Blame view

gdbstub.c 60 KB
bellard authored
1
2
/*
 * gdb server stub
3
 *
bellard authored
4
 * Copyright (c) 2003-2005 Fabrice Bellard
bellard authored
5
6
7
8
9
10
11
12
13
14
15
16
17
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA  02110-1301 USA
bellard authored
19
 */
20
#include "config.h"
21
#include "qemu-common.h"
22
23
24
25
26
27
28
#ifdef CONFIG_USER_ONLY
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
29
#include <fcntl.h>
30
31
32

#include "qemu.h"
#else
33
#include "monitor.h"
pbrook authored
34
35
36
#include "qemu-char.h"
#include "sysemu.h"
#include "gdbstub.h"
37
#endif
38
39
40
#define MAX_PACKET_LENGTH 4096
bellard authored
41
#include "qemu_socket.h"
42
#include "kvm.h"
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91


enum {
    GDB_SIGNAL_0 = 0,
    GDB_SIGNAL_INT = 2,
    GDB_SIGNAL_TRAP = 5,
    GDB_SIGNAL_UNKNOWN = 143
};

#ifdef CONFIG_USER_ONLY

/* Map target signal numbers to GDB protocol signal numbers and vice
 * versa.  For user emulation's currently supported systems, we can
 * assume most signals are defined.
 */

static int gdb_signal_table[] = {
    0,
    TARGET_SIGHUP,
    TARGET_SIGINT,
    TARGET_SIGQUIT,
    TARGET_SIGILL,
    TARGET_SIGTRAP,
    TARGET_SIGABRT,
    -1, /* SIGEMT */
    TARGET_SIGFPE,
    TARGET_SIGKILL,
    TARGET_SIGBUS,
    TARGET_SIGSEGV,
    TARGET_SIGSYS,
    TARGET_SIGPIPE,
    TARGET_SIGALRM,
    TARGET_SIGTERM,
    TARGET_SIGURG,
    TARGET_SIGSTOP,
    TARGET_SIGTSTP,
    TARGET_SIGCONT,
    TARGET_SIGCHLD,
    TARGET_SIGTTIN,
    TARGET_SIGTTOU,
    TARGET_SIGIO,
    TARGET_SIGXCPU,
    TARGET_SIGXFSZ,
    TARGET_SIGVTALRM,
    TARGET_SIGPROF,
    TARGET_SIGWINCH,
    -1, /* SIGLOST */
    TARGET_SIGUSR1,
    TARGET_SIGUSR2,
blueswir1 authored
92
#ifdef TARGET_SIGPWR
93
    TARGET_SIGPWR,
blueswir1 authored
94
95
96
#else
    -1,
#endif
97
98
99
100
101
102
103
104
105
106
107
108
    -1, /* SIGPOLL */
    -1,
    -1,
    -1,
    -1,
    -1,
    -1,
    -1,
    -1,
    -1,
    -1,
    -1,
blueswir1 authored
109
#ifdef __SIGRTMIN
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
    __SIGRTMIN + 1,
    __SIGRTMIN + 2,
    __SIGRTMIN + 3,
    __SIGRTMIN + 4,
    __SIGRTMIN + 5,
    __SIGRTMIN + 6,
    __SIGRTMIN + 7,
    __SIGRTMIN + 8,
    __SIGRTMIN + 9,
    __SIGRTMIN + 10,
    __SIGRTMIN + 11,
    __SIGRTMIN + 12,
    __SIGRTMIN + 13,
    __SIGRTMIN + 14,
    __SIGRTMIN + 15,
    __SIGRTMIN + 16,
    __SIGRTMIN + 17,
    __SIGRTMIN + 18,
    __SIGRTMIN + 19,
    __SIGRTMIN + 20,
    __SIGRTMIN + 21,
    __SIGRTMIN + 22,
    __SIGRTMIN + 23,
    __SIGRTMIN + 24,
    __SIGRTMIN + 25,
    __SIGRTMIN + 26,
    __SIGRTMIN + 27,
    __SIGRTMIN + 28,
    __SIGRTMIN + 29,
    __SIGRTMIN + 30,
    __SIGRTMIN + 31,
    -1, /* SIGCANCEL */
    __SIGRTMIN,
    __SIGRTMIN + 32,
    __SIGRTMIN + 33,
    __SIGRTMIN + 34,
    __SIGRTMIN + 35,
    __SIGRTMIN + 36,
    __SIGRTMIN + 37,
    __SIGRTMIN + 38,
    __SIGRTMIN + 39,
    __SIGRTMIN + 40,
    __SIGRTMIN + 41,
    __SIGRTMIN + 42,
    __SIGRTMIN + 43,
    __SIGRTMIN + 44,
    __SIGRTMIN + 45,
    __SIGRTMIN + 46,
    __SIGRTMIN + 47,
    __SIGRTMIN + 48,
    __SIGRTMIN + 49,
    __SIGRTMIN + 50,
    __SIGRTMIN + 51,
    __SIGRTMIN + 52,
    __SIGRTMIN + 53,
    __SIGRTMIN + 54,
    __SIGRTMIN + 55,
    __SIGRTMIN + 56,
    __SIGRTMIN + 57,
    __SIGRTMIN + 58,
    __SIGRTMIN + 59,
    __SIGRTMIN + 60,
    __SIGRTMIN + 61,
    __SIGRTMIN + 62,
    __SIGRTMIN + 63,
    __SIGRTMIN + 64,
    __SIGRTMIN + 65,
    __SIGRTMIN + 66,
    __SIGRTMIN + 67,
    __SIGRTMIN + 68,
    __SIGRTMIN + 69,
    __SIGRTMIN + 70,
    __SIGRTMIN + 71,
    __SIGRTMIN + 72,
    __SIGRTMIN + 73,
    __SIGRTMIN + 74,
    __SIGRTMIN + 75,
    __SIGRTMIN + 76,
    __SIGRTMIN + 77,
    __SIGRTMIN + 78,
    __SIGRTMIN + 79,
    __SIGRTMIN + 80,
    __SIGRTMIN + 81,
    __SIGRTMIN + 82,
    __SIGRTMIN + 83,
    __SIGRTMIN + 84,
    __SIGRTMIN + 85,
    __SIGRTMIN + 86,
    __SIGRTMIN + 87,
    __SIGRTMIN + 88,
    __SIGRTMIN + 89,
    __SIGRTMIN + 90,
    __SIGRTMIN + 91,
    __SIGRTMIN + 92,
    __SIGRTMIN + 93,
    __SIGRTMIN + 94,
    __SIGRTMIN + 95,
    -1, /* SIGINFO */
    -1, /* UNKNOWN */
    -1, /* DEFAULT */
    -1,
    -1,
    -1,
    -1,
    -1,
    -1
blueswir1 authored
216
#endif
217
};
bellard authored
218
#else
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
/* In system mode we only need SIGINT and SIGTRAP; other signals
   are not yet supported.  */

enum {
    TARGET_SIGINT = 2,
    TARGET_SIGTRAP = 5
};

static int gdb_signal_table[] = {
    -1,
    -1,
    TARGET_SIGINT,
    -1,
    -1,
    TARGET_SIGTRAP
};
#endif

#ifdef CONFIG_USER_ONLY
static int target_signal_to_gdb (int sig)
{
    int i;
    for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
        if (gdb_signal_table[i] == sig)
            return i;
    return GDB_SIGNAL_UNKNOWN;
}
bellard authored
246
#endif
bellard authored
247
248
249
250
251
252
253
254
255
static int gdb_signal_to_target (int sig)
{
    if (sig < ARRAY_SIZE (gdb_signal_table))
        return gdb_signal_table[sig];
    else
        return -1;
}
bellard authored
256
//#define DEBUG_GDB
bellard authored
257
258
259
260
261
262
263
264
265
266
typedef struct GDBRegisterState {
    int base_reg;
    int num_regs;
    gdb_reg_cb get_reg;
    gdb_reg_cb set_reg;
    const char *xml;
    struct GDBRegisterState *next;
} GDBRegisterState;
267
enum RSState {
268
    RS_INACTIVE,
269
270
271
272
    RS_IDLE,
    RS_GETLINE,
    RS_CHKSUM1,
    RS_CHKSUM2,
pbrook authored
273
    RS_SYSCALL,
274
275
};
typedef struct GDBState {
276
277
278
    CPUState *c_cpu; /* current CPU for step/continue ops */
    CPUState *g_cpu; /* current CPU for other ops */
    CPUState *query_cpu; /* for q{f|s}ThreadInfo */
bellard authored
279
    enum RSState state; /* parsing state */
280
    char line_buf[MAX_PACKET_LENGTH];
281
282
    int line_buf_index;
    int line_csum;
283
    uint8_t last_packet[MAX_PACKET_LENGTH + 4];
284
    int last_packet_len;
285
    int signal;
bellard authored
286
#ifdef CONFIG_USER_ONLY
287
    int fd;
bellard authored
288
    int running_state;
289
290
#else
    CharDriverState *chr;
291
    CharDriverState *mon_chr;
bellard authored
292
#endif
293
} GDBState;
bellard authored
294
295
296
297
298
299
/* By default use no IRQs and no timers while single stepping so as to
 * make single stepping like an ICE HW step.
 */
static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
300
301
static GDBState *gdbserver_state;
302
303
304
305
306
/* This is an ugly hack to cope with both new and old gdb.
   If gdb sends qXfer:features:read then assume we're talking to a newish
   gdb that understands target descriptions.  */
static int gdb_has_xml;
307
#ifdef CONFIG_USER_ONLY
308
309
310
/* XXX: This is not thread safe.  Do we care?  */
static int gdbserver_fd = -1;
311
static int get_char(GDBState *s)
bellard authored
312
313
314
315
316
{
    uint8_t ch;
    int ret;

    for(;;) {
bellard authored
317
        ret = recv(s->fd, &ch, 1, 0);
bellard authored
318
        if (ret < 0) {
319
320
            if (errno == ECONNRESET)
                s->fd = -1;
bellard authored
321
322
323
            if (errno != EINTR && errno != EAGAIN)
                return -1;
        } else if (ret == 0) {
324
325
            close(s->fd);
            s->fd = -1;
bellard authored
326
327
328
329
330
331
332
            return -1;
        } else {
            break;
        }
    }
    return ch;
}
333
#endif
bellard authored
334
pbrook authored
335
336
static gdb_syscall_complete_cb gdb_current_syscall_cb;
337
static enum {
pbrook authored
338
339
340
341
342
343
344
345
346
347
    GDB_SYS_UNKNOWN,
    GDB_SYS_ENABLED,
    GDB_SYS_DISABLED,
} gdb_syscall_mode;

/* If gdb is connected when the first semihosting syscall occurs then use
   remote gdb syscalls.  Otherwise use native file IO.  */
int use_gdb_syscalls(void)
{
    if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
348
349
        gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
                                            : GDB_SYS_DISABLED);
pbrook authored
350
351
352
353
    }
    return gdb_syscall_mode == GDB_SYS_ENABLED;
}
354
355
356
357
358
359
360
361
362
363
/* Resume execution.  */
static inline void gdb_continue(GDBState *s)
{
#ifdef CONFIG_USER_ONLY
    s->running_state = 1;
#else
    vm_start();
#endif
}
364
static void put_buffer(GDBState *s, const uint8_t *buf, int len)
bellard authored
365
{
366
#ifdef CONFIG_USER_ONLY
bellard authored
367
368
369
    int ret;

    while (len > 0) {
bellard authored
370
        ret = send(s->fd, buf, len, 0);
bellard authored
371
372
373
374
375
376
377
378
        if (ret < 0) {
            if (errno != EINTR && errno != EAGAIN)
                return;
        } else {
            buf += ret;
            len -= ret;
        }
    }
379
380
381
#else
    qemu_chr_write(s->chr, buf, len);
#endif
bellard authored
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
}

static inline int fromhex(int v)
{
    if (v >= '0' && v <= '9')
        return v - '0';
    else if (v >= 'A' && v <= 'F')
        return v - 'A' + 10;
    else if (v >= 'a' && v <= 'f')
        return v - 'a' + 10;
    else
        return 0;
}

static inline int tohex(int v)
{
    if (v < 10)
        return v + '0';
    else
        return v - 10 + 'a';
}

static void memtohex(char *buf, const uint8_t *mem, int len)
{
    int i, c;
    char *q;
    q = buf;
    for(i = 0; i < len; i++) {
        c = mem[i];
        *q++ = tohex(c >> 4);
        *q++ = tohex(c & 0xf);
    }
    *q = '\0';
}

static void hextomem(uint8_t *mem, const char *buf, int len)
{
    int i;

    for(i = 0; i < len; i++) {
        mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
        buf += 2;
    }
}

/* return -1 if error, 0 if OK */
428
static int put_packet_binary(GDBState *s, const char *buf, int len)
bellard authored
429
{
430
    int csum, i;
431
    uint8_t *p;
bellard authored
432
433

    for(;;) {
434
435
436
437
        p = s->last_packet;
        *(p++) = '$';
        memcpy(p, buf, len);
        p += len;
bellard authored
438
439
440
441
        csum = 0;
        for(i = 0; i < len; i++) {
            csum += buf[i];
        }
442
443
444
        *(p++) = '#';
        *(p++) = tohex((csum >> 4) & 0xf);
        *(p++) = tohex((csum) & 0xf);
bellard authored
445
446
        s->last_packet_len = p - s->last_packet;
447
        put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
bellard authored
448
449
450
451
#ifdef CONFIG_USER_ONLY
        i = get_char(s);
        if (i < 0)
bellard authored
452
            return -1;
453
        if (i == '+')
bellard authored
454
            break;
455
456
457
#else
        break;
#endif
bellard authored
458
459
460
461
    }
    return 0;
}
462
463
464
465
466
467
/* return -1 if error, 0 if OK */
static int put_packet(GDBState *s, const char *buf)
{
#ifdef DEBUG_GDB
    printf("reply='%s'\n", buf);
#endif
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
    return put_packet_binary(s, buf, strlen(buf));
}

/* The GDB remote protocol transfers values in target byte order.  This means
   we can use the raw memory access routines to access the value buffer.
   Conveniently, these also handle the case where the buffer is mis-aligned.
 */
#define GET_REG8(val) do { \
    stb_p(mem_buf, val); \
    return 1; \
    } while(0)
#define GET_REG16(val) do { \
    stw_p(mem_buf, val); \
    return 2; \
    } while(0)
#define GET_REG32(val) do { \
    stl_p(mem_buf, val); \
    return 4; \
    } while(0)
#define GET_REG64(val) do { \
    stq_p(mem_buf, val); \
    return 8; \
    } while(0)

#if TARGET_LONG_BITS == 64
#define GET_REGL(val) GET_REG64(val)
#define ldtul_p(addr) ldq_p(addr)
#else
#define GET_REGL(val) GET_REG32(val)
#define ldtul_p(addr) ldl_p(addr)
499
500
#endif
501
#if defined(TARGET_I386)
502
503

#ifdef TARGET_X86_64
504
505
506
507
static const int gpr_map[16] = {
    R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
    8, 9, 10, 11, 12, 13, 14, 15
};
508
#else
509
static const int gpr_map[8] = {0, 1, 2, 3, 4, 5, 6, 7};
510
511
#endif
512
513
514
#define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)

static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
515
{
516
517
518
519
520
521
    if (n < CPU_NB_REGS) {
        GET_REGL(env->regs[gpr_map[n]]);
    } else if (n >= CPU_NB_REGS + 8 && n < CPU_NB_REGS + 16) {
        /* FIXME: byteswap float values.  */
#ifdef USE_X86LDOUBLE
        memcpy(mem_buf, &env->fpregs[n - (CPU_NB_REGS + 8)], 10);
522
#else
523
        memset(mem_buf, 0, 10);
524
#endif
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
        return 10;
    } else if (n >= CPU_NB_REGS + 24) {
        n -= CPU_NB_REGS + 24;
        if (n < CPU_NB_REGS) {
            stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0));
            stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1));
            return 16;
        } else if (n == CPU_NB_REGS) {
            GET_REG32(env->mxcsr);
        } 
    } else {
        n -= CPU_NB_REGS;
        switch (n) {
        case 0: GET_REGL(env->eip);
        case 1: GET_REG32(env->eflags);
        case 2: GET_REG32(env->segs[R_CS].selector);
        case 3: GET_REG32(env->segs[R_SS].selector);
        case 4: GET_REG32(env->segs[R_DS].selector);
        case 5: GET_REG32(env->segs[R_ES].selector);
        case 6: GET_REG32(env->segs[R_FS].selector);
        case 7: GET_REG32(env->segs[R_GS].selector);
        /* 8...15 x87 regs.  */
        case 16: GET_REG32(env->fpuc);
        case 17: GET_REG32((env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11);
        case 18: GET_REG32(0); /* ftag */
        case 19: GET_REG32(0); /* fiseg */
        case 20: GET_REG32(0); /* fioff */
        case 21: GET_REG32(0); /* foseg */
        case 22: GET_REG32(0); /* fooff */
        case 23: GET_REG32(0); /* fop */
        /* 24+ xmm regs.  */
        }
557
    }
558
    return 0;
bellard authored
559
560
}
561
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int i)
bellard authored
562
{
563
    uint32_t tmp;
bellard authored
564
565
566
567
568
569
570
571
    if (i < CPU_NB_REGS) {
        env->regs[gpr_map[i]] = ldtul_p(mem_buf);
        return sizeof(target_ulong);
    } else if (i >= CPU_NB_REGS + 8 && i < CPU_NB_REGS + 16) {
        i -= CPU_NB_REGS + 8;
#ifdef USE_X86LDOUBLE
        memcpy(&env->fpregs[i], mem_buf, 10);
572
#endif
573
574
575
576
577
578
579
580
581
582
        return 10;
    } else if (i >= CPU_NB_REGS + 24) {
        i -= CPU_NB_REGS + 24;
        if (i < CPU_NB_REGS) {
            env->xmm_regs[i].XMM_Q(0) = ldq_p(mem_buf);
            env->xmm_regs[i].XMM_Q(1) = ldq_p(mem_buf + 8);
            return 16;
        } else if (i == CPU_NB_REGS) {
            env->mxcsr = ldl_p(mem_buf);
            return 4;
583
        }
584
585
586
587
588
589
590
591
592
593
594
595
596
597
    } else {
        i -= CPU_NB_REGS;
        switch (i) {
        case 0: env->eip = ldtul_p(mem_buf); return sizeof(target_ulong);
        case 1: env->eflags = ldl_p(mem_buf); return 4;
#if defined(CONFIG_USER_ONLY)
#define LOAD_SEG(index, sreg)\
            tmp = ldl_p(mem_buf);\
            if (tmp != env->segs[sreg].selector)\
                cpu_x86_load_seg(env, sreg, tmp);
#else
/* FIXME: Honor segment registers.  Needs to avoid raising an exception
   when the selector is invalid.  */
#define LOAD_SEG(index, sreg) do {} while(0)
bellard authored
598
#endif
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
        case 2: LOAD_SEG(10, R_CS); return 4;
        case 3: LOAD_SEG(11, R_SS); return 4;
        case 4: LOAD_SEG(12, R_DS); return 4;
        case 5: LOAD_SEG(13, R_ES); return 4;
        case 6: LOAD_SEG(14, R_FS); return 4;
        case 7: LOAD_SEG(15, R_GS); return 4;
        /* 8...15 x87 regs.  */
        case 16: env->fpuc = ldl_p(mem_buf); return 4;
        case 17:
                 tmp = ldl_p(mem_buf);
                 env->fpstt = (tmp >> 11) & 7;
                 env->fpus = tmp & ~0x3800;
                 return 4;
        case 18: /* ftag */ return 4;
        case 19: /* fiseg */ return 4;
        case 20: /* fioff */ return 4;
        case 21: /* foseg */ return 4;
        case 22: /* fooff */ return 4;
        case 23: /* fop */ return 4;
        /* 24+ xmm regs.  */
619
620
        }
    }
621
622
    /* Unrecognised register.  */
    return 0;
bellard authored
623
624
}
bellard authored
625
626
#elif defined (TARGET_PPC)
627
628
629
630
631
/* Old gdb always expects FP registers.  Newer (xml-aware) gdb only
   expects whatever the target description contains.  Due to a
   historical mishap the FP registers appear in between core integer
   regs and PC, MSR, CR, and so forth.  We hack round this by giving the
   FP regs zero size when talking to a newer gdb.  */
632
#define NUM_CORE_REGS 71
633
634
635
636
637
#if defined (TARGET_PPC64)
#define GDB_CORE_XML "power64-core.xml"
#else
#define GDB_CORE_XML "power-core.xml"
#endif
bellard authored
638
639
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
bellard authored
640
{
641
642
643
644
645
    if (n < 32) {
        /* gprs */
        GET_REGL(env->gpr[n]);
    } else if (n < 64) {
        /* fprs */
646
647
        if (gdb_has_xml)
            return 0;
648
        stfq_p(mem_buf, env->fpr[n-32]);
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
        return 8;
    } else {
        switch (n) {
        case 64: GET_REGL(env->nip);
        case 65: GET_REGL(env->msr);
        case 66:
            {
                uint32_t cr = 0;
                int i;
                for (i = 0; i < 8; i++)
                    cr |= env->crf[i] << (32 - ((i + 1) * 4));
                GET_REG32(cr);
            }
        case 67: GET_REGL(env->lr);
        case 68: GET_REGL(env->ctr);
664
        case 69: GET_REGL(env->xer);
665
666
667
668
669
670
        case 70:
            {
                if (gdb_has_xml)
                    return 0;
                GET_REG32(0); /* fpscr */
            }
671
672
673
674
        }
    }
    return 0;
}
bellard authored
675
676
677
678
679
680
681
682
683
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
{
    if (n < 32) {
        /* gprs */
        env->gpr[n] = ldtul_p(mem_buf);
        return sizeof(target_ulong);
    } else if (n < 64) {
        /* fprs */
684
685
        if (gdb_has_xml)
            return 0;
686
        env->fpr[n-32] = ldfq_p(mem_buf);
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
        return 8;
    } else {
        switch (n) {
        case 64:
            env->nip = ldtul_p(mem_buf);
            return sizeof(target_ulong);
        case 65:
            ppc_store_msr(env, ldtul_p(mem_buf));
            return sizeof(target_ulong);
        case 66:
            {
                uint32_t cr = ldl_p(mem_buf);
                int i;
                for (i = 0; i < 8; i++)
                    env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
                return 4;
            }
        case 67:
            env->lr = ldtul_p(mem_buf);
            return sizeof(target_ulong);
        case 68:
            env->ctr = ldtul_p(mem_buf);
            return sizeof(target_ulong);
        case 69:
711
712
            env->xer = ldtul_p(mem_buf);
            return sizeof(target_ulong);
713
714
        case 70:
            /* fpscr */
715
716
            if (gdb_has_xml)
                return 0;
717
718
719
720
            return 4;
        }
    }
    return 0;
721
}
722
723
#elif defined (TARGET_SPARC)
724
725
726

#if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
#define NUM_CORE_REGS 86
727
#else
728
#define NUM_CORE_REGS 72
729
#endif
730
731
#ifdef TARGET_ABI32
732
#define GET_REGA(val) GET_REG32(val)
733
#else
734
#define GET_REGA(val) GET_REGL(val)
735
#endif
736
737
738
739
740
741
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
{
    if (n < 8) {
        /* g0..g7 */
        GET_REGA(env->gregs[n]);
742
    }
743
744
745
    if (n < 32) {
        /* register window */
        GET_REGA(env->regwptr[n - 8]);
746
    }
747
748
749
750
#if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
    if (n < 64) {
        /* fprs */
        GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
751
752
    }
    /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
753
754
755
756
757
758
759
760
761
    switch (n) {
    case 64: GET_REGA(env->y);
    case 65: GET_REGA(GET_PSR(env));
    case 66: GET_REGA(env->wim);
    case 67: GET_REGA(env->tbr);
    case 68: GET_REGA(env->pc);
    case 69: GET_REGA(env->npc);
    case 70: GET_REGA(env->fsr);
    case 71: GET_REGA(0); /* csr */
762
    default: GET_REGA(0);
763
    }
bellard authored
764
#else
765
766
767
768
769
770
771
    if (n < 64) {
        /* f0-f31 */
        GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
    }
    if (n < 80) {
        /* f32-f62 (double width, even numbers only) */
        uint64_t val;
772
773
774
775
        val = (uint64_t)*((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) << 32;
        val |= *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]);
        GET_REG64(val);
bellard authored
776
    }
777
778
779
780
    switch (n) {
    case 80: GET_REGL(env->pc);
    case 81: GET_REGL(env->npc);
    case 82: GET_REGL(((uint64_t)GET_CCR(env) << 32) |
781
782
783
                           ((env->asi & 0xff) << 24) |
                           ((env->pstate & 0xfff) << 8) |
                           GET_CWP64(env));
784
785
786
787
    case 83: GET_REGL(env->fsr);
    case 84: GET_REGL(env->fprs);
    case 85: GET_REGL(env->y);
    }
bellard authored
788
#endif
789
    return 0;
790
791
}
792
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
793
{
794
795
796
797
#if defined(TARGET_ABI32)
    abi_ulong tmp;

    tmp = ldl_p(mem_buf);
798
#else
799
800
801
    target_ulong tmp;

    tmp = ldtul_p(mem_buf);
802
#endif
803
804
805
806
807
808
809
    if (n < 8) {
        /* g0..g7 */
        env->gregs[n] = tmp;
    } else if (n < 32) {
        /* register window */
        env->regwptr[n - 8] = tmp;
810
    }
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
#if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
    else if (n < 64) {
        /* fprs */
        *((uint32_t *)&env->fpr[n - 32]) = tmp;
    } else {
        /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
        switch (n) {
        case 64: env->y = tmp; break;
        case 65: PUT_PSR(env, tmp); break;
        case 66: env->wim = tmp; break;
        case 67: env->tbr = tmp; break;
        case 68: env->pc = tmp; break;
        case 69: env->npc = tmp; break;
        case 70: env->fsr = tmp; break;
        default: return 0;
        }
827
    }
828
    return 4;
bellard authored
829
#else
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
    else if (n < 64) {
        /* f0-f31 */
        env->fpr[n] = ldfl_p(mem_buf);
        return 4;
    } else if (n < 80) {
        /* f32-f62 (double width, even numbers only) */
        *((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) = tmp >> 32;
        *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]) = tmp;
    } else {
        switch (n) {
        case 80: env->pc = tmp; break;
        case 81: env->npc = tmp; break;
        case 82:
	    PUT_CCR(env, tmp >> 32);
	    env->asi = (tmp >> 24) & 0xff;
	    env->pstate = (tmp >> 8) & 0xfff;
	    PUT_CWP64(env, tmp & 0xff);
	    break;
        case 83: env->fsr = tmp; break;
        case 84: env->fprs = tmp; break;
        case 85: env->y = tmp; break;
        default: return 0;
        }
853
    }
854
    return 8;
bellard authored
855
#endif
bellard authored
856
}
857
#elif defined (TARGET_ARM)
bellard authored
858
859
860
861
862
863
864
865
/* Old gdb always expect FPA registers.  Newer (xml-aware) gdb only expect
   whatever the target description contains.  Due to a historical mishap
   the FPA registers appear in between core integer regs and the CPSR.
   We hack round this by giving the FPA regs zero size when talking to a
   newer gdb.  */
#define NUM_CORE_REGS 26
#define GDB_CORE_XML "arm-core.xml"
pbrook authored
866
867
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
pbrook authored
868
{
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
    if (n < 16) {
        /* Core integer register.  */
        GET_REG32(env->regs[n]);
    }
    if (n < 24) {
        /* FPA registers.  */
        if (gdb_has_xml)
            return 0;
        memset(mem_buf, 0, 12);
        return 12;
    }
    switch (n) {
    case 24:
        /* FPA status register.  */
        if (gdb_has_xml)
            return 0;
        GET_REG32(0);
    case 25:
        /* CPSR */
        GET_REG32(cpsr_read(env));
    }
    /* Unknown register.  */
    return 0;
pbrook authored
892
}
893
894
895
896
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
{
    uint32_t tmp;
897
898
    tmp = ldl_p(mem_buf);
899
900
901
902
903
    /* Mask out low bit of PC to workaround gdb bugs.  This will probably
       cause problems if we ever implement the Jazelle DBX extensions.  */
    if (n == 15)
        tmp &= ~1;
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
    if (n < 16) {
        /* Core integer register.  */
        env->regs[n] = tmp;
        return 4;
    }
    if (n < 24) { /* 16-23 */
        /* FPA registers (ignored).  */
        if (gdb_has_xml)
            return 0;
        return 12;
    }
    switch (n) {
    case 24:
        /* FPA status register (ignored).  */
        if (gdb_has_xml)
            return 0;
        return 4;
    case 25:
        /* CPSR */
        cpsr_write (env, tmp, 0xffffffff);
        return 4;
    }
    /* Unknown register.  */
    return 0;
}
930
931
#elif defined (TARGET_M68K)
932
933
#define NUM_CORE_REGS 18
934
935
#define GDB_CORE_XML "cf-core.xml"
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
{
    if (n < 8) {
        /* D0-D7 */
        GET_REG32(env->dregs[n]);
    } else if (n < 16) {
        /* A0-A7 */
        GET_REG32(env->aregs[n - 8]);
    } else {
	switch (n) {
        case 16: GET_REG32(env->sr);
        case 17: GET_REG32(env->pc);
        }
    }
    /* FP registers not included here because they vary between
       ColdFire and m68k.  Use XML bits for these.  */
    return 0;
}
955
956
957
958
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
{
    uint32_t tmp;
959
960
    tmp = ldl_p(mem_buf);
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
    if (n < 8) {
        /* D0-D7 */
        env->dregs[n] = tmp;
    } else if (n < 8) {
        /* A0-A7 */
        env->aregs[n - 8] = tmp;
    } else {
        switch (n) {
        case 16: env->sr = tmp; break;
        case 17: env->pc = tmp; break;
        default: return 0;
        }
    }
    return 4;
}
#elif defined (TARGET_MIPS)
ths authored
978
979
#define NUM_CORE_REGS 73
ths authored
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
{
    if (n < 32) {
        GET_REGL(env->active_tc.gpr[n]);
    }
    if (env->CP0_Config1 & (1 << CP0C1_FP)) {
        if (n >= 38 && n < 70) {
            if (env->CP0_Status & (1 << CP0St_FR))
		GET_REGL(env->active_fpu.fpr[n - 38].d);
            else
		GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]);
        }
        switch (n) {
        case 70: GET_REGL((int32_t)env->active_fpu.fcr31);
        case 71: GET_REGL((int32_t)env->active_fpu.fcr0);
        }
    }
    switch (n) {
    case 32: GET_REGL((int32_t)env->CP0_Status);
    case 33: GET_REGL(env->active_tc.LO[0]);
    case 34: GET_REGL(env->active_tc.HI[0]);
    case 35: GET_REGL(env->CP0_BadVAddr);
    case 36: GET_REGL((int32_t)env->CP0_Cause);
    case 37: GET_REGL(env->active_tc.PC);
    case 72: GET_REGL(0); /* fp */
    case 89: GET_REGL((int32_t)env->CP0_PRid);
    }
    if (n >= 73 && n <= 88) {
	/* 16 embedded regs.  */
	GET_REGL(0);
    }
1012
1013
    return 0;
1014
1015
}
1016
1017
1018
1019
1020
1021
1022
1023
1024
/* convert MIPS rounding mode in FCR31 to IEEE library */
static unsigned int ieee_rm[] =
  {
    float_round_nearest_even,
    float_round_to_zero,
    float_round_up,
    float_round_down
  };
#define RESTORE_ROUNDING_MODE \
1025
    set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1026
1027
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1028
{
1029
    target_ulong tmp;
1030
1031
    tmp = ldtul_p(mem_buf);
1032
1033
1034
1035
1036
1037
1038
1039
    if (n < 32) {
        env->active_tc.gpr[n] = tmp;
        return sizeof(target_ulong);
    }
    if (env->CP0_Config1 & (1 << CP0C1_FP)
            && n >= 38 && n < 73) {
        if (n < 70) {
ths authored
1040
            if (env->CP0_Status & (1 << CP0St_FR))
1041
              env->active_fpu.fpr[n - 38].d = tmp;
ths authored
1042
            else
1043
1044
1045
1046
1047
1048
1049
              env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp;
        }
        switch (n) {
        case 70:
            env->active_fpu.fcr31 = tmp & 0xFF83FFFF;
            /* set rounding mode */
            RESTORE_ROUNDING_MODE;
1050
#ifndef CONFIG_SOFTFLOAT
1051
1052
            /* no floating point exception for native float */
            SET_FP_ENABLE(env->active_fpu.fcr31, 0);
1053
#endif
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
            break;
        case 71: env->active_fpu.fcr0 = tmp; break;
        }
        return sizeof(target_ulong);
    }
    switch (n) {
    case 32: env->CP0_Status = tmp; break;
    case 33: env->active_tc.LO[0] = tmp; break;
    case 34: env->active_tc.HI[0] = tmp; break;
    case 35: env->CP0_BadVAddr = tmp; break;
    case 36: env->CP0_Cause = tmp; break;
    case 37: env->active_tc.PC = tmp; break;
    case 72: /* fp, ignored */ break;
    default: 
	if (n > 89)
	    return 0;
	/* Other registers are readonly.  Ignore writes.  */
	break;
    }

    return sizeof(target_ulong);
1075
}
bellard authored
1076
#elif defined (TARGET_SH4)
1077
1078

/* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1079
1080
1081
/* FIXME: We should use XML for this.  */

#define NUM_CORE_REGS 59
1082
1083
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
bellard authored
1084
{
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
    if (n < 8) {
        if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
            GET_REGL(env->gregs[n + 16]);
        } else {
            GET_REGL(env->gregs[n]);
        }
    } else if (n < 16) {
        GET_REGL(env->gregs[n - 8]);
    } else if (n >= 25 && n < 41) {
	GET_REGL(env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
    } else if (n >= 43 && n < 51) {
	GET_REGL(env->gregs[n - 43]);
    } else if (n >= 51 && n < 59) {
	GET_REGL(env->gregs[n - (51 - 16)]);
    }
    switch (n) {
    case 16: GET_REGL(env->pc);
    case 17: GET_REGL(env->pr);
    case 18: GET_REGL(env->gbr);
    case 19: GET_REGL(env->vbr);
    case 20: GET_REGL(env->mach);
    case 21: GET_REGL(env->macl);
    case 22: GET_REGL(env->sr);
    case 23: GET_REGL(env->fpul);
    case 24: GET_REGL(env->fpscr);
    case 41: GET_REGL(env->ssr);
    case 42: GET_REGL(env->spc);
    }

    return 0;
bellard authored
1115
1116
}
1117
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
bellard authored
1118
{
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
    uint32_t tmp;

    tmp = ldl_p(mem_buf);

    if (n < 8) {
        if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
            env->gregs[n + 16] = tmp;
        } else {
            env->gregs[n] = tmp;
        }
	return 4;
    } else if (n < 16) {
        env->gregs[n - 8] = tmp;
	return 4;
    } else if (n >= 25 && n < 41) {
	env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)] = tmp;
    } else if (n >= 43 && n < 51) {
	env->gregs[n - 43] = tmp;
	return 4;
    } else if (n >= 51 && n < 59) {
	env->gregs[n - (51 - 16)] = tmp;
	return 4;
    }
    switch (n) {
    case 16: env->pc = tmp;
    case 17: env->pr = tmp;
    case 18: env->gbr = tmp;
    case 19: env->vbr = tmp;
    case 20: env->mach = tmp;
    case 21: env->macl = tmp;
    case 22: env->sr = tmp;
    case 23: env->fpul = tmp;
    case 24: env->fpscr = tmp;
    case 41: env->ssr = tmp;
    case 42: env->spc = tmp;
    default: return 0;
    }

    return 4;
bellard authored
1158
}
1159
1160
#elif defined (TARGET_CRIS)
1161
1162
1163
#define NUM_CORE_REGS 49

static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1164
{
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
    uint8_t srs;

    srs = env->pregs[PR_SRS];
    if (n < 16) {
	GET_REG32(env->regs[n]);
    }

    if (n >= 21 && n < 32) {
	GET_REG32(env->pregs[n - 16]);
    }
    if (n >= 33 && n < 49) {
	GET_REG32(env->sregs[srs][n - 33]);
    }
    switch (n) {
    case 16: GET_REG8(env->pregs[0]);
    case 17: GET_REG8(env->pregs[1]);
    case 18: GET_REG32(env->pregs[2]);
    case 19: GET_REG8(srs);
    case 20: GET_REG16(env->pregs[4]);
    case 32: GET_REG32(env->pc);
    }

    return 0;
1188
}
1189
1190

static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1191
{
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
    uint32_t tmp;

    if (n > 49)
	return 0;

    tmp = ldl_p(mem_buf);

    if (n < 16) {
	env->regs[n] = tmp;
    }
1203
1204
1205
1206
1207
    if (n >= 21 && n < 32) {
	env->pregs[n - 16] = tmp;
    }

    /* FIXME: Should support function regs be writable?  */
1208
1209
1210
    switch (n) {
    case 16: return 1;
    case 17: return 1;
1211
    case 18: env->pregs[PR_PID] = tmp; break;
1212
1213
1214
1215
1216
1217
    case 19: return 1;
    case 20: return 2;
    case 32: env->pc = tmp; break;
    }

    return 4;
1218
}
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
#elif defined (TARGET_ALPHA)

#define NUM_CORE_REGS 65

static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
{
    if (n < 31) {
       GET_REGL(env->ir[n]);
    }
    else if (n == 31) {
       GET_REGL(0);
    }
    else if (n<63) {
       uint64_t val;

       val=*((uint64_t *)&env->fir[n-32]);
       GET_REGL(val);
    }
    else if (n==63) {
       GET_REGL(env->fpcr);
    }
    else if (n==64) {
       GET_REGL(env->pc);
    }
    else {
       GET_REGL(0);
    }

    return 0;
}

static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
{
    target_ulong tmp;
    tmp = ldtul_p(mem_buf);

    if (n < 31) {
        env->ir[n] = tmp;
    }

    if (n > 31 && n < 63) {
        env->fir[n - 32] = ldfl_p(mem_buf);
    }

    if (n == 64 ) {
       env->pc=tmp;
    }

    return 8;
}
1269
1270
1271
1272
1273
#else

#define NUM_CORE_REGS 0

static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1274
{
1275
    return 0;
1276
1277
}
1278
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1279
{
1280
1281
    return 0;
}
1282
1283
#endif
1284
1285
static int num_g_regs = NUM_CORE_REGS;
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
#ifdef GDB_CORE_XML
/* Encode data using the encoding for 'x' packets.  */
static int memtox(char *buf, const char *mem, int len)
{
    char *p = buf;
    char c;

    while (len--) {
        c = *(mem++);
        switch (c) {
        case '#': case '$': case '*': case '}':
            *(p++) = '}';
            *(p++) = c ^ 0x20;
            break;
        default:
            *(p++) = c;
            break;
        }
    }
    return p - buf;
}
1308
aurel32 authored
1309
static const char *get_feature_xml(const char *p, const char **newp)
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
{
    extern const char *const xml_builtin[][2];
    size_t len;
    int i;
    const char *name;
    static char target_xml[1024];

    len = 0;
    while (p[len] && p[len] != ':')
        len++;
    *newp = p + len;

    name = NULL;
    if (strncmp(p, "target.xml", len) == 0) {
        /* Generate the XML description for this CPU.  */
        if (!target_xml[0]) {
            GDBRegisterState *r;
1328
1329
1330
1331
1332
1333
            snprintf(target_xml, sizeof(target_xml),
                     "<?xml version=\"1.0\"?>"
                     "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
                     "<target>"
                     "<xi:include href=\"%s\"/>",
                     GDB_CORE_XML);
1334
1335
            for (r = first_cpu->gdb_regs; r; r = r->next) {
1336
1337
1338
                pstrcat(target_xml, sizeof(target_xml), "<xi:include href=\"");
                pstrcat(target_xml, sizeof(target_xml), r->xml);
                pstrcat(target_xml, sizeof(target_xml), "\"/>");
1339
            }
1340
            pstrcat(target_xml, sizeof(target_xml), "</target>");
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
        }
        return target_xml;
    }
    for (i = 0; ; i++) {
        name = xml_builtin[i][0];
        if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
            break;
    }
    return name ? xml_builtin[i][1] : NULL;
}
#endif
1352
1353
1354
1355
static int gdb_read_register(CPUState *env, uint8_t *mem_buf, int reg)
{
    GDBRegisterState *r;
1356
1357
1358
    if (reg < NUM_CORE_REGS)
        return cpu_gdb_read_register(env, mem_buf, reg);
1359
1360
1361
1362
1363
1364
1365
    for (r = env->gdb_regs; r; r = r->next) {
        if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
            return r->get_reg(env, mem_buf, reg - r->base_reg);
        }
    }
    return 0;
1366
1367
}
1368
static int gdb_write_register(CPUState *env, uint8_t *mem_buf, int reg)
1369
{
1370
    GDBRegisterState *r;
1371
1372
1373
1374
1375
1376
1377
1378
1379
    if (reg < NUM_CORE_REGS)
        return cpu_gdb_write_register(env, mem_buf, reg);

    for (r = env->gdb_regs; r; r = r->next) {
        if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
            return r->set_reg(env, mem_buf, reg - r->base_reg);
        }
    }
bellard authored
1380
1381
1382
    return 0;
}
1383
1384
1385
1386
1387
1388
1389
1390
1391
/* Register a supplemental set of CPU registers.  If g_pos is nonzero it
   specifies the first register number and these registers are included in
   a standard "g" packet.  Direction is relative to gdb, i.e. get_reg is
   gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
 */

void gdb_register_coprocessor(CPUState * env,
                             gdb_reg_cb get_reg, gdb_reg_cb set_reg,
                             int num_regs, const char *xml, int g_pos)
bellard authored
1392
{
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
    GDBRegisterState *s;
    GDBRegisterState **p;
    static int last_reg = NUM_CORE_REGS;

    s = (GDBRegisterState *)qemu_mallocz(sizeof(GDBRegisterState));
    s->base_reg = last_reg;
    s->num_regs = num_regs;
    s->get_reg = get_reg;
    s->set_reg = set_reg;
    s->xml = xml;
    p = &env->gdb_regs;
    while (*p) {
        /* Check for duplicates.  */
        if (strcmp((*p)->xml, xml) == 0)
            return;
        p = &(*p)->next;
    }
    /* Add to end of list.  */
    last_reg += num_regs;
    *p = s;
    if (g_pos) {
        if (g_pos != s->base_reg) {
            fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n"
                    "Expected %d got %d\n", xml, g_pos, s->base_reg);
        } else {
            num_g_regs = last_reg;
        }
    }
bellard authored
1421
1422
}
1423
1424
1425
1426
1427
1428
1429
1430
#ifndef CONFIG_USER_ONLY
static const int xlat_gdb_type[] = {
    [GDB_WATCHPOINT_WRITE]  = BP_GDB | BP_MEM_WRITE,
    [GDB_WATCHPOINT_READ]   = BP_GDB | BP_MEM_READ,
    [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
};
#endif
1431
static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
1432
{
1433
1434
1435
    CPUState *env;
    int err = 0;
1436
1437
1438
    if (kvm_enabled())
        return kvm_insert_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1439
1440
1441
    switch (type) {
    case GDB_BREAKPOINT_SW:
    case GDB_BREAKPOINT_HW:
1442
1443
1444
1445
1446
1447
        for (env = first_cpu; env != NULL; env = env->next_cpu) {
            err = cpu_breakpoint_insert(env, addr, BP_GDB, NULL);
            if (err)
                break;
        }
        return err;
1448
1449
1450
1451
#ifndef CONFIG_USER_ONLY
    case GDB_WATCHPOINT_WRITE:
    case GDB_WATCHPOINT_READ:
    case GDB_WATCHPOINT_ACCESS:
1452
1453
1454
1455
1456
1457
1458
        for (env = first_cpu; env != NULL; env = env->next_cpu) {
            err = cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type],
                                        NULL);
            if (err)
                break;
        }
        return err;
1459
1460
1461
1462
1463
1464
#endif
    default:
        return -ENOSYS;
    }
}
1465
static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
1466
{
1467
1468
1469
    CPUState *env;
    int err = 0;
1470
1471
1472
    if (kvm_enabled())
        return kvm_remove_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1473
1474
1475
    switch (type) {
    case GDB_BREAKPOINT_SW:
    case GDB_BREAKPOINT_HW:
1476
1477
1478
1479
1480
1481
        for (env = first_cpu; env != NULL; env = env->next_cpu) {
            err = cpu_breakpoint_remove(env, addr, BP_GDB);
            if (err)
                break;
        }
        return err;
1482
1483
1484
1485
#ifndef CONFIG_USER_ONLY
    case GDB_WATCHPOINT_WRITE:
    case GDB_WATCHPOINT_READ:
    case GDB_WATCHPOINT_ACCESS:
1486
1487
1488
1489
1490
1491
        for (env = first_cpu; env != NULL; env = env->next_cpu) {
            err = cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]);
            if (err)
                break;
        }
        return err;
1492
1493
1494
1495
1496
1497
#endif
    default:
        return -ENOSYS;
    }
}
1498
static void gdb_breakpoint_remove_all(void)
1499
{
1500
1501
    CPUState *env;
1502
1503
1504
1505
1506
    if (kvm_enabled()) {
        kvm_remove_all_breakpoints(gdbserver_state->c_cpu);
        return;
    }
1507
1508
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
        cpu_breakpoint_remove_all(env, BP_GDB);
1509
#ifndef CONFIG_USER_ONLY
1510
        cpu_watchpoint_remove_all(env, BP_GDB);
1511
#endif
1512
    }
1513
1514
}
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
static void gdb_set_cpu_pc(GDBState *s, target_ulong pc)
{
#if defined(TARGET_I386)
    s->c_cpu->eip = pc;
    cpu_synchronize_state(s->c_cpu, 1);
#elif defined (TARGET_PPC)
    s->c_cpu->nip = pc;
#elif defined (TARGET_SPARC)
    s->c_cpu->pc = pc;
    s->c_cpu->npc = pc + 4;
#elif defined (TARGET_ARM)
    s->c_cpu->regs[15] = pc;
#elif defined (TARGET_SH4)
    s->c_cpu->pc = pc;
#elif defined (TARGET_MIPS)
    s->c_cpu->active_tc.PC = pc;
#elif defined (TARGET_CRIS)
    s->c_cpu->pc = pc;
#elif defined (TARGET_ALPHA)
    s->c_cpu->pc = pc;
#endif
}
1538
static int gdb_handle_packet(GDBState *s, const char *line_buf)
bellard authored
1539
{
1540
    CPUState *env;
bellard authored
1541
    const char *p;
1542
    int ch, reg_size, type, res, thread;
1543
1544
1545
    char buf[MAX_PACKET_LENGTH];
    uint8_t mem_buf[MAX_PACKET_LENGTH];
    uint8_t *registers;
1546
    target_ulong addr, len;
1547
1548
1549
1550
1551
1552
1553
1554
#ifdef DEBUG_GDB
    printf("command='%s'\n", line_buf);
#endif
    p = line_buf;
    ch = *p++;
    switch(ch) {
    case '?':
1555
        /* TODO: Make this return the correct value for user-mode.  */
1556
        snprintf(buf, sizeof(buf), "T%02xthread:%02x;", GDB_SIGNAL_TRAP,
1557
                 s->c_cpu->cpu_index+1);
1558
        put_packet(s, buf);
1559
1560
1561
1562
        /* Remove all the breakpoints when this query is issued,
         * because gdb is doing and initial connect and the state
         * should be cleaned up.
         */
1563
        gdb_breakpoint_remove_all();
1564
1565
1566
        break;
    case 'c':
        if (*p != '\0') {
1567
            addr = strtoull(p, (char **)&p, 16);
1568
            gdb_set_cpu_pc(s, addr);
1569
        }
1570
        s->signal = 0;
1571
        gdb_continue(s);
bellard authored
1572
	return RS_IDLE;
1573
    case 'C':
1574
1575
1576
        s->signal = gdb_signal_to_target (strtoul(p, (char **)&p, 16));
        if (s->signal == -1)
            s->signal = 0;
1577
1578
        gdb_continue(s);
        return RS_IDLE;
1579
1580
1581
1582
1583
1584
    case 'k':
        /* Kill the target */
        fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
        exit(0);
    case 'D':
        /* Detach packet */
1585
        gdb_breakpoint_remove_all();
1586
1587
1588
        gdb_continue(s);
        put_packet(s, "OK");
        break;
1589
1590
    case 's':
        if (*p != '\0') {
1591
            addr = strtoull(p, (char **)&p, 16);
1592
            gdb_set_cpu_pc(s, addr);
1593
        }
1594
        cpu_single_step(s->c_cpu, sstep_flags);
1595
        gdb_continue(s);
bellard authored
1596
	return RS_IDLE;
pbrook authored
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
    case 'F':
        {
            target_ulong ret;
            target_ulong err;

            ret = strtoull(p, (char **)&p, 16);
            if (*p == ',') {
                p++;
                err = strtoull(p, (char **)&p, 16);
            } else {
                err = 0;
            }
            if (*p == ',')
                p++;
            type = *p;
            if (gdb_current_syscall_cb)
1613
                gdb_current_syscall_cb(s->c_cpu, ret, err);
pbrook authored
1614
1615
1616
            if (type == 'C') {
                put_packet(s, "T02");
            } else {
1617
                gdb_continue(s);
pbrook authored
1618
1619
1620
            }
        }
        break;
1621
    case 'g':
1622
        cpu_synchronize_state(s->g_cpu, 0);
1623
1624
        len = 0;
        for (addr = 0; addr < num_g_regs; addr++) {
1625
            reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr);
1626
1627
1628
            len += reg_size;
        }
        memtohex(buf, mem_buf, len);
1629
1630
1631
        put_packet(s, buf);
        break;
    case 'G':
1632
        registers = mem_buf;
1633
1634
        len = strlen(p) / 2;
        hextomem((uint8_t *)registers, p, len);
1635
        for (addr = 0; addr < num_g_regs && len > 0; addr++) {
1636
            reg_size = gdb_write_register(s->g_cpu, registers, addr);
1637
1638
1639
            len -= reg_size;
            registers += reg_size;
        }
1640
        cpu_synchronize_state(s->g_cpu, 1);
1641
1642
1643
        put_packet(s, "OK");
        break;
    case 'm':
1644
        addr = strtoull(p, (char **)&p, 16);
1645
1646
        if (*p == ',')
            p++;
1647
        len = strtoull(p, NULL, 16);
1648
        if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 0) != 0) {
1649
1650
1651
1652
1653
            put_packet (s, "E14");
        } else {
            memtohex(buf, mem_buf, len);
            put_packet(s, buf);
        }
1654
1655
        break;
    case 'M':
1656
        addr = strtoull(p, (char **)&p, 16);
1657
1658
        if (*p == ',')
            p++;
1659
        len = strtoull(p, (char **)&p, 16);
1660
        if (*p == ':')
1661
1662
            p++;
        hextomem(mem_buf, p, len);
1663
        if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 1) != 0)
1664
            put_packet(s, "E14");
1665
1666
1667
        else
            put_packet(s, "OK");
        break;
1668
1669
1670
1671
1672
1673
1674
    case 'p':
        /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
           This works, but can be very slow.  Anything new enough to
           understand XML also knows how to use this properly.  */
        if (!gdb_has_xml)
            goto unknown_command;
        addr = strtoull(p, (char **)&p, 16);
1675
        reg_size = gdb_read_register(s->g_cpu, mem_buf, addr);
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
        if (reg_size) {
            memtohex(buf, mem_buf, reg_size);
            put_packet(s, buf);
        } else {
            put_packet(s, "E14");
        }
        break;
    case 'P':
        if (!gdb_has_xml)
            goto unknown_command;
        addr = strtoull(p, (char **)&p, 16);
        if (*p == '=')
            p++;
        reg_size = strlen(p) / 2;
        hextomem(mem_buf, p, reg_size);
1691
        gdb_write_register(s->g_cpu, mem_buf, addr);
1692
1693
        put_packet(s, "OK");
        break;
1694
1695
1696
1697
1698
    case 'Z':
    case 'z':
        type = strtoul(p, (char **)&p, 16);
        if (*p == ',')
            p++;
1699
        addr = strtoull(p, (char **)&p, 16);
1700
1701
        if (*p == ',')
            p++;
1702
        len = strtoull(p, (char **)&p, 16);
1703
        if (ch == 'Z')
1704
            res = gdb_breakpoint_insert(addr, len, type);
1705
        else
1706
            res = gdb_breakpoint_remove(addr, len, type);
1707
1708
1709
        if (res >= 0)
             put_packet(s, "OK");
        else if (res == -ENOSYS)
pbrook authored
1710
            put_packet(s, "");
1711
1712
        else
            put_packet(s, "E22");
1713
        break;
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
    case 'H':
        type = *p++;
        thread = strtoull(p, (char **)&p, 16);
        if (thread == -1 || thread == 0) {
            put_packet(s, "OK");
            break;
        }
        for (env = first_cpu; env != NULL; env = env->next_cpu)
            if (env->cpu_index + 1 == thread)
                break;
        if (env == NULL) {
            put_packet(s, "E22");
            break;
        }
        switch (type) {
        case 'c':
            s->c_cpu = env;
            put_packet(s, "OK");
            break;
        case 'g':
            s->g_cpu = env;
            put_packet(s, "OK");
            break;
        default:
             put_packet(s, "E22");
             break;
        }
        break;
    case 'T':
        thread = strtoull(p, (char **)&p, 16);
#ifndef CONFIG_USER_ONLY
        if (thread > 0 && thread < smp_cpus + 1)
#else
        if (thread == 1)
#endif
             put_packet(s, "OK");
        else
            put_packet(s, "E22");
        break;
1753
    case 'q':
1754
1755
1756
1757
    case 'Q':
        /* parse any 'q' packets here */
        if (!strcmp(p,"qemu.sstepbits")) {
            /* Query Breakpoint bit definitions */
1758
1759
1760
1761
            snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
                     SSTEP_ENABLE,
                     SSTEP_NOIRQ,
                     SSTEP_NOTIMER);
1762
1763
1764
1765
1766
1767
1768
            put_packet(s, buf);
            break;
        } else if (strncmp(p,"qemu.sstep",10) == 0) {
            /* Display or change the sstep_flags */
            p += 10;
            if (*p != '=') {
                /* Display current setting */
1769
                snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
1770
1771
1772
1773
1774
1775
1776
1777
                put_packet(s, buf);
                break;
            }
            p++;
            type = strtoul(p, (char **)&p, 16);
            sstep_flags = type;
            put_packet(s, "OK");
            break;
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
        } else if (strcmp(p,"C") == 0) {
            /* "Current thread" remains vague in the spec, so always return
             *  the first CPU (gdb returns the first thread). */
            put_packet(s, "QC1");
            break;
        } else if (strcmp(p,"fThreadInfo") == 0) {
            s->query_cpu = first_cpu;
            goto report_cpuinfo;
        } else if (strcmp(p,"sThreadInfo") == 0) {
        report_cpuinfo:
            if (s->query_cpu) {
                snprintf(buf, sizeof(buf), "m%x", s->query_cpu->cpu_index+1);
                put_packet(s, buf);
                s->query_cpu = s->query_cpu->next_cpu;
            } else
                put_packet(s, "l");
            break;
        } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
            thread = strtoull(p+16, (char **)&p, 16);
            for (env = first_cpu; env != NULL; env = env->next_cpu)
                if (env->cpu_index + 1 == thread) {
1799
                    cpu_synchronize_state(env, 0);
1800
1801
1802
1803
1804
1805
1806
1807
                    len = snprintf((char *)mem_buf, sizeof(mem_buf),
                                   "CPU#%d [%s]", env->cpu_index,
                                   env->halted ? "halted " : "running");
                    memtohex(buf, mem_buf, len);
                    put_packet(s, buf);
                    break;
                }
            break;
1808
        }
blueswir1 authored
1809
#ifdef CONFIG_USER_ONLY
1810
        else if (strncmp(p, "Offsets", 7) == 0) {
1811
            TaskState *ts = s->c_cpu->opaque;
1812
1813
1814
1815
1816
1817
1818
            snprintf(buf, sizeof(buf),
                     "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
                     ";Bss=" TARGET_ABI_FMT_lx,
                     ts->info->code_offset,
                     ts->info->data_offset,
                     ts->info->data_offset);
1819
1820
1821
            put_packet(s, buf);
            break;
        }
blueswir1 authored
1822
#else /* !CONFIG_USER_ONLY */
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
        else if (strncmp(p, "Rcmd,", 5) == 0) {
            int len = strlen(p + 5);

            if ((len % 2) != 0) {
                put_packet(s, "E01");
                break;
            }
            hextomem(mem_buf, p + 5, len);
            len = len / 2;
            mem_buf[len++] = 0;
            qemu_chr_read(s->mon_chr, mem_buf, len);
            put_packet(s, "OK");
            break;
        }
blueswir1 authored
1837
#endif /* !CONFIG_USER_ONLY */
1838
        if (strncmp(p, "Supported", 9) == 0) {
1839
            snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
1840
#ifdef GDB_CORE_XML
1841
            pstrcat(buf, sizeof(buf), ";qXfer:features:read+");
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
#endif
            put_packet(s, buf);
            break;
        }
#ifdef GDB_CORE_XML
        if (strncmp(p, "Xfer:features:read:", 19) == 0) {
            const char *xml;
            target_ulong total_len;

            gdb_has_xml = 1;
            p += 19;
1853
            xml = get_feature_xml(p, &p);
1854
            if (!xml) {
1855
                snprintf(buf, sizeof(buf), "E00");
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
                put_packet(s, buf);
                break;
            }

            if (*p == ':')
                p++;
            addr = strtoul(p, (char **)&p, 16);
            if (*p == ',')
                p++;
            len = strtoul(p, (char **)&p, 16);

            total_len = strlen(xml);
            if (addr > total_len) {
1869
                snprintf(buf, sizeof(buf), "E00");
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
                put_packet(s, buf);
                break;
            }
            if (len > (MAX_PACKET_LENGTH - 5) / 2)
                len = (MAX_PACKET_LENGTH - 5) / 2;
            if (len < total_len - addr) {
                buf[0] = 'm';
                len = memtox(buf + 1, xml + addr, len);
            } else {
                buf[0] = 'l';
                len = memtox(buf + 1, xml + addr, total_len - addr);
            }
            put_packet_binary(s, buf, len + 1);
            break;
        }
#endif
        /* Unrecognised 'q' command.  */
        goto unknown_command;
1889
    default:
1890
    unknown_command:
1891
1892
1893
1894
1895
1896
1897
1898
        /* put empty packet */
        buf[0] = '\0';
        put_packet(s, buf);
        break;
    }
    return RS_IDLE;
}
1899
1900
1901
1902
1903
1904
void gdb_set_stop_cpu(CPUState *env)
{
    gdbserver_state->c_cpu = env;
    gdbserver_state->g_cpu = env;
}
1905
#ifndef CONFIG_USER_ONLY
1906
static void gdb_vm_state_change(void *opaque, int running, int reason)
1907
{
1908
1909
    GDBState *s = gdbserver_state;
    CPUState *env = s->c_cpu;
1910
    char buf[256];
1911
    const char *type;
1912
1913
    int ret;
1914
    if (running || (reason != EXCP_DEBUG && reason != EXCP_INTERRUPT) ||
1915
        s->state == RS_INACTIVE || s->state == RS_SYSCALL)
pbrook authored
1916
1917
        return;
1918
    /* disable single step if it was enable */
1919
    cpu_single_step(env, 0);
1920
bellard authored
1921
    if (reason == EXCP_DEBUG) {
1922
1923
        if (env->watchpoint_hit) {
            switch (env->watchpoint_hit->flags & BP_MEM_ACCESS) {
1924
            case BP_MEM_READ:
1925
1926
                type = "r";
                break;
1927
            case BP_MEM_ACCESS:
1928
1929
1930
1931
1932
1933
                type = "a";
                break;
            default:
                type = "";
                break;
            }
1934
1935
            snprintf(buf, sizeof(buf),
                     "T%02xthread:%02x;%swatch:" TARGET_FMT_lx ";",
1936
                     GDB_SIGNAL_TRAP, env->cpu_index+1, type,
1937
                     env->watchpoint_hit->vaddr);
1938
            put_packet(s, buf);
1939
            env->watchpoint_hit = NULL;
1940
1941
            return;
        }
1942
	tb_flush(env);
1943
        ret = GDB_SIGNAL_TRAP;
1944
    } else {
1945
        ret = GDB_SIGNAL_INT;
1946
    }
1947
    snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, env->cpu_index+1);
1948
1949
    put_packet(s, buf);
}
1950
#endif
1951
pbrook authored
1952
1953
/* Send a gdb syscall request.
   This accepts limited printf-style format specifiers, specifically:
pbrook authored
1954
1955
1956
    %x  - target_ulong argument printed in hex.
    %lx - 64-bit argument printed in hex.
    %s  - string pointer (target_ulong) and length (int) pair.  */
1957
void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
pbrook authored
1958
1959
1960
1961
1962
{
    va_list va;
    char buf[256];
    char *p;
    target_ulong addr;
pbrook authored
1963
    uint64_t i64;
pbrook authored
1964
1965
    GDBState *s;
1966
    s = gdbserver_state;
pbrook authored
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
    if (!s)
        return;
    gdb_current_syscall_cb = cb;
    s->state = RS_SYSCALL;
#ifndef CONFIG_USER_ONLY
    vm_stop(EXCP_DEBUG);
#endif
    s->state = RS_IDLE;
    va_start(va, fmt);
    p = buf;
    *(p++) = 'F';
    while (*fmt) {
        if (*fmt == '%') {
            fmt++;
            switch (*fmt++) {
            case 'x':
                addr = va_arg(va, target_ulong);
1984
                p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx, addr);
pbrook authored
1985
                break;
pbrook authored
1986
1987
1988
1989
            case 'l':
                if (*(fmt++) != 'x')
                    goto bad_format;
                i64 = va_arg(va, uint64_t);
1990
                p += snprintf(p, &buf[sizeof(buf)] - p, "%" PRIx64, i64);
pbrook authored
1991
                break;
pbrook authored
1992
1993
            case 's':
                addr = va_arg(va, target_ulong);
1994
1995
                p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx "/%x",
                              addr, va_arg(va, int));
pbrook authored
1996
1997
                break;
            default:
pbrook authored
1998
            bad_format:
pbrook authored
1999
2000
2001
2002
2003
2004
2005
2006
                fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
                        fmt - 1);
                break;
            }
        } else {
            *(p++) = *(fmt++);
        }
    }
2007
    *p = 0;
pbrook authored
2008
2009
2010
    va_end(va);
    put_packet(s, buf);
#ifdef CONFIG_USER_ONLY
2011
    gdb_handlesig(s->c_cpu, 0);
pbrook authored
2012
#else
2013
    cpu_exit(s->c_cpu);
pbrook authored
2014
2015
2016
#endif
}
bellard authored
2017
static void gdb_read_byte(GDBState *s, int ch)
2018
2019
{
    int i, csum;
2020
    uint8_t reply;
2021
2022
#ifndef CONFIG_USER_ONLY
2023
2024
2025
2026
2027
2028
2029
    if (s->last_packet_len) {
        /* Waiting for a response to the last packet.  If we see the start
           of a new command then abandon the previous response.  */
        if (ch == '-') {
#ifdef DEBUG_GDB
            printf("Got NACK, retransmitting\n");
#endif
2030
            put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
        }
#ifdef DEBUG_GDB
        else if (ch == '+')
            printf("Got ACK\n");
        else
            printf("Got '%c' when expecting ACK/NACK\n", ch);
#endif
        if (ch == '+' || ch == '$')
            s->last_packet_len = 0;
        if (ch != '$')
            return;
    }
2043
2044
2045
2046
    if (vm_running) {
        /* when the CPU is running, we cannot do anything except stop
           it when receiving a char */
        vm_stop(EXCP_INTERRUPT);
2047
    } else
2048
#endif
bellard authored
2049
    {
2050
2051
2052
2053
2054
        switch(s->state) {
        case RS_IDLE:
            if (ch == '$') {
                s->line_buf_index = 0;
                s->state = RS_GETLINE;
2055
            }
bellard authored
2056
            break;
2057
2058
2059
2060
2061
        case RS_GETLINE:
            if (ch == '#') {
            s->state = RS_CHKSUM1;
            } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
                s->state = RS_IDLE;
bellard authored
2062
            } else {
2063
            s->line_buf[s->line_buf_index++] = ch;
bellard authored
2064
2065
            }
            break;
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
        case RS_CHKSUM1:
            s->line_buf[s->line_buf_index] = '\0';
            s->line_csum = fromhex(ch) << 4;
            s->state = RS_CHKSUM2;
            break;
        case RS_CHKSUM2:
            s->line_csum |= fromhex(ch);
            csum = 0;
            for(i = 0; i < s->line_buf_index; i++) {
                csum += s->line_buf[i];
            }
            if (s->line_csum != (csum & 0xff)) {
2078
2079
                reply = '-';
                put_buffer(s, &reply, 1);
2080
                s->state = RS_IDLE;
bellard authored
2081
            } else {
2082
2083
                reply = '+';
                put_buffer(s, &reply, 1);
2084
                s->state = gdb_handle_packet(s, s->line_buf);
bellard authored
2085
2086
            }
            break;
pbrook authored
2087
2088
        default:
            abort();
2089
2090
2091
2092
        }
    }
}
2093
2094
#ifdef CONFIG_USER_ONLY
int
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
gdb_queuesig (void)
{
    GDBState *s;

    s = gdbserver_state;

    if (gdbserver_fd < 0 || s->fd < 0)
        return 0;
    else
        return 1;
}

int
2108
2109
2110
2111
2112
2113
gdb_handlesig (CPUState *env, int sig)
{
  GDBState *s;
  char buf[256];
  int n;
2114
  s = gdbserver_state;
2115
2116
  if (gdbserver_fd < 0 || s->fd < 0)
    return sig;
2117
2118
2119
2120
2121
2122
2123

  /* disable single step if it was enabled */
  cpu_single_step(env, 0);
  tb_flush(env);

  if (sig != 0)
    {
2124
      snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb (sig));
2125
2126
      put_packet(s, buf);
    }
2127
2128
2129
2130
  /* put_packet() might have detected that the peer terminated the 
     connection.  */
  if (s->fd < 0)
      return sig;
2131
2132
2133

  sig = 0;
  s->state = RS_IDLE;
bellard authored
2134
2135
  s->running_state = 0;
  while (s->running_state == 0) {
2136
2137
2138
2139
2140
2141
      n = read (s->fd, buf, 256);
      if (n > 0)
        {
          int i;

          for (i = 0; i < n; i++)
bellard authored
2142
            gdb_read_byte (s, buf[i]);
2143
2144
2145
2146
2147
2148
2149
        }
      else if (n == 0 || errno != EAGAIN)
        {
          /* XXX: Connection closed.  Should probably wait for annother
             connection before continuing.  */
          return sig;
        }
bellard authored
2150
  }
2151
2152
  sig = s->signal;
  s->signal = 0;
2153
2154
  return sig;
}
2155
2156
2157
2158
2159
2160
2161

/* Tell the remote gdb that the process has exited.  */
void gdb_exit(CPUState *env, int code)
{
  GDBState *s;
  char buf[4];
2162
  s = gdbserver_state;
2163
2164
  if (gdbserver_fd < 0 || s->fd < 0)
    return;
2165
2166
2167
2168
2169

  snprintf(buf, sizeof(buf), "W%02x", code);
  put_packet(s, buf);
}
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
/* Tell the remote gdb that the process has exited due to SIG.  */
void gdb_signalled(CPUState *env, int sig)
{
  GDBState *s;
  char buf[4];

  s = gdbserver_state;
  if (gdbserver_fd < 0 || s->fd < 0)
    return;

  snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb (sig));
  put_packet(s, buf);
}
2183
2184
static void gdb_accept(void)
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
{
    GDBState *s;
    struct sockaddr_in sockaddr;
    socklen_t len;
    int val, fd;

    for(;;) {
        len = sizeof(sockaddr);
        fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
        if (fd < 0 && errno != EINTR) {
            perror("accept");
            return;
        } else if (fd >= 0) {
bellard authored
2198
2199
2200
            break;
        }
    }
2201
2202
2203

    /* set short latency */
    val = 1;
bellard authored
2204
    setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
2205
2206
2207
2208
    s = qemu_mallocz(sizeof(GDBState));
    s->c_cpu = first_cpu;
    s->g_cpu = first_cpu;
2209
    s->fd = fd;
2210
    gdb_has_xml = 0;
2211
2212
    gdbserver_state = s;
pbrook authored
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
    fcntl(fd, F_SETFL, O_NONBLOCK);
}

static int gdbserver_open(int port)
{
    struct sockaddr_in sockaddr;
    int fd, val, ret;

    fd = socket(PF_INET, SOCK_STREAM, 0);
    if (fd < 0) {
        perror("socket");
        return -1;
    }

    /* allow fast reuse */
    val = 1;
bellard authored
2230
    setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253

    sockaddr.sin_family = AF_INET;
    sockaddr.sin_port = htons(port);
    sockaddr.sin_addr.s_addr = 0;
    ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
    if (ret < 0) {
        perror("bind");
        return -1;
    }
    ret = listen(fd, 0);
    if (ret < 0) {
        perror("listen");
        return -1;
    }
    return fd;
}

int gdbserver_start(int port)
{
    gdbserver_fd = gdbserver_open(port);
    if (gdbserver_fd < 0)
        return -1;
    /* accept connections */
2254
    gdb_accept();
2255
2256
    return 0;
}
2257
2258
2259
2260
2261

/* Disable gdb stub for child processes.  */
void gdbserver_fork(CPUState *env)
{
    GDBState *s = gdbserver_state;
2262
    if (gdbserver_fd < 0 || s->fd < 0)
2263
2264
2265
2266
2267
2268
      return;
    close(s->fd);
    s->fd = -1;
    cpu_breakpoint_remove_all(env, BP_GDB);
    cpu_watchpoint_remove_all(env, BP_GDB);
}
2269
#else
ths authored
2270
static int gdb_chr_can_receive(void *opaque)
2271
{
2272
2273
2274
  /* We can handle an arbitrarily large amount of data.
   Pick the maximum packet size, which is as good as anything.  */
  return MAX_PACKET_LENGTH;
2275
2276
}
ths authored
2277
static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
2278
2279
2280
2281
{
    int i;

    for (i = 0; i < size; i++) {
2282
        gdb_read_byte(gdbserver_state, buf[i]);
2283
2284
2285
2286
2287
2288
2289
2290
    }
}

static void gdb_chr_event(void *opaque, int event)
{
    switch (event) {
    case CHR_EVENT_RESET:
        vm_stop(EXCP_INTERRUPT);
2291
        gdb_has_xml = 0;
2292
2293
2294
2295
2296
2297
        break;
    default:
        break;
    }
}
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
static void gdb_monitor_output(GDBState *s, const char *msg, int len)
{
    char buf[MAX_PACKET_LENGTH];

    buf[0] = 'O';
    if (len > (MAX_PACKET_LENGTH/2) - 1)
        len = (MAX_PACKET_LENGTH/2) - 1;
    memtohex(buf + 1, (uint8_t *)msg, len);
    put_packet(s, buf);
}

static int gdb_monitor_write(CharDriverState *chr, const uint8_t *buf, int len)
{
    const char *p = (const char *)buf;
    int max_sz;

    max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2;
    for (;;) {
        if (len <= max_sz) {
            gdb_monitor_output(gdbserver_state, p, len);
            break;
        }
        gdb_monitor_output(gdbserver_state, p, max_sz);
        p += max_sz;
        len -= max_sz;
    }
    return len;
}
2327
2328
2329
2330
2331
2332
2333
2334
2335
#ifndef _WIN32
static void gdb_sigterm_handler(int signal)
{
    if (vm_running)
        vm_stop(EXCP_INTERRUPT);
}
#endif

int gdbserver_start(const char *device)
2336
2337
{
    GDBState *s;
2338
    char gdbstub_device_name[128];
2339
2340
    CharDriverState *chr = NULL;
    CharDriverState *mon_chr;
2341
2342
2343
2344
2345
2346
2347
2348
2349
    if (!device)
        return -1;
    if (strcmp(device, "none") != 0) {
        if (strstart(device, "tcp:", NULL)) {
            /* enforce required TCP attributes */
            snprintf(gdbstub_device_name, sizeof(gdbstub_device_name),
                     "%s,nowait,nodelay,server", device);
            device = gdbstub_device_name;
2350
        }
2351
2352
2353
#ifndef _WIN32
        else if (strcmp(device, "stdio") == 0) {
            struct sigaction act;
2354
2355
2356
2357
2358
2359
2360
            memset(&act, 0, sizeof(act));
            act.sa_handler = gdb_sigterm_handler;
            sigaction(SIGINT, &act, NULL);
        }
#endif
        chr = qemu_chr_open("gdb", device, NULL);
2361
2362
2363
2364
2365
        if (!chr)
            return -1;

        qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
                              gdb_chr_event, NULL);
2366
2367
    }
2368
2369
2370
2371
    s = gdbserver_state;
    if (!s) {
        s = qemu_mallocz(sizeof(GDBState));
        gdbserver_state = s;
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
        qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);

        /* Initialize a monitor terminal for gdb */
        mon_chr = qemu_mallocz(sizeof(*mon_chr));
        mon_chr->chr_write = gdb_monitor_write;
        monitor_init(mon_chr, 0);
    } else {
        if (s->chr)
            qemu_chr_close(s->chr);
        mon_chr = s->mon_chr;
        memset(s, 0, sizeof(GDBState));
    }
2385
2386
    s->c_cpu = first_cpu;
    s->g_cpu = first_cpu;
2387
    s->chr = chr;
2388
2389
    s->state = chr ? RS_IDLE : RS_INACTIVE;
    s->mon_chr = mon_chr;
2390
bellard authored
2391
2392
    return 0;
}
2393
#endif