            s->query_cpu = first_cpu;
            goto report_cpuinfo;
        } else if (strcmp(p,"sThreadInfo") == 0) {
        report_cpuinfo:
            if (s->query_cpu) {
1923
                snprintf(buf, sizeof(buf), "m%x", gdb_id(s->query_cpu));
1924
1925
1926
1927
1928
1929
1930
                put_packet(s, buf);
                s->query_cpu = s->query_cpu->next_cpu;
            } else
                put_packet(s, "l");
            break;
        } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
            thread = strtoull(p+16, (char **)&p, 16);
1931
1932
1933
1934
1935
1936
1937
1938
1939
            env = find_cpu(thread);
            if (env != NULL) {
                cpu_synchronize_state(env, 0);
                len = snprintf((char *)mem_buf, sizeof(mem_buf),
                               "CPU#%d [%s]", env->cpu_index,
                               env->halted ? "halted " : "running");
                memtohex(buf, mem_buf, len);
                put_packet(s, buf);
            }
1940
            break;
1941
        }
blueswir1 authored
1942
#ifdef CONFIG_USER_ONLY
1943
        else if (strncmp(p, "Offsets", 7) == 0) {
1944
            TaskState *ts = s->c_cpu->opaque;
1945
1946
1947
1948
1949
1950
1951
            snprintf(buf, sizeof(buf),
                     "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
                     ";Bss=" TARGET_ABI_FMT_lx,
                     ts->info->code_offset,
                     ts->info->data_offset,
                     ts->info->data_offset);
1952
1953
1954
            put_packet(s, buf);
            break;
        }
blueswir1 authored
1955
#else /* !CONFIG_USER_ONLY */
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
        else if (strncmp(p, "Rcmd,", 5) == 0) {
            int len = strlen(p + 5);

            if ((len % 2) != 0) {
                put_packet(s, "E01");
                break;
            }
            hextomem(mem_buf, p + 5, len);
            len = len / 2;
            mem_buf[len++] = 0;
            qemu_chr_read(s->mon_chr, mem_buf, len);
            put_packet(s, "OK");
            break;
        }
blueswir1 authored
1970
#endif /* !CONFIG_USER_ONLY */
1971
        if (strncmp(p, "Supported", 9) == 0) {
1972
            snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
1973
#ifdef GDB_CORE_XML
1974
            pstrcat(buf, sizeof(buf), ";qXfer:features:read+");
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
#endif
            put_packet(s, buf);
            break;
        }
#ifdef GDB_CORE_XML
        if (strncmp(p, "Xfer:features:read:", 19) == 0) {
            const char *xml;
            target_ulong total_len;

            gdb_has_xml = 1;
            p += 19;
1986
            xml = get_feature_xml(p, &p);
1987
            if (!xml) {
1988
                snprintf(buf, sizeof(buf), "E00");
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
                put_packet(s, buf);
                break;
            }

            if (*p == ':')
                p++;
            addr = strtoul(p, (char **)&p, 16);
            if (*p == ',')
                p++;
            len = strtoul(p, (char **)&p, 16);

            total_len = strlen(xml);
            if (addr > total_len) {
2002
                snprintf(buf, sizeof(buf), "E00");
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
                put_packet(s, buf);
                break;
            }
            if (len > (MAX_PACKET_LENGTH - 5) / 2)
                len = (MAX_PACKET_LENGTH - 5) / 2;
            if (len < total_len - addr) {
                buf[0] = 'm';
                len = memtox(buf + 1, xml + addr, len);
            } else {
                buf[0] = 'l';
                len = memtox(buf + 1, xml + addr, total_len - addr);
            }
            put_packet_binary(s, buf, len + 1);
            break;
        }
#endif
        /* Unrecognised 'q' command.  */
        goto unknown_command;
2022
    default:
2023
    unknown_command:
2024
2025
2026
2027
2028
2029
2030
2031
        /* put empty packet */
        buf[0] = '\0';
        put_packet(s, buf);
        break;
    }
    return RS_IDLE;
}
2032
2033
2034
2035
2036
2037
void gdb_set_stop_cpu(CPUState *env)
{
    gdbserver_state->c_cpu = env;
    gdbserver_state->g_cpu = env;
}
2038
#ifndef CONFIG_USER_ONLY
2039
static void gdb_vm_state_change(void *opaque, int running, int reason)
2040
{
2041
2042
    GDBState *s = gdbserver_state;
    CPUState *env = s->c_cpu;
2043
    char buf[256];
2044
    const char *type;
2045
2046
    int ret;
2047
    if (running || (reason != EXCP_DEBUG && reason != EXCP_INTERRUPT) ||
2048
        s->state == RS_INACTIVE || s->state == RS_SYSCALL)
pbrook authored
2049
2050
        return;
2051
    /* disable single step if it was enable */
2052
    cpu_single_step(env, 0);
2053
bellard authored
2054
    if (reason == EXCP_DEBUG) {
2055
2056
        if (env->watchpoint_hit) {
            switch (env->watchpoint_hit->flags & BP_MEM_ACCESS) {
2057
            case BP_MEM_READ:
2058
2059
                type = "r";
                break;
2060
            case BP_MEM_ACCESS:
2061
2062
2063
2064
2065
2066
                type = "a";
                break;
            default:
                type = "";
                break;
            }
2067
2068
            snprintf(buf, sizeof(buf),
                     "T%02xthread:%02x;%swatch:" TARGET_FMT_lx ";",
2069
                     GDB_SIGNAL_TRAP, gdb_id(env), type,
2070
                     env->watchpoint_hit->vaddr);
2071
            put_packet(s, buf);
2072
            env->watchpoint_hit = NULL;
2073
2074
            return;
        }
2075
	tb_flush(env);
2076
        ret = GDB_SIGNAL_TRAP;
2077
    } else {
2078
        ret = GDB_SIGNAL_INT;
2079
    }
2080
    snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, gdb_id(env));
2081
2082
    put_packet(s, buf);
}
2083
#endif
2084
pbrook authored
2085
2086
/* Send a gdb syscall request.
   This accepts limited printf-style format specifiers, specifically:
pbrook authored
2087
2088
2089
    %x  - target_ulong argument printed in hex.
    %lx - 64-bit argument printed in hex.
    %s  - string pointer (target_ulong) and length (int) pair.  */
2090
void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
pbrook authored
2091
2092
2093
2094
2095
{
    va_list va;
    char buf[256];
    char *p;
    target_ulong addr;
pbrook authored
2096
    uint64_t i64;
pbrook authored
2097
2098
    GDBState *s;
2099
    s = gdbserver_state;
pbrook authored
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
    if (!s)
        return;
    gdb_current_syscall_cb = cb;
    s->state = RS_SYSCALL;
#ifndef CONFIG_USER_ONLY
    vm_stop(EXCP_DEBUG);
#endif
    s->state = RS_IDLE;
    va_start(va, fmt);
    p = buf;
    *(p++) = 'F';
    while (*fmt) {
        if (*fmt == '%') {
            fmt++;
            switch (*fmt++) {
            case 'x':
                addr = va_arg(va, target_ulong);
2117
                p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx, addr);
pbrook authored
2118
                break;
pbrook authored
2119
2120
2121
2122
            case 'l':
                if (*(fmt++) != 'x')
                    goto bad_format;
                i64 = va_arg(va, uint64_t);
2123
                p += snprintf(p, &buf[sizeof(buf)] - p, "%" PRIx64, i64);
pbrook authored
2124
                break;
pbrook authored
2125
2126
            case 's':
                addr = va_arg(va, target_ulong);
2127
2128
                p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx "/%x",
                              addr, va_arg(va, int));
pbrook authored
2129
2130
                break;
            default:
pbrook authored
2131
            bad_format:
pbrook authored
2132
2133
2134
2135
2136
2137
2138
2139
                fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
                        fmt - 1);
                break;
            }
        } else {
            *(p++) = *(fmt++);
        }
    }
2140
    *p = 0;
pbrook authored
2141
2142
2143
    va_end(va);
    put_packet(s, buf);
#ifdef CONFIG_USER_ONLY
2144
    gdb_handlesig(s->c_cpu, 0);
pbrook authored
2145
#else
2146
    cpu_exit(s->c_cpu);
pbrook authored
2147
2148
2149
#endif
}
bellard authored
2150
static void gdb_read_byte(GDBState *s, int ch)
2151
2152
{
    int i, csum;
2153
    uint8_t reply;
2154
2155
#ifndef CONFIG_USER_ONLY
2156
2157
2158
2159
2160
2161
2162
    if (s->last_packet_len) {
        /* Waiting for a response to the last packet.  If we see the start
           of a new command then abandon the previous response.  */
        if (ch == '-') {
#ifdef DEBUG_GDB
            printf("Got NACK, retransmitting\n");
#endif
2163
            put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
        }
#ifdef DEBUG_GDB
        else if (ch == '+')
            printf("Got ACK\n");
        else
            printf("Got '%c' when expecting ACK/NACK\n", ch);
#endif
        if (ch == '+' || ch == '$')
            s->last_packet_len = 0;
        if (ch != '$')
            return;
    }
2176
2177
2178
2179
    if (vm_running) {
        /* when the CPU is running, we cannot do anything except stop
           it when receiving a char */
        vm_stop(EXCP_INTERRUPT);
2180
    } else
2181
#endif
bellard authored
2182
    {
2183
2184
2185
2186
2187
        switch(s->state) {
        case RS_IDLE:
            if (ch == '$') {
                s->line_buf_index = 0;
                s->state = RS_GETLINE;
2188
            }
bellard authored
2189
            break;
2190
2191
2192
2193
2194
        case RS_GETLINE:
            if (ch == '#') {
            s->state = RS_CHKSUM1;
            } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
                s->state = RS_IDLE;
bellard authored
2195
            } else {
2196
            s->line_buf[s->line_buf_index++] = ch;
bellard authored
2197
2198
            }
            break;
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
        case RS_CHKSUM1:
            s->line_buf[s->line_buf_index] = '\0';
            s->line_csum = fromhex(ch) << 4;
            s->state = RS_CHKSUM2;
            break;
        case RS_CHKSUM2:
            s->line_csum |= fromhex(ch);
            csum = 0;
            for(i = 0; i < s->line_buf_index; i++) {
                csum += s->line_buf[i];
            }
            if (s->line_csum != (csum & 0xff)) {
2211
2212
                reply = '-';
                put_buffer(s, &reply, 1);
2213
                s->state = RS_IDLE;
bellard authored
2214
            } else {
2215
2216
                reply = '+';
                put_buffer(s, &reply, 1);
2217
                s->state = gdb_handle_packet(s, s->line_buf);
bellard authored
2218
2219
            }
            break;
pbrook authored
2220
2221
        default:
            abort();
2222
2223
2224
2225
        }
    }
}
2226
2227
#ifdef CONFIG_USER_ONLY
int
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
gdb_queuesig (void)
{
    GDBState *s;

    s = gdbserver_state;

    if (gdbserver_fd < 0 || s->fd < 0)
        return 0;
    else
        return 1;
}

int
2241
2242
2243
2244
2245
2246
gdb_handlesig (CPUState *env, int sig)
{
  GDBState *s;
  char buf[256];
  int n;
2247
  s = gdbserver_state;
2248
2249
  if (gdbserver_fd < 0 || s->fd < 0)
    return sig;
2250
2251
2252
2253
2254
2255
2256

  /* disable single step if it was enabled */
  cpu_single_step(env, 0);
  tb_flush(env);

  if (sig != 0)
    {
2257
      snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb (sig));
2258
2259
      put_packet(s, buf);
    }
2260
2261
2262
2263
  /* put_packet() might have detected that the peer terminated the 
     connection.  */
  if (s->fd < 0)
      return sig;
2264
2265
2266

  sig = 0;
  s->state = RS_IDLE;
bellard authored
2267
2268
  s->running_state = 0;
  while (s->running_state == 0) {
2269
2270
2271
2272
2273
2274
      n = read (s->fd, buf, 256);
      if (n > 0)
        {
          int i;

          for (i = 0; i < n; i++)
bellard authored
2275
            gdb_read_byte (s, buf[i]);
2276
2277
2278
2279
2280
2281
2282
        }
      else if (n == 0 || errno != EAGAIN)
        {
          /* XXX: Connection closed.  Should probably wait for annother
             connection before continuing.  */
          return sig;
        }
bellard authored
2283
  }
2284
2285
  sig = s->signal;
  s->signal = 0;
2286
2287
  return sig;
}
2288
2289
2290
2291
2292
2293
2294

/* Tell the remote gdb that the process has exited.  */
void gdb_exit(CPUState *env, int code)
{
  GDBState *s;
  char buf[4];
2295
  s = gdbserver_state;
2296
2297
  if (gdbserver_fd < 0 || s->fd < 0)
    return;
2298
2299
2300
2301
2302

  snprintf(buf, sizeof(buf), "W%02x", code);
  put_packet(s, buf);
}
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
/* Tell the remote gdb that the process has exited due to SIG.  */
void gdb_signalled(CPUState *env, int sig)
{
  GDBState *s;
  char buf[4];

  s = gdbserver_state;
  if (gdbserver_fd < 0 || s->fd < 0)
    return;

  snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb (sig));
  put_packet(s, buf);
}
2316
2317
static void gdb_accept(void)
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
{
    GDBState *s;
    struct sockaddr_in sockaddr;
    socklen_t len;
    int val, fd;

    for(;;) {
        len = sizeof(sockaddr);
        fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
        if (fd < 0 && errno != EINTR) {
            perror("accept");
            return;
        } else if (fd >= 0) {
bellard authored
2331
2332
2333
            break;
        }
    }
2334
2335
2336

    /* set short latency */
    val = 1;
bellard authored
2337
    setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
2338
2339
2340
2341
    s = qemu_mallocz(sizeof(GDBState));
    s->c_cpu = first_cpu;
    s->g_cpu = first_cpu;
2342
    s->fd = fd;
2343
    gdb_has_xml = 0;
2344
2345
    gdbserver_state = s;
pbrook authored
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
    fcntl(fd, F_SETFL, O_NONBLOCK);
}

static int gdbserver_open(int port)
{
    struct sockaddr_in sockaddr;
    int fd, val, ret;

    fd = socket(PF_INET, SOCK_STREAM, 0);
    if (fd < 0) {
        perror("socket");
        return -1;
    }

    /* allow fast reuse */
    val = 1;
bellard authored
2363
    setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386

    sockaddr.sin_family = AF_INET;
    sockaddr.sin_port = htons(port);
    sockaddr.sin_addr.s_addr = 0;
    ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
    if (ret < 0) {
        perror("bind");
        return -1;
    }
    ret = listen(fd, 0);
    if (ret < 0) {
        perror("listen");
        return -1;
    }
    return fd;
}

int gdbserver_start(int port)
{
    gdbserver_fd = gdbserver_open(port);
    if (gdbserver_fd < 0)
        return -1;
    /* accept connections */
2387
    gdb_accept();
2388
2389
    return 0;
}
2390
2391
2392
2393
2394

/* Disable gdb stub for child processes.  */
void gdbserver_fork(CPUState *env)
{
    GDBState *s = gdbserver_state;
2395
    if (gdbserver_fd < 0 || s->fd < 0)
2396
2397
2398
2399
2400
2401
      return;
    close(s->fd);
    s->fd = -1;
    cpu_breakpoint_remove_all(env, BP_GDB);
    cpu_watchpoint_remove_all(env, BP_GDB);
}
2402
#else
ths authored
2403
static int gdb_chr_can_receive(void *opaque)
2404
{
2405
2406
2407
  /* We can handle an arbitrarily large amount of data.
   Pick the maximum packet size, which is as good as anything.  */
  return MAX_PACKET_LENGTH;
2408
2409
}
ths authored
2410
static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
2411
2412
2413
2414
{
    int i;

    for (i = 0; i < size; i++) {
2415
        gdb_read_byte(gdbserver_state, buf[i]);
2416
2417
2418
2419
2420
2421
2422
2423
    }
}

static void gdb_chr_event(void *opaque, int event)
{
    switch (event) {
    case CHR_EVENT_RESET:
        vm_stop(EXCP_INTERRUPT);
2424
        gdb_has_xml = 0;
2425
2426
2427
2428
2429
2430
        break;
    default:
        break;
    }
}
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
static void gdb_monitor_output(GDBState *s, const char *msg, int len)
{
    char buf[MAX_PACKET_LENGTH];

    buf[0] = 'O';
    if (len > (MAX_PACKET_LENGTH/2) - 1)
        len = (MAX_PACKET_LENGTH/2) - 1;
    memtohex(buf + 1, (uint8_t *)msg, len);
    put_packet(s, buf);
}

static int gdb_monitor_write(CharDriverState *chr, const uint8_t *buf, int len)
{
    const char *p = (const char *)buf;
    int max_sz;

    max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2;
    for (;;) {
        if (len <= max_sz) {
            gdb_monitor_output(gdbserver_state, p, len);
            break;
        }
        gdb_monitor_output(gdbserver_state, p, max_sz);
        p += max_sz;
        len -= max_sz;
    }
    return len;
}
2460
2461
2462
2463
2464
2465
2466
2467
2468
#ifndef _WIN32
static void gdb_sigterm_handler(int signal)
{
    if (vm_running)
        vm_stop(EXCP_INTERRUPT);
}
#endif

int gdbserver_start(const char *device)
2469
2470
{
    GDBState *s;
2471
    char gdbstub_device_name[128];
2472
2473
    CharDriverState *chr = NULL;
    CharDriverState *mon_chr;
2474
2475
2476
2477
2478
2479
2480
2481
2482
    if (!device)
        return -1;
    if (strcmp(device, "none") != 0) {
        if (strstart(device, "tcp:", NULL)) {
            /* enforce required TCP attributes */
            snprintf(gdbstub_device_name, sizeof(gdbstub_device_name),
                     "%s,nowait,nodelay,server", device);
            device = gdbstub_device_name;
2483
        }
2484
2485
2486
#ifndef _WIN32
        else if (strcmp(device, "stdio") == 0) {
            struct sigaction act;
2487
2488
2489
2490
2491
2492
2493
            memset(&act, 0, sizeof(act));
            act.sa_handler = gdb_sigterm_handler;
            sigaction(SIGINT, &act, NULL);
        }
#endif
        chr = qemu_chr_open("gdb", device, NULL);
2494
2495
2496
2497
2498
        if (!chr)
            return -1;

        qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
                              gdb_chr_event, NULL);
2499
2500
    }
2501
2502
2503
2504
    s = gdbserver_state;
    if (!s) {
        s = qemu_mallocz(sizeof(GDBState));
        gdbserver_state = s;
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
        qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);

        /* Initialize a monitor terminal for gdb */
        mon_chr = qemu_mallocz(sizeof(*mon_chr));
        mon_chr->chr_write = gdb_monitor_write;
        monitor_init(mon_chr, 0);
    } else {
        if (s->chr)
            qemu_chr_close(s->chr);
        mon_chr = s->mon_chr;
        memset(s, 0, sizeof(GDBState));
    }
2518
2519
    s->c_cpu = first_cpu;
    s->g_cpu = first_cpu;
2520
    s->chr = chr;
2521
2522
    s->state = chr ? RS_IDLE : RS_INACTIVE;
    s->mon_chr = mon_chr;
2523
bellard authored
2524
2525
    return 0;
}
2526
#endif