Blame view

gdbstub.c 63.4 KB
bellard authored
1
2
/*
 * gdb server stub
3
 *
bellard authored
4
 * Copyright (c) 2003-2005 Fabrice Bellard
bellard authored
5
6
7
8
9
10
11
12
13
14
15
16
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
bellard authored
18
 */
19
#include "config.h"
20
#include "qemu-common.h"
21
22
23
24
25
26
27
#ifdef CONFIG_USER_ONLY
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
28
#include <fcntl.h>
29
30
31

#include "qemu.h"
#else
32
#include "monitor.h"
pbrook authored
33
34
35
#include "qemu-char.h"
#include "sysemu.h"
#include "gdbstub.h"
36
#endif
37
38
39
#define MAX_PACKET_LENGTH 4096
bellard authored
40
#include "qemu_socket.h"
41
#include "kvm.h"
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90


enum {
    GDB_SIGNAL_0 = 0,
    GDB_SIGNAL_INT = 2,
    GDB_SIGNAL_TRAP = 5,
    GDB_SIGNAL_UNKNOWN = 143
};

#ifdef CONFIG_USER_ONLY

/* Map target signal numbers to GDB protocol signal numbers and vice
 * versa.  For user emulation's currently supported systems, we can
 * assume most signals are defined.
 */

static int gdb_signal_table[] = {
    0,
    TARGET_SIGHUP,
    TARGET_SIGINT,
    TARGET_SIGQUIT,
    TARGET_SIGILL,
    TARGET_SIGTRAP,
    TARGET_SIGABRT,
    -1, /* SIGEMT */
    TARGET_SIGFPE,
    TARGET_SIGKILL,
    TARGET_SIGBUS,
    TARGET_SIGSEGV,
    TARGET_SIGSYS,
    TARGET_SIGPIPE,
    TARGET_SIGALRM,
    TARGET_SIGTERM,
    TARGET_SIGURG,
    TARGET_SIGSTOP,
    TARGET_SIGTSTP,
    TARGET_SIGCONT,
    TARGET_SIGCHLD,
    TARGET_SIGTTIN,
    TARGET_SIGTTOU,
    TARGET_SIGIO,
    TARGET_SIGXCPU,
    TARGET_SIGXFSZ,
    TARGET_SIGVTALRM,
    TARGET_SIGPROF,
    TARGET_SIGWINCH,
    -1, /* SIGLOST */
    TARGET_SIGUSR1,
    TARGET_SIGUSR2,
blueswir1 authored
91
#ifdef TARGET_SIGPWR
92
    TARGET_SIGPWR,
blueswir1 authored
93
94
95
#else
    -1,
#endif
96
97
98
99
100
101
102
103
104
105
106
107
    -1, /* SIGPOLL */
    -1,
    -1,
    -1,
    -1,
    -1,
    -1,
    -1,
    -1,
    -1,
    -1,
    -1,
blueswir1 authored
108
#ifdef __SIGRTMIN
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
    __SIGRTMIN + 1,
    __SIGRTMIN + 2,
    __SIGRTMIN + 3,
    __SIGRTMIN + 4,
    __SIGRTMIN + 5,
    __SIGRTMIN + 6,
    __SIGRTMIN + 7,
    __SIGRTMIN + 8,
    __SIGRTMIN + 9,
    __SIGRTMIN + 10,
    __SIGRTMIN + 11,
    __SIGRTMIN + 12,
    __SIGRTMIN + 13,
    __SIGRTMIN + 14,
    __SIGRTMIN + 15,
    __SIGRTMIN + 16,
    __SIGRTMIN + 17,
    __SIGRTMIN + 18,
    __SIGRTMIN + 19,
    __SIGRTMIN + 20,
    __SIGRTMIN + 21,
    __SIGRTMIN + 22,
    __SIGRTMIN + 23,
    __SIGRTMIN + 24,
    __SIGRTMIN + 25,
    __SIGRTMIN + 26,
    __SIGRTMIN + 27,
    __SIGRTMIN + 28,
    __SIGRTMIN + 29,
    __SIGRTMIN + 30,
    __SIGRTMIN + 31,
    -1, /* SIGCANCEL */
    __SIGRTMIN,
    __SIGRTMIN + 32,
    __SIGRTMIN + 33,
    __SIGRTMIN + 34,
    __SIGRTMIN + 35,
    __SIGRTMIN + 36,
    __SIGRTMIN + 37,
    __SIGRTMIN + 38,
    __SIGRTMIN + 39,
    __SIGRTMIN + 40,
    __SIGRTMIN + 41,
    __SIGRTMIN + 42,
    __SIGRTMIN + 43,
    __SIGRTMIN + 44,
    __SIGRTMIN + 45,
    __SIGRTMIN + 46,
    __SIGRTMIN + 47,
    __SIGRTMIN + 48,
    __SIGRTMIN + 49,
    __SIGRTMIN + 50,
    __SIGRTMIN + 51,
    __SIGRTMIN + 52,
    __SIGRTMIN + 53,
    __SIGRTMIN + 54,
    __SIGRTMIN + 55,
    __SIGRTMIN + 56,
    __SIGRTMIN + 57,
    __SIGRTMIN + 58,
    __SIGRTMIN + 59,
    __SIGRTMIN + 60,
    __SIGRTMIN + 61,
    __SIGRTMIN + 62,
    __SIGRTMIN + 63,
    __SIGRTMIN + 64,
    __SIGRTMIN + 65,
    __SIGRTMIN + 66,
    __SIGRTMIN + 67,
    __SIGRTMIN + 68,
    __SIGRTMIN + 69,
    __SIGRTMIN + 70,
    __SIGRTMIN + 71,
    __SIGRTMIN + 72,
    __SIGRTMIN + 73,
    __SIGRTMIN + 74,
    __SIGRTMIN + 75,
    __SIGRTMIN + 76,
    __SIGRTMIN + 77,
    __SIGRTMIN + 78,
    __SIGRTMIN + 79,
    __SIGRTMIN + 80,
    __SIGRTMIN + 81,
    __SIGRTMIN + 82,
    __SIGRTMIN + 83,
    __SIGRTMIN + 84,
    __SIGRTMIN + 85,
    __SIGRTMIN + 86,
    __SIGRTMIN + 87,
    __SIGRTMIN + 88,
    __SIGRTMIN + 89,
    __SIGRTMIN + 90,
    __SIGRTMIN + 91,
    __SIGRTMIN + 92,
    __SIGRTMIN + 93,
    __SIGRTMIN + 94,
    __SIGRTMIN + 95,
    -1, /* SIGINFO */
    -1, /* UNKNOWN */
    -1, /* DEFAULT */
    -1,
    -1,
    -1,
    -1,
    -1,
    -1
blueswir1 authored
215
#endif
216
};
bellard authored
217
#else
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
/* In system mode we only need SIGINT and SIGTRAP; other signals
   are not yet supported.  */

enum {
    TARGET_SIGINT = 2,
    TARGET_SIGTRAP = 5
};

static int gdb_signal_table[] = {
    -1,
    -1,
    TARGET_SIGINT,
    -1,
    -1,
    TARGET_SIGTRAP
};
#endif

#ifdef CONFIG_USER_ONLY
static int target_signal_to_gdb (int sig)
{
    int i;
    for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
        if (gdb_signal_table[i] == sig)
            return i;
    return GDB_SIGNAL_UNKNOWN;
}
bellard authored
245
#endif
bellard authored
246
247
248
249
250
251
252
253
254
static int gdb_signal_to_target (int sig)
{
    if (sig < ARRAY_SIZE (gdb_signal_table))
        return gdb_signal_table[sig];
    else
        return -1;
}
bellard authored
255
//#define DEBUG_GDB
bellard authored
256
257
258
259
260
261
262
263
264
265
typedef struct GDBRegisterState {
    int base_reg;
    int num_regs;
    gdb_reg_cb get_reg;
    gdb_reg_cb set_reg;
    const char *xml;
    struct GDBRegisterState *next;
} GDBRegisterState;
266
enum RSState {
267
    RS_INACTIVE,
268
269
270
271
    RS_IDLE,
    RS_GETLINE,
    RS_CHKSUM1,
    RS_CHKSUM2,
pbrook authored
272
    RS_SYSCALL,
273
274
};
typedef struct GDBState {
275
276
277
    CPUState *c_cpu; /* current CPU for step/continue ops */
    CPUState *g_cpu; /* current CPU for other ops */
    CPUState *query_cpu; /* for q{f|s}ThreadInfo */
bellard authored
278
    enum RSState state; /* parsing state */
279
    char line_buf[MAX_PACKET_LENGTH];
280
281
    int line_buf_index;
    int line_csum;
282
    uint8_t last_packet[MAX_PACKET_LENGTH + 4];
283
    int last_packet_len;
284
    int signal;
bellard authored
285
#ifdef CONFIG_USER_ONLY
286
    int fd;
bellard authored
287
    int running_state;
288
289
#else
    CharDriverState *chr;
290
    CharDriverState *mon_chr;
bellard authored
291
#endif
292
} GDBState;
bellard authored
293
294
295
296
297
298
/* By default use no IRQs and no timers while single stepping so as to
 * make single stepping like an ICE HW step.
 */
static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
299
300
static GDBState *gdbserver_state;
301
302
303
304
305
/* This is an ugly hack to cope with both new and old gdb.
   If gdb sends qXfer:features:read then assume we're talking to a newish
   gdb that understands target descriptions.  */
static int gdb_has_xml;
306
#ifdef CONFIG_USER_ONLY
307
308
309
/* XXX: This is not thread safe.  Do we care?  */
static int gdbserver_fd = -1;
310
static int get_char(GDBState *s)
bellard authored
311
312
313
314
315
{
    uint8_t ch;
    int ret;

    for(;;) {
bellard authored
316
        ret = recv(s->fd, &ch, 1, 0);
bellard authored
317
        if (ret < 0) {
318
319
            if (errno == ECONNRESET)
                s->fd = -1;
bellard authored
320
321
322
            if (errno != EINTR && errno != EAGAIN)
                return -1;
        } else if (ret == 0) {
323
324
            close(s->fd);
            s->fd = -1;
bellard authored
325
326
327
328
329
330
331
            return -1;
        } else {
            break;
        }
    }
    return ch;
}
332
#endif
bellard authored
333
pbrook authored
334
335
static gdb_syscall_complete_cb gdb_current_syscall_cb;
336
static enum {
pbrook authored
337
338
339
340
341
342
343
344
345
346
    GDB_SYS_UNKNOWN,
    GDB_SYS_ENABLED,
    GDB_SYS_DISABLED,
} gdb_syscall_mode;

/* If gdb is connected when the first semihosting syscall occurs then use
   remote gdb syscalls.  Otherwise use native file IO.  */
int use_gdb_syscalls(void)
{
    if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
347
348
        gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
                                            : GDB_SYS_DISABLED);
pbrook authored
349
350
351
352
    }
    return gdb_syscall_mode == GDB_SYS_ENABLED;
}
353
354
355
356
357
358
359
360
361
362
/* Resume execution.  */
static inline void gdb_continue(GDBState *s)
{
#ifdef CONFIG_USER_ONLY
    s->running_state = 1;
#else
    vm_start();
#endif
}
363
static void put_buffer(GDBState *s, const uint8_t *buf, int len)
bellard authored
364
{
365
#ifdef CONFIG_USER_ONLY
bellard authored
366
367
368
    int ret;

    while (len > 0) {
bellard authored
369
        ret = send(s->fd, buf, len, 0);
bellard authored
370
371
372
373
374
375
376
377
        if (ret < 0) {
            if (errno != EINTR && errno != EAGAIN)
                return;
        } else {
            buf += ret;
            len -= ret;
        }
    }
378
379
380
#else
    qemu_chr_write(s->chr, buf, len);
#endif
bellard authored
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
}

static inline int fromhex(int v)
{
    if (v >= '0' && v <= '9')
        return v - '0';
    else if (v >= 'A' && v <= 'F')
        return v - 'A' + 10;
    else if (v >= 'a' && v <= 'f')
        return v - 'a' + 10;
    else
        return 0;
}

static inline int tohex(int v)
{
    if (v < 10)
        return v + '0';
    else
        return v - 10 + 'a';
}

static void memtohex(char *buf, const uint8_t *mem, int len)
{
    int i, c;
    char *q;
    q = buf;
    for(i = 0; i < len; i++) {
        c = mem[i];
        *q++ = tohex(c >> 4);
        *q++ = tohex(c & 0xf);
    }
    *q = '\0';
}

static void hextomem(uint8_t *mem, const char *buf, int len)
{
    int i;

    for(i = 0; i < len; i++) {
        mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
        buf += 2;
    }
}

/* return -1 if error, 0 if OK */
427
static int put_packet_binary(GDBState *s, const char *buf, int len)
bellard authored
428
{
429
    int csum, i;
430
    uint8_t *p;
bellard authored
431
432

    for(;;) {
433
434
435
436
        p = s->last_packet;
        *(p++) = '$';
        memcpy(p, buf, len);
        p += len;
bellard authored
437
438
439
440
        csum = 0;
        for(i = 0; i < len; i++) {
            csum += buf[i];
        }
441
442
443
        *(p++) = '#';
        *(p++) = tohex((csum >> 4) & 0xf);
        *(p++) = tohex((csum) & 0xf);
bellard authored
444
445
        s->last_packet_len = p - s->last_packet;
446
        put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
bellard authored
447
448
449
450
#ifdef CONFIG_USER_ONLY
        i = get_char(s);
        if (i < 0)
bellard authored
451
            return -1;
452
        if (i == '+')
bellard authored
453
            break;
454
455
456
#else
        break;
#endif
bellard authored
457
458
459
460
    }
    return 0;
}
461
462
463
464
465
466
/* return -1 if error, 0 if OK */
static int put_packet(GDBState *s, const char *buf)
{
#ifdef DEBUG_GDB
    printf("reply='%s'\n", buf);
#endif
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
    return put_packet_binary(s, buf, strlen(buf));
}

/* The GDB remote protocol transfers values in target byte order.  This means
   we can use the raw memory access routines to access the value buffer.
   Conveniently, these also handle the case where the buffer is mis-aligned.
 */
#define GET_REG8(val) do { \
    stb_p(mem_buf, val); \
    return 1; \
    } while(0)
#define GET_REG16(val) do { \
    stw_p(mem_buf, val); \
    return 2; \
    } while(0)
#define GET_REG32(val) do { \
    stl_p(mem_buf, val); \
    return 4; \
    } while(0)
#define GET_REG64(val) do { \
    stq_p(mem_buf, val); \
    return 8; \
    } while(0)

#if TARGET_LONG_BITS == 64
#define GET_REGL(val) GET_REG64(val)
#define ldtul_p(addr) ldq_p(addr)
#else
#define GET_REGL(val) GET_REG32(val)
#define ldtul_p(addr) ldl_p(addr)
498
499
#endif
500
#if defined(TARGET_I386)
501
502

#ifdef TARGET_X86_64
503
504
505
506
static const int gpr_map[16] = {
    R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
    8, 9, 10, 11, 12, 13, 14, 15
};
507
#else
508
static const int gpr_map[8] = {0, 1, 2, 3, 4, 5, 6, 7};
509
510
#endif
511
512
#define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
513
514
515
516
517
518
519
#define IDX_IP_REG      CPU_NB_REGS
#define IDX_FLAGS_REG   (IDX_IP_REG + 1)
#define IDX_SEG_REGS    (IDX_FLAGS_REG + 1)
#define IDX_FP_REGS     (IDX_SEG_REGS + 6)
#define IDX_XMM_REGS    (IDX_FP_REGS + 16)
#define IDX_MXCSR_REG   (IDX_XMM_REGS + CPU_NB_REGS)
520
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
521
{
522
523
    if (n < CPU_NB_REGS) {
        GET_REGL(env->regs[gpr_map[n]]);
524
    } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
525
#ifdef USE_X86LDOUBLE
526
527
        /* FIXME: byteswap float values - after fixing fpregs layout. */
        memcpy(mem_buf, &env->fpregs[n - IDX_FP_REGS], 10);
528
#else
529
        memset(mem_buf, 0, 10);
530
#endif
531
        return 10;
532
533
534
535
536
    } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
        n -= IDX_XMM_REGS;
        stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0));
        stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1));
        return 16;
537
538
    } else {
        switch (n) {
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
        case IDX_IP_REG:    GET_REGL(env->eip);
        case IDX_FLAGS_REG: GET_REG32(env->eflags);

        case IDX_SEG_REGS:     GET_REG32(env->segs[R_CS].selector);
        case IDX_SEG_REGS + 1: GET_REG32(env->segs[R_SS].selector);
        case IDX_SEG_REGS + 2: GET_REG32(env->segs[R_DS].selector);
        case IDX_SEG_REGS + 3: GET_REG32(env->segs[R_ES].selector);
        case IDX_SEG_REGS + 4: GET_REG32(env->segs[R_FS].selector);
        case IDX_SEG_REGS + 5: GET_REG32(env->segs[R_GS].selector);

        case IDX_FP_REGS + 8:  GET_REG32(env->fpuc);
        case IDX_FP_REGS + 9:  GET_REG32((env->fpus & ~0x3800) |
                                         (env->fpstt & 0x7) << 11);
        case IDX_FP_REGS + 10: GET_REG32(0); /* ftag */
        case IDX_FP_REGS + 11: GET_REG32(0); /* fiseg */
        case IDX_FP_REGS + 12: GET_REG32(0); /* fioff */
        case IDX_FP_REGS + 13: GET_REG32(0); /* foseg */
        case IDX_FP_REGS + 14: GET_REG32(0); /* fooff */
        case IDX_FP_REGS + 15: GET_REG32(0); /* fop */

        case IDX_MXCSR_REG: GET_REG32(env->mxcsr);
560
        }
561
    }
562
    return 0;
bellard authored
563
564
}
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
static int cpu_x86_gdb_load_seg(CPUState *env, int sreg, uint8_t *mem_buf)
{
    uint16_t selector = ldl_p(mem_buf);

    if (selector != env->segs[sreg].selector) {
#if defined(CONFIG_USER_ONLY)
        cpu_x86_load_seg(env, sreg, selector);
#else
        unsigned int limit, flags;
        target_ulong base;

        if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
            base = selector << 4;
            limit = 0xffff;
            flags = 0;
        } else {
            if (!cpu_x86_get_descr_debug(env, selector, &base, &limit, &flags))
                return 4;
        }
        cpu_x86_load_seg_cache(env, sreg, selector, base, limit, flags);
#endif
    }
    return 4;
}
590
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
bellard authored
591
{
592
    uint32_t tmp;
bellard authored
593
594
595
    if (n < CPU_NB_REGS) {
        env->regs[gpr_map[n]] = ldtul_p(mem_buf);
596
        return sizeof(target_ulong);
597
    } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
598
#ifdef USE_X86LDOUBLE
599
600
        /* FIXME: byteswap float values - after fixing fpregs layout. */
        memcpy(&env->fpregs[n - IDX_FP_REGS], mem_buf, 10);
601
#endif
602
        return 10;
603
604
605
606
607
    } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
        n -= IDX_XMM_REGS;
        env->xmm_regs[n].XMM_Q(0) = ldq_p(mem_buf);
        env->xmm_regs[n].XMM_Q(1) = ldq_p(mem_buf + 8);
        return 16;
608
    } else {
609
610
611
612
613
614
615
616
        switch (n) {
        case IDX_IP_REG:
            env->eip = ldtul_p(mem_buf);
            return sizeof(target_ulong);
        case IDX_FLAGS_REG:
            env->eflags = ldl_p(mem_buf);
            return 4;
617
618
619
620
621
622
        case IDX_SEG_REGS:     return cpu_x86_gdb_load_seg(env, R_CS, mem_buf);
        case IDX_SEG_REGS + 1: return cpu_x86_gdb_load_seg(env, R_SS, mem_buf);
        case IDX_SEG_REGS + 2: return cpu_x86_gdb_load_seg(env, R_DS, mem_buf);
        case IDX_SEG_REGS + 3: return cpu_x86_gdb_load_seg(env, R_ES, mem_buf);
        case IDX_SEG_REGS + 4: return cpu_x86_gdb_load_seg(env, R_FS, mem_buf);
        case IDX_SEG_REGS + 5: return cpu_x86_gdb_load_seg(env, R_GS, mem_buf);
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641

        case IDX_FP_REGS + 8:
            env->fpuc = ldl_p(mem_buf);
            return 4;
        case IDX_FP_REGS + 9:
            tmp = ldl_p(mem_buf);
            env->fpstt = (tmp >> 11) & 7;
            env->fpus = tmp & ~0x3800;
            return 4;
        case IDX_FP_REGS + 10: /* ftag */  return 4;
        case IDX_FP_REGS + 11: /* fiseg */ return 4;
        case IDX_FP_REGS + 12: /* fioff */ return 4;
        case IDX_FP_REGS + 13: /* foseg */ return 4;
        case IDX_FP_REGS + 14: /* fooff */ return 4;
        case IDX_FP_REGS + 15: /* fop */   return 4;

        case IDX_MXCSR_REG:
            env->mxcsr = ldl_p(mem_buf);
            return 4;
642
643
        }
    }
644
645
    /* Unrecognised register.  */
    return 0;
bellard authored
646
647
}
bellard authored
648
649
#elif defined (TARGET_PPC)
650
651
652
653
654
/* Old gdb always expects FP registers.  Newer (xml-aware) gdb only
   expects whatever the target description contains.  Due to a
   historical mishap the FP registers appear in between core integer
   regs and PC, MSR, CR, and so forth.  We hack round this by giving the
   FP regs zero size when talking to a newer gdb.  */
655
#define NUM_CORE_REGS 71
656
657
658
659
660
#if defined (TARGET_PPC64)
#define GDB_CORE_XML "power64-core.xml"
#else
#define GDB_CORE_XML "power-core.xml"
#endif
bellard authored
661
662
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
bellard authored
663
{
664
665
666
667
668
    if (n < 32) {
        /* gprs */
        GET_REGL(env->gpr[n]);
    } else if (n < 64) {
        /* fprs */
669
670
        if (gdb_has_xml)
            return 0;
671
        stfq_p(mem_buf, env->fpr[n-32]);
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
        return 8;
    } else {
        switch (n) {
        case 64: GET_REGL(env->nip);
        case 65: GET_REGL(env->msr);
        case 66:
            {
                uint32_t cr = 0;
                int i;
                for (i = 0; i < 8; i++)
                    cr |= env->crf[i] << (32 - ((i + 1) * 4));
                GET_REG32(cr);
            }
        case 67: GET_REGL(env->lr);
        case 68: GET_REGL(env->ctr);
687
        case 69: GET_REGL(env->xer);
688
689
690
691
692
693
        case 70:
            {
                if (gdb_has_xml)
                    return 0;
                GET_REG32(0); /* fpscr */
            }
694
695
696
697
        }
    }
    return 0;
}
bellard authored
698
699
700
701
702
703
704
705
706
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
{
    if (n < 32) {
        /* gprs */
        env->gpr[n] = ldtul_p(mem_buf);
        return sizeof(target_ulong);
    } else if (n < 64) {
        /* fprs */
707
708
        if (gdb_has_xml)
            return 0;
709
        env->fpr[n-32] = ldfq_p(mem_buf);
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
        return 8;
    } else {
        switch (n) {
        case 64:
            env->nip = ldtul_p(mem_buf);
            return sizeof(target_ulong);
        case 65:
            ppc_store_msr(env, ldtul_p(mem_buf));
            return sizeof(target_ulong);
        case 66:
            {
                uint32_t cr = ldl_p(mem_buf);
                int i;
                for (i = 0; i < 8; i++)
                    env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
                return 4;
            }
        case 67:
            env->lr = ldtul_p(mem_buf);
            return sizeof(target_ulong);
        case 68:
            env->ctr = ldtul_p(mem_buf);
            return sizeof(target_ulong);
        case 69:
734
735
            env->xer = ldtul_p(mem_buf);
            return sizeof(target_ulong);
736
737
        case 70:
            /* fpscr */
738
739
            if (gdb_has_xml)
                return 0;
740
741
742
743
            return 4;
        }
    }
    return 0;
744
}
745
746
#elif defined (TARGET_SPARC)
747
748
749

#if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
#define NUM_CORE_REGS 86
750
#else
751
#define NUM_CORE_REGS 72
752
#endif
753
754
#ifdef TARGET_ABI32
755
#define GET_REGA(val) GET_REG32(val)
756
#else
757
#define GET_REGA(val) GET_REGL(val)
758
#endif
759
760
761
762
763
764
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
{
    if (n < 8) {
        /* g0..g7 */
        GET_REGA(env->gregs[n]);
765
    }
766
767
768
    if (n < 32) {
        /* register window */
        GET_REGA(env->regwptr[n - 8]);
769
    }
770
771
772
773
#if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
    if (n < 64) {
        /* fprs */
        GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
774
775
    }
    /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
776
777
778
779
780
781
782
783
784
    switch (n) {
    case 64: GET_REGA(env->y);
    case 65: GET_REGA(GET_PSR(env));
    case 66: GET_REGA(env->wim);
    case 67: GET_REGA(env->tbr);
    case 68: GET_REGA(env->pc);
    case 69: GET_REGA(env->npc);
    case 70: GET_REGA(env->fsr);
    case 71: GET_REGA(0); /* csr */
785
    default: GET_REGA(0);
786
    }
bellard authored
787
#else
788
789
790
791
792
793
794
    if (n < 64) {
        /* f0-f31 */
        GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
    }
    if (n < 80) {
        /* f32-f62 (double width, even numbers only) */
        uint64_t val;
795
796
797
798
        val = (uint64_t)*((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) << 32;
        val |= *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]);
        GET_REG64(val);
bellard authored
799
    }
800
801
802
803
    switch (n) {
    case 80: GET_REGL(env->pc);
    case 81: GET_REGL(env->npc);
    case 82: GET_REGL(((uint64_t)GET_CCR(env) << 32) |
804
805
806
                           ((env->asi & 0xff) << 24) |
                           ((env->pstate & 0xfff) << 8) |
                           GET_CWP64(env));
807
808
809
810
    case 83: GET_REGL(env->fsr);
    case 84: GET_REGL(env->fprs);
    case 85: GET_REGL(env->y);
    }
bellard authored
811
#endif
812
    return 0;
813
814
}
815
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
816
{
817
818
819
820
#if defined(TARGET_ABI32)
    abi_ulong tmp;

    tmp = ldl_p(mem_buf);
821
#else
822
823
824
    target_ulong tmp;

    tmp = ldtul_p(mem_buf);
825
#endif
826
827
828
829
830
831
832
    if (n < 8) {
        /* g0..g7 */
        env->gregs[n] = tmp;
    } else if (n < 32) {
        /* register window */
        env->regwptr[n - 8] = tmp;
833
    }
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
#if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
    else if (n < 64) {
        /* fprs */
        *((uint32_t *)&env->fpr[n - 32]) = tmp;
    } else {
        /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
        switch (n) {
        case 64: env->y = tmp; break;
        case 65: PUT_PSR(env, tmp); break;
        case 66: env->wim = tmp; break;
        case 67: env->tbr = tmp; break;
        case 68: env->pc = tmp; break;
        case 69: env->npc = tmp; break;
        case 70: env->fsr = tmp; break;
        default: return 0;
        }
850
    }
851
    return 4;
bellard authored
852
#else
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
    else if (n < 64) {
        /* f0-f31 */
        env->fpr[n] = ldfl_p(mem_buf);
        return 4;
    } else if (n < 80) {
        /* f32-f62 (double width, even numbers only) */
        *((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) = tmp >> 32;
        *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]) = tmp;
    } else {
        switch (n) {
        case 80: env->pc = tmp; break;
        case 81: env->npc = tmp; break;
        case 82:
	    PUT_CCR(env, tmp >> 32);
	    env->asi = (tmp >> 24) & 0xff;
	    env->pstate = (tmp >> 8) & 0xfff;
	    PUT_CWP64(env, tmp & 0xff);
	    break;
        case 83: env->fsr = tmp; break;
        case 84: env->fprs = tmp; break;
        case 85: env->y = tmp; break;
        default: return 0;
        }
876
    }
877
    return 8;
bellard authored
878
#endif
bellard authored
879
}
880
#elif defined (TARGET_ARM)
bellard authored
881
882
883
884
885
886
887
888
/* Old gdb always expect FPA registers.  Newer (xml-aware) gdb only expect
   whatever the target description contains.  Due to a historical mishap
   the FPA registers appear in between core integer regs and the CPSR.
   We hack round this by giving the FPA regs zero size when talking to a
   newer gdb.  */
#define NUM_CORE_REGS 26
#define GDB_CORE_XML "arm-core.xml"
pbrook authored
889
890
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
pbrook authored
891
{
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
    if (n < 16) {
        /* Core integer register.  */
        GET_REG32(env->regs[n]);
    }
    if (n < 24) {
        /* FPA registers.  */
        if (gdb_has_xml)
            return 0;
        memset(mem_buf, 0, 12);
        return 12;
    }
    switch (n) {
    case 24:
        /* FPA status register.  */
        if (gdb_has_xml)
            return 0;
        GET_REG32(0);
    case 25:
        /* CPSR */
        GET_REG32(cpsr_read(env));
    }
    /* Unknown register.  */
    return 0;
pbrook authored
915
}
916
917
918
919
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
{
    uint32_t tmp;
920
921
    tmp = ldl_p(mem_buf);
922
923
924
925
926
    /* Mask out low bit of PC to workaround gdb bugs.  This will probably
       cause problems if we ever implement the Jazelle DBX extensions.  */
    if (n == 15)
        tmp &= ~1;
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
    if (n < 16) {
        /* Core integer register.  */
        env->regs[n] = tmp;
        return 4;
    }
    if (n < 24) { /* 16-23 */
        /* FPA registers (ignored).  */
        if (gdb_has_xml)
            return 0;
        return 12;
    }
    switch (n) {
    case 24:
        /* FPA status register (ignored).  */
        if (gdb_has_xml)
            return 0;
        return 4;
    case 25:
        /* CPSR */
        cpsr_write (env, tmp, 0xffffffff);
        return 4;
    }
    /* Unknown register.  */
    return 0;
}
953
954
#elif defined (TARGET_M68K)
955
956
#define NUM_CORE_REGS 18
957
958
#define GDB_CORE_XML "cf-core.xml"
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
{
    if (n < 8) {
        /* D0-D7 */
        GET_REG32(env->dregs[n]);
    } else if (n < 16) {
        /* A0-A7 */
        GET_REG32(env->aregs[n - 8]);
    } else {
	switch (n) {
        case 16: GET_REG32(env->sr);
        case 17: GET_REG32(env->pc);
        }
    }
    /* FP registers not included here because they vary between
       ColdFire and m68k.  Use XML bits for these.  */
    return 0;
}
978
979
980
981
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
{
    uint32_t tmp;
982
983
    tmp = ldl_p(mem_buf);
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
    if (n < 8) {
        /* D0-D7 */
        env->dregs[n] = tmp;
    } else if (n < 8) {
        /* A0-A7 */
        env->aregs[n - 8] = tmp;
    } else {
        switch (n) {
        case 16: env->sr = tmp; break;
        case 17: env->pc = tmp; break;
        default: return 0;
        }
    }
    return 4;
}
#elif defined (TARGET_MIPS)
ths authored
1001
1002
#define NUM_CORE_REGS 73
ths authored
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
{
    if (n < 32) {
        GET_REGL(env->active_tc.gpr[n]);
    }
    if (env->CP0_Config1 & (1 << CP0C1_FP)) {
        if (n >= 38 && n < 70) {
            if (env->CP0_Status & (1 << CP0St_FR))
		GET_REGL(env->active_fpu.fpr[n - 38].d);
            else
		GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]);
        }
        switch (n) {
        case 70: GET_REGL((int32_t)env->active_fpu.fcr31);
        case 71: GET_REGL((int32_t)env->active_fpu.fcr0);
        }
    }
    switch (n) {
    case 32: GET_REGL((int32_t)env->CP0_Status);
    case 33: GET_REGL(env->active_tc.LO[0]);
    case 34: GET_REGL(env->active_tc.HI[0]);
    case 35: GET_REGL(env->CP0_BadVAddr);
    case 36: GET_REGL((int32_t)env->CP0_Cause);
    case 37: GET_REGL(env->active_tc.PC);
    case 72: GET_REGL(0); /* fp */
    case 89: GET_REGL((int32_t)env->CP0_PRid);
    }
    if (n >= 73 && n <= 88) {
	/* 16 embedded regs.  */
	GET_REGL(0);
    }
1035
1036
    return 0;
1037
1038
}
1039
1040
1041
1042
1043
1044
1045
1046
1047
/* convert MIPS rounding mode in FCR31 to IEEE library */
static unsigned int ieee_rm[] =
  {
    float_round_nearest_even,
    float_round_to_zero,
    float_round_up,
    float_round_down
  };
#define RESTORE_ROUNDING_MODE \
1048
    set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1049
1050
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1051
{
1052
    target_ulong tmp;
1053
1054
    tmp = ldtul_p(mem_buf);
1055
1056
1057
1058
1059
1060
1061
1062
    if (n < 32) {
        env->active_tc.gpr[n] = tmp;
        return sizeof(target_ulong);
    }
    if (env->CP0_Config1 & (1 << CP0C1_FP)
            && n >= 38 && n < 73) {
        if (n < 70) {
ths authored
1063
            if (env->CP0_Status & (1 << CP0St_FR))
1064
              env->active_fpu.fpr[n - 38].d = tmp;
ths authored
1065
            else
1066
1067
1068
1069
1070
1071
1072
              env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp;
        }
        switch (n) {
        case 70:
            env->active_fpu.fcr31 = tmp & 0xFF83FFFF;
            /* set rounding mode */
            RESTORE_ROUNDING_MODE;
1073
#ifndef CONFIG_SOFTFLOAT
1074
1075
            /* no floating point exception for native float */
            SET_FP_ENABLE(env->active_fpu.fcr31, 0);
1076
#endif
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
            break;
        case 71: env->active_fpu.fcr0 = tmp; break;
        }
        return sizeof(target_ulong);
    }
    switch (n) {
    case 32: env->CP0_Status = tmp; break;
    case 33: env->active_tc.LO[0] = tmp; break;
    case 34: env->active_tc.HI[0] = tmp; break;
    case 35: env->CP0_BadVAddr = tmp; break;
    case 36: env->CP0_Cause = tmp; break;
    case 37: env->active_tc.PC = tmp; break;
    case 72: /* fp, ignored */ break;
    default: 
	if (n > 89)
	    return 0;
	/* Other registers are readonly.  Ignore writes.  */
	break;
    }

    return sizeof(target_ulong);
1098
}
bellard authored
1099
#elif defined (TARGET_SH4)
1100
1101

/* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1102
1103
1104
/* FIXME: We should use XML for this.  */

#define NUM_CORE_REGS 59
1105
1106
static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
bellard authored
1107
{
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
    if (n < 8) {
        if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
            GET_REGL(env->gregs[n + 16]);
        } else {
            GET_REGL(env->gregs[n]);
        }
    } else if (n < 16) {
        GET_REGL(env->gregs[n - 8]);
    } else if (n >= 25 && n < 41) {
	GET_REGL(env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
    } else if (n >= 43 && n < 51) {
	GET_REGL(env->gregs[n - 43]);
    } else if (n >= 51 && n < 59) {
	GET_REGL(env->gregs[n - (51 - 16)]);
    }
    switch (n) {
    case 16: GET_REGL(env->pc);
    case 17: GET_REGL(env->pr);
    case 18: GET_REGL(env->gbr);
    case 19: GET_REGL(env->vbr);
    case 20: GET_REGL(env->mach);
    case 21: GET_REGL(env->macl);
    case 22: GET_REGL(env->sr);
    case 23: GET_REGL(env->fpul);
    case 24: GET_REGL(env->fpscr);
    case 41: GET_REGL(env->ssr);
    case 42: GET_REGL(env->spc);
    }

    return 0;
bellard authored
1138
1139
}
1140
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
bellard authored
1141
{
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
    uint32_t tmp;

    tmp = ldl_p(mem_buf);

    if (n < 8) {
        if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
            env->gregs[n + 16] = tmp;
        } else {
            env->gregs[n] = tmp;
        }
	return 4;
    } else if (n < 16) {
        env->gregs[n - 8] = tmp;
	return 4;
    } else if (n >= 25 && n < 41) {
	env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)] = tmp;
    } else if (n >= 43 && n < 51) {
	env->gregs[n - 43] = tmp;
	return 4;
    } else if (n >= 51 && n < 59) {
	env->gregs[n - (51 - 16)] = tmp;
	return 4;
    }
    switch (n) {
    case 16: env->pc = tmp;
    case 17: env->pr = tmp;
    case 18: env->gbr = tmp;
    case 19: env->vbr = tmp;
    case 20: env->mach = tmp;
    case 21: env->macl = tmp;
    case 22: env->sr = tmp;
    case 23: env->fpul = tmp;
    case 24: env->fpscr = tmp;
    case 41: env->ssr = tmp;
    case 42: env->spc = tmp;
    default: return 0;
    }

    return 4;
bellard authored
1181
}
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
#elif defined (TARGET_MICROBLAZE)

#define NUM_CORE_REGS (32 + 5)

static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
{
    if (n < 32) {
	GET_REG32(env->regs[n]);
    } else {
	GET_REG32(env->sregs[n - 32]);
    }
    return 0;
}

static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
{
    uint32_t tmp;

    if (n > NUM_CORE_REGS)
	return 0;

    tmp = ldl_p(mem_buf);

    if (n < 32) {
	env->regs[n] = tmp;
    } else {
	env->sregs[n - 32] = tmp;
    }
    return 4;
}
1212
1213
#elif defined (TARGET_CRIS)
1214
1215
1216
#define NUM_CORE_REGS 49

static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1217
{
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
    uint8_t srs;

    srs = env->pregs[PR_SRS];
    if (n < 16) {
	GET_REG32(env->regs[n]);
    }

    if (n >= 21 && n < 32) {
	GET_REG32(env->pregs[n - 16]);
    }
    if (n >= 33 && n < 49) {
	GET_REG32(env->sregs[srs][n - 33]);
    }
    switch (n) {
    case 16: GET_REG8(env->pregs[0]);
    case 17: GET_REG8(env->pregs[1]);
    case 18: GET_REG32(env->pregs[2]);
    case 19: GET_REG8(srs);
    case 20: GET_REG16(env->pregs[4]);
    case 32: GET_REG32(env->pc);
    }

    return 0;
1241
}
1242
1243

static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1244
{
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
    uint32_t tmp;

    if (n > 49)
	return 0;

    tmp = ldl_p(mem_buf);

    if (n < 16) {
	env->regs[n] = tmp;
    }
1256
1257
1258
1259
1260
    if (n >= 21 && n < 32) {
	env->pregs[n - 16] = tmp;
    }

    /* FIXME: Should support function regs be writable?  */
1261
1262
1263
    switch (n) {
    case 16: return 1;
    case 17: return 1;
1264
    case 18: env->pregs[PR_PID] = tmp; break;
1265
1266
1267
1268
1269
1270
    case 19: return 1;
    case 20: return 2;
    case 32: env->pc = tmp; break;
    }

    return 4;
1271
}
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
#elif defined (TARGET_ALPHA)

#define NUM_CORE_REGS 65

static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
{
    if (n < 31) {
       GET_REGL(env->ir[n]);
    }
    else if (n == 31) {
       GET_REGL(0);
    }
    else if (n<63) {
       uint64_t val;

       val=*((uint64_t *)&env->fir[n-32]);
       GET_REGL(val);
    }
    else if (n==63) {
       GET_REGL(env->fpcr);
    }
    else if (n==64) {
       GET_REGL(env->pc);
    }
    else {
       GET_REGL(0);
    }

    return 0;
}

static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
{
    target_ulong tmp;
    tmp = ldtul_p(mem_buf);

    if (n < 31) {
        env->ir[n] = tmp;
    }

    if (n > 31 && n < 63) {
        env->fir[n - 32] = ldfl_p(mem_buf);
    }

    if (n == 64 ) {
       env->pc=tmp;
    }

    return 8;
}
1322
1323
1324
1325
1326
#else

#define NUM_CORE_REGS 0

static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1327
{
1328
    return 0;
1329
1330
}
1331
static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1332
{
1333
1334
    return 0;
}
1335
1336
#endif
1337
1338
static int num_g_regs = NUM_CORE_REGS;
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
#ifdef GDB_CORE_XML
/* Encode data using the encoding for 'x' packets.  */
static int memtox(char *buf, const char *mem, int len)
{
    char *p = buf;
    char c;

    while (len--) {
        c = *(mem++);
        switch (c) {
        case '#': case '$': case '*': case '}':
            *(p++) = '}';
            *(p++) = c ^ 0x20;
            break;
        default:
            *(p++) = c;
            break;
        }
    }
    return p - buf;
}
1361
aurel32 authored
1362
static const char *get_feature_xml(const char *p, const char **newp)
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
{
    extern const char *const xml_builtin[][2];
    size_t len;
    int i;
    const char *name;
    static char target_xml[1024];

    len = 0;
    while (p[len] && p[len] != ':')
        len++;
    *newp = p + len;

    name = NULL;
    if (strncmp(p, "target.xml", len) == 0) {
        /* Generate the XML description for this CPU.  */
        if (!target_xml[0]) {
            GDBRegisterState *r;
1381
1382
1383
1384
1385
1386
            snprintf(target_xml, sizeof(target_xml),
                     "<?xml version=\"1.0\"?>"
                     "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
                     "<target>"
                     "<xi:include href=\"%s\"/>",
                     GDB_CORE_XML);
1387
1388
            for (r = first_cpu->gdb_regs; r; r = r->next) {
1389
1390
1391
                pstrcat(target_xml, sizeof(target_xml), "<xi:include href=\"");
                pstrcat(target_xml, sizeof(target_xml), r->xml);
                pstrcat(target_xml, sizeof(target_xml), "\"/>");
1392
            }
1393
            pstrcat(target_xml, sizeof(target_xml), "</target>");
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
        }
        return target_xml;
    }
    for (i = 0; ; i++) {
        name = xml_builtin[i][0];
        if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
            break;
    }
    return name ? xml_builtin[i][1] : NULL;
}
#endif
1405
1406
1407
1408
static int gdb_read_register(CPUState *env, uint8_t *mem_buf, int reg)
{
    GDBRegisterState *r;
1409
1410
1411
    if (reg < NUM_CORE_REGS)
        return cpu_gdb_read_register(env, mem_buf, reg);
1412
1413
1414
1415
1416
1417
1418
    for (r = env->gdb_regs; r; r = r->next) {
        if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
            return r->get_reg(env, mem_buf, reg - r->base_reg);
        }
    }
    return 0;
1419
1420
}
1421
static int gdb_write_register(CPUState *env, uint8_t *mem_buf, int reg)
1422
{
1423
    GDBRegisterState *r;
1424
1425
1426
1427
1428
1429
1430
1431
1432
    if (reg < NUM_CORE_REGS)
        return cpu_gdb_write_register(env, mem_buf, reg);

    for (r = env->gdb_regs; r; r = r->next) {
        if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
            return r->set_reg(env, mem_buf, reg - r->base_reg);
        }
    }
bellard authored
1433
1434
1435
    return 0;
}
1436
1437
1438
1439
1440
1441
1442
1443
1444
/* Register a supplemental set of CPU registers.  If g_pos is nonzero it
   specifies the first register number and these registers are included in
   a standard "g" packet.  Direction is relative to gdb, i.e. get_reg is
   gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
 */

void gdb_register_coprocessor(CPUState * env,
                             gdb_reg_cb get_reg, gdb_reg_cb set_reg,
                             int num_regs, const char *xml, int g_pos)
bellard authored
1445
{
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
    GDBRegisterState *s;
    GDBRegisterState **p;
    static int last_reg = NUM_CORE_REGS;

    s = (GDBRegisterState *)qemu_mallocz(sizeof(GDBRegisterState));
    s->base_reg = last_reg;
    s->num_regs = num_regs;
    s->get_reg = get_reg;
    s->set_reg = set_reg;
    s->xml = xml;
    p = &env->gdb_regs;
    while (*p) {
        /* Check for duplicates.  */
        if (strcmp((*p)->xml, xml) == 0)
            return;
        p = &(*p)->next;
    }
    /* Add to end of list.  */
    last_reg += num_regs;
    *p = s;
    if (g_pos) {
        if (g_pos != s->base_reg) {
            fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n"
                    "Expected %d got %d\n", xml, g_pos, s->base_reg);
        } else {
            num_g_regs = last_reg;
        }
    }
bellard authored
1474
1475
}
1476
1477
1478
1479
1480
1481
1482
1483
#ifndef CONFIG_USER_ONLY
static const int xlat_gdb_type[] = {
    [GDB_WATCHPOINT_WRITE]  = BP_GDB | BP_MEM_WRITE,
    [GDB_WATCHPOINT_READ]   = BP_GDB | BP_MEM_READ,
    [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
};
#endif
1484
static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
1485
{
1486
1487
1488
    CPUState *env;
    int err = 0;
1489
1490
1491
    if (kvm_enabled())
        return kvm_insert_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1492
1493
1494
    switch (type) {
    case GDB_BREAKPOINT_SW:
    case GDB_BREAKPOINT_HW:
1495
1496
1497
1498
1499
1500
        for (env = first_cpu; env != NULL; env = env->next_cpu) {
            err = cpu_breakpoint_insert(env, addr, BP_GDB, NULL);
            if (err)
                break;
        }
        return err;
1501
1502
1503
1504
#ifndef CONFIG_USER_ONLY
    case GDB_WATCHPOINT_WRITE:
    case GDB_WATCHPOINT_READ:
    case GDB_WATCHPOINT_ACCESS:
1505
1506
1507
1508
1509
1510
1511
        for (env = first_cpu; env != NULL; env = env->next_cpu) {
            err = cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type],
                                        NULL);
            if (err)
                break;
        }
        return err;
1512
1513
1514
1515
1516
1517
#endif
    default:
        return -ENOSYS;
    }
}
1518
static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
1519
{
1520
1521
1522
    CPUState *env;
    int err = 0;
1523
1524
1525
    if (kvm_enabled())
        return kvm_remove_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1526
1527
1528
    switch (type) {
    case GDB_BREAKPOINT_SW:
    case GDB_BREAKPOINT_HW:
1529
1530
1531
1532
1533
1534
        for (env = first_cpu; env != NULL; env = env->next_cpu) {
            err = cpu_breakpoint_remove(env, addr, BP_GDB);
            if (err)
                break;
        }
        return err;
1535
1536
1537
1538
#ifndef CONFIG_USER_ONLY
    case GDB_WATCHPOINT_WRITE:
    case GDB_WATCHPOINT_READ:
    case GDB_WATCHPOINT_ACCESS:
1539
1540
1541
1542
1543
1544
        for (env = first_cpu; env != NULL; env = env->next_cpu) {
            err = cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]);
            if (err)
                break;
        }
        return err;
1545
1546
1547
1548
1549
1550
#endif
    default:
        return -ENOSYS;
    }
}
1551
static void gdb_breakpoint_remove_all(void)
1552
{
1553
1554
    CPUState *env;
1555
1556
1557
1558
1559
    if (kvm_enabled()) {
        kvm_remove_all_breakpoints(gdbserver_state->c_cpu);
        return;
    }
1560
1561
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
        cpu_breakpoint_remove_all(env, BP_GDB);
1562
#ifndef CONFIG_USER_ONLY
1563
        cpu_watchpoint_remove_all(env, BP_GDB);
1564
#endif
1565
    }
1566
1567
}
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
static void gdb_set_cpu_pc(GDBState *s, target_ulong pc)
{
#if defined(TARGET_I386)
    s->c_cpu->eip = pc;
    cpu_synchronize_state(s->c_cpu, 1);
#elif defined (TARGET_PPC)
    s->c_cpu->nip = pc;
#elif defined (TARGET_SPARC)
    s->c_cpu->pc = pc;
    s->c_cpu->npc = pc + 4;
#elif defined (TARGET_ARM)
    s->c_cpu->regs[15] = pc;
#elif defined (TARGET_SH4)
    s->c_cpu->pc = pc;
#elif defined (TARGET_MIPS)
    s->c_cpu->active_tc.PC = pc;
1584
1585
#elif defined (TARGET_MICROBLAZE)
    s->c_cpu->sregs[SR_PC] = pc;
1586
1587
1588
1589
1590
1591
1592
#elif defined (TARGET_CRIS)
    s->c_cpu->pc = pc;
#elif defined (TARGET_ALPHA)
    s->c_cpu->pc = pc;
#endif
}
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
static inline int gdb_id(CPUState *env)
{
#if defined(CONFIG_USER_ONLY) && defined(USE_NPTL)
    return env->host_tid;
#else
    return env->cpu_index + 1;
#endif
}

static CPUState *find_cpu(uint32_t thread_id)
{
    CPUState *env;

    for (env = first_cpu; env != NULL; env = env->next_cpu) {
        if (gdb_id(env) == thread_id) {
            return env;
        }
    }

    return NULL;
}
1615
static int gdb_handle_packet(GDBState *s, const char *line_buf)
bellard authored
1616
{
1617
    CPUState *env;
bellard authored
1618
    const char *p;
1619
1620
    uint32_t thread;
    int ch, reg_size, type, res;
1621
1622
1623
    char buf[MAX_PACKET_LENGTH];
    uint8_t mem_buf[MAX_PACKET_LENGTH];
    uint8_t *registers;
1624
    target_ulong addr, len;
1625
1626
1627
1628
1629
1630
1631
1632
#ifdef DEBUG_GDB
    printf("command='%s'\n", line_buf);
#endif
    p = line_buf;
    ch = *p++;
    switch(ch) {
    case '?':
1633
        /* TODO: Make this return the correct value for user-mode.  */
1634
        snprintf(buf, sizeof(buf), "T%02xthread:%02x;", GDB_SIGNAL_TRAP,
1635
                 gdb_id(s->c_cpu));
1636
        put_packet(s, buf);
1637
1638
1639
1640
        /* Remove all the breakpoints when this query is issued,
         * because gdb is doing and initial connect and the state
         * should be cleaned up.
         */
1641
        gdb_breakpoint_remove_all();
1642
1643
1644
        break;
    case 'c':
        if (*p != '\0') {
1645
            addr = strtoull(p, (char **)&p, 16);
1646
            gdb_set_cpu_pc(s, addr);
1647
        }
1648
        s->signal = 0;
1649
        gdb_continue(s);
bellard authored
1650
	return RS_IDLE;
1651
    case 'C':
1652
1653
1654
        s->signal = gdb_signal_to_target (strtoul(p, (char **)&p, 16));
        if (s->signal == -1)
            s->signal = 0;
1655
1656
        gdb_continue(s);
        return RS_IDLE;
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
    case 'v':
        if (strncmp(p, "Cont", 4) == 0) {
            int res_signal, res_thread;

            p += 4;
            if (*p == '?') {
                put_packet(s, "vCont;c;C;s;S");
                break;
            }
            res = 0;
            res_signal = 0;
            res_thread = 0;
            while (*p) {
                int action, signal;

                if (*p++ != ';') {
                    res = 0;
                    break;
                }
                action = *p++;
                signal = 0;
                if (action == 'C' || action == 'S') {
                    signal = strtoul(p, (char **)&p, 16);
                } else if (action != 'c' && action != 's') {
                    res = 0;
                    break;
                }
                thread = 0;
                if (*p == ':') {
                    thread = strtoull(p+1, (char **)&p, 16);
                }
                action = tolower(action);
                if (res == 0 || (res == 'c' && action == 's')) {
                    res = action;
                    res_signal = signal;
                    res_thread = thread;
                }
            }
            if (res) {
                if (res_thread != -1 && res_thread != 0) {
                    env = find_cpu(res_thread);
                    if (env == NULL) {
                        put_packet(s, "E22");
                        break;
                    }
                    s->c_cpu = env;
                }
                if (res == 's') {
                    cpu_single_step(s->c_cpu, sstep_flags);
                }
                s->signal = res_signal;
                gdb_continue(s);
                return RS_IDLE;
            }
            break;
        } else {
            goto unknown_command;
        }
1715
1716
1717
1718
1719
1720
    case 'k':
        /* Kill the target */
        fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
        exit(0);
    case 'D':
        /* Detach packet */
1721
        gdb_breakpoint_remove_all();
1722
1723
1724
        gdb_continue(s);
        put_packet(s, "OK");
        break;
1725
1726
    case 's':
        if (*p != '\0') {
1727
            addr = strtoull(p, (char **)&p, 16);
1728
            gdb_set_cpu_pc(s, addr);
1729
        }
1730
        cpu_single_step(s->c_cpu, sstep_flags);
1731
        gdb_continue(s);
bellard authored
1732
	return RS_IDLE;
pbrook authored
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
    case 'F':
        {
            target_ulong ret;
            target_ulong err;

            ret = strtoull(p, (char **)&p, 16);
            if (*p == ',') {
                p++;
                err = strtoull(p, (char **)&p, 16);
            } else {
                err = 0;
            }
            if (*p == ',')
                p++;
            type = *p;
            if (gdb_current_syscall_cb)
1749
                gdb_current_syscall_cb(s->c_cpu, ret, err);
pbrook authored
1750
1751
1752
            if (type == 'C') {
                put_packet(s, "T02");
            } else {
1753
                gdb_continue(s);
pbrook authored
1754
1755
1756
            }
        }
        break;
1757
    case 'g':
1758
        cpu_synchronize_state(s->g_cpu, 0);
1759
1760
        len = 0;
        for (addr = 0; addr < num_g_regs; addr++) {
1761
            reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr);
1762
1763
1764
            len += reg_size;
        }
        memtohex(buf, mem_buf, len);
1765
1766
1767
        put_packet(s, buf);
        break;
    case 'G':
1768
        registers = mem_buf;
1769
1770
        len = strlen(p) / 2;
        hextomem((uint8_t *)registers, p, len);
1771
        for (addr = 0; addr < num_g_regs && len > 0; addr++) {
1772
            reg_size = gdb_write_register(s->g_cpu, registers, addr);
1773
1774
1775
            len -= reg_size;
            registers += reg_size;
        }
1776
        cpu_synchronize_state(s->g_cpu, 1);
1777
1778
1779
        put_packet(s, "OK");
        break;
    case 'm':
1780
        addr = strtoull(p, (char **)&p, 16);
1781
1782
        if (*p == ',')
            p++;
1783
        len = strtoull(p, NULL, 16);
1784
        if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 0) != 0) {
1785
1786
1787
1788
1789
            put_packet (s, "E14");
        } else {
            memtohex(buf, mem_buf, len);
            put_packet(s, buf);
        }
1790
1791
        break;
    case 'M':
1792
        addr = strtoull(p, (char **)&p, 16);
1793
1794
        if (*p == ',')
            p++;
1795
        len = strtoull(p, (char **)&p, 16);
1796
        if (*p == ':')
1797
1798
            p++;
        hextomem(mem_buf, p, len);
1799
        if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 1) != 0)
1800
            put_packet(s, "E14");
1801
1802
1803
        else
            put_packet(s, "OK");
        break;
1804
1805
1806
1807
1808
1809
1810
    case 'p':
        /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
           This works, but can be very slow.  Anything new enough to
           understand XML also knows how to use this properly.  */
        if (!gdb_has_xml)
            goto unknown_command;
        addr = strtoull(p, (char **)&p, 16);
1811
        reg_size = gdb_read_register(s->g_cpu, mem_buf, addr);
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
        if (reg_size) {
            memtohex(buf, mem_buf, reg_size);
            put_packet(s, buf);
        } else {
            put_packet(s, "E14");
        }
        break;
    case 'P':
        if (!gdb_has_xml)
            goto unknown_command;
        addr = strtoull(p, (char **)&p, 16);
        if (*p == '=')
            p++;
        reg_size = strlen(p) / 2;
        hextomem(mem_buf, p, reg_size);
1827
        gdb_write_register(s->g_cpu, mem_buf, addr);
1828
1829
        put_packet(s, "OK");
        break;
1830
1831
1832
1833
1834
    case 'Z':
    case 'z':
        type = strtoul(p, (char **)&p, 16);
        if (*p == ',')
            p++;
1835
        addr = strtoull(p, (char **)&p, 16);
1836
1837
        if (*p == ',')
            p++;
1838
        len = strtoull(p, (char **)&p, 16);
1839
        if (ch == 'Z')
1840
            res = gdb_breakpoint_insert(addr, len, type);
1841
        else
1842
            res = gdb_breakpoint_remove(addr, len, type);
1843
1844
1845
        if (res >= 0)
             put_packet(s, "OK");
        else if (res == -ENOSYS)
pbrook authored
1846
            put_packet(s, "");
1847
1848
        else
            put_packet(s, "E22");
1849
        break;
1850
1851
1852
1853
1854
1855
1856
    case 'H':
        type = *p++;
        thread = strtoull(p, (char **)&p, 16);
        if (thread == -1 || thread == 0) {
            put_packet(s, "OK");
            break;
        }
1857
        env = find_cpu(thread);
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
        if (env == NULL) {
            put_packet(s, "E22");
            break;
        }
        switch (type) {
        case 'c':
            s->c_cpu = env;
            put_packet(s, "OK");
            break;
        case 'g':
            s->g_cpu = env;
            put_packet(s, "OK");
            break;
        default:
             put_packet(s, "E22");
             break;
        }
        break;
    case 'T':
        thread = strtoull(p, (char **)&p, 16);
1878
1879
1880
1881
1882
        env = find_cpu(thread);

        if (env != NULL) {
            put_packet(s, "OK");
        } else {
1883
            put_packet(s, "E22");
1884
        }
1885
        break;
1886
    case 'q':
1887
1888
1889
1890
    case 'Q':
        /* parse any 'q' packets here */
        if (!strcmp(p,"qemu.sstepbits")) {
            /* Query Breakpoint bit definitions */
1891
1892
1893
1894
            snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
                     SSTEP_ENABLE,
                     SSTEP_NOIRQ,
                     SSTEP_NOTIMER);
1895
1896
1897
1898
1899
1900
1901
            put_packet(s, buf);
            break;
        } else if (strncmp(p,"qemu.sstep",10) == 0) {
            /* Display or change the sstep_flags */
            p += 10;
            if (*p != '=') {
                /* Display current setting */
1902
                snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
1903
1904
1905
1906
1907
1908
1909
1910
                put_packet(s, buf);
                break;
            }
            p++;
            type = strtoul(p, (char **)&p, 16);
            sstep_flags = type;
            put_packet(s, "OK");
            break;
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
        } else if (strcmp(p,"C") == 0) {
            /* "Current thread" remains vague in the spec, so always return
             *  the first CPU (gdb returns the first thread). */
            put_packet(s, "QC1");
            break;
        } else if (strcmp(p,"fThreadInfo") == 0) {
            s->query_cpu = first_cpu;
            goto report_cpuinfo;
        } else if (strcmp(p,"sThreadInfo") == 0) {
        report_cpuinfo:
            if (s->query_cpu) {
1922
                snprintf(buf, sizeof(buf), "m%x", gdb_id(s->query_cpu));
1923
1924
1925
1926
1927
1928
1929
                put_packet(s, buf);
                s->query_cpu = s->query_cpu->next_cpu;
            } else
                put_packet(s, "l");
            break;
        } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
            thread = strtoull(p+16, (char **)&p, 16);
1930
1931
1932
1933
1934
1935
1936
1937
1938
            env = find_cpu(thread);
            if (env != NULL) {
                cpu_synchronize_state(env, 0);
                len = snprintf((char *)mem_buf, sizeof(mem_buf),
                               "CPU#%d [%s]", env->cpu_index,
                               env->halted ? "halted " : "running");
                memtohex(buf, mem_buf, len);
                put_packet(s, buf);
            }
1939
            break;
1940
        }
blueswir1 authored
1941
#ifdef CONFIG_USER_ONLY
1942
        else if (strncmp(p, "Offsets", 7) == 0) {
1943
            TaskState *ts = s->c_cpu->opaque;
1944
1945
1946
1947
1948
1949
1950
            snprintf(buf, sizeof(buf),
                     "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
                     ";Bss=" TARGET_ABI_FMT_lx,
                     ts->info->code_offset,
                     ts->info->data_offset,
                     ts->info->data_offset);
1951
1952
1953
            put_packet(s, buf);
            break;
        }
blueswir1 authored
1954
#else /* !CONFIG_USER_ONLY */
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
        else if (strncmp(p, "Rcmd,", 5) == 0) {
            int len = strlen(p + 5);

            if ((len % 2) != 0) {
                put_packet(s, "E01");
                break;
            }
            hextomem(mem_buf, p + 5, len);
            len = len / 2;
            mem_buf[len++] = 0;
            qemu_chr_read(s->mon_chr, mem_buf, len);
            put_packet(s, "OK");
            break;
        }
blueswir1 authored
1969
#endif /* !CONFIG_USER_ONLY */
1970
        if (strncmp(p, "Supported", 9) == 0) {
1971
            snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
1972
#ifdef GDB_CORE_XML
1973
            pstrcat(buf, sizeof(buf), ";qXfer:features:read+");
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
#endif
            put_packet(s, buf);
            break;
        }
#ifdef GDB_CORE_XML
        if (strncmp(p, "Xfer:features:read:", 19) == 0) {
            const char *xml;
            target_ulong total_len;

            gdb_has_xml = 1;
            p += 19;
1985
            xml = get_feature_xml(p, &p);
1986
            if (!xml) {
1987
                snprintf(buf, sizeof(buf), "E00");
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
                put_packet(s, buf);
                break;
            }

            if (*p == ':')
                p++;
            addr = strtoul(p, (char **)&p, 16);
            if (*p == ',')
                p++;
            len = strtoul(p, (char **)&p, 16);

            total_len = strlen(xml);
            if (addr > total_len) {
2001
                snprintf(buf, sizeof(buf), "E00");
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
                put_packet(s, buf);
                break;
            }
            if (len > (MAX_PACKET_LENGTH - 5) / 2)
                len = (MAX_PACKET_LENGTH - 5) / 2;
            if (len < total_len - addr) {
                buf[0] = 'm';
                len = memtox(buf + 1, xml + addr, len);
            } else {
                buf[0] = 'l';
                len = memtox(buf + 1, xml + addr, total_len - addr);
            }
            put_packet_binary(s, buf, len + 1);
            break;
        }
#endif
        /* Unrecognised 'q' command.  */
        goto unknown_command;
2021
    default:
2022
    unknown_command:
2023
2024
2025
2026
2027
2028
2029
2030
        /* put empty packet */
        buf[0] = '\0';
        put_packet(s, buf);
        break;
    }
    return RS_IDLE;
}
2031
2032
2033
2034
2035
2036
void gdb_set_stop_cpu(CPUState *env)
{
    gdbserver_state->c_cpu = env;
    gdbserver_state->g_cpu = env;
}
2037
#ifndef CONFIG_USER_ONLY
2038
static void gdb_vm_state_change(void *opaque, int running, int reason)
2039
{
2040
2041
    GDBState *s = gdbserver_state;
    CPUState *env = s->c_cpu;
2042
    char buf[256];
2043
    const char *type;
2044
2045
    int ret;
2046
    if (running || (reason != EXCP_DEBUG && reason != EXCP_INTERRUPT) ||
2047
        s->state == RS_INACTIVE || s->state == RS_SYSCALL)
pbrook authored
2048
2049
        return;
2050
    /* disable single step if it was enable */
2051
    cpu_single_step(env, 0);
2052
bellard authored
2053
    if (reason == EXCP_DEBUG) {
2054
2055
        if (env->watchpoint_hit) {
            switch (env->watchpoint_hit->flags & BP_MEM_ACCESS) {
2056
            case BP_MEM_READ:
2057
2058
                type = "r";
                break;
2059
            case BP_MEM_ACCESS:
2060
2061
2062
2063
2064
2065
                type = "a";
                break;
            default:
                type = "";
                break;
            }
2066
2067
            snprintf(buf, sizeof(buf),
                     "T%02xthread:%02x;%swatch:" TARGET_FMT_lx ";",
2068
                     GDB_SIGNAL_TRAP, gdb_id(env), type,
2069
                     env->watchpoint_hit->vaddr);
2070
            put_packet(s, buf);
2071
            env->watchpoint_hit = NULL;
2072
2073
            return;
        }
2074
	tb_flush(env);
2075
        ret = GDB_SIGNAL_TRAP;
2076
    } else {
2077
        ret = GDB_SIGNAL_INT;
2078
    }
2079
    snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, gdb_id(env));
2080
2081
    put_packet(s, buf);
}
2082
#endif
2083
pbrook authored
2084
2085
/* Send a gdb syscall request.
   This accepts limited printf-style format specifiers, specifically:
pbrook authored
2086
2087
2088
    %x  - target_ulong argument printed in hex.
    %lx - 64-bit argument printed in hex.
    %s  - string pointer (target_ulong) and length (int) pair.  */
2089
void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
pbrook authored
2090
2091
2092
2093
2094
{
    va_list va;
    char buf[256];
    char *p;
    target_ulong addr;
pbrook authored
2095
    uint64_t i64;
pbrook authored
2096
2097
    GDBState *s;
2098
    s = gdbserver_state;
pbrook authored
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
    if (!s)
        return;
    gdb_current_syscall_cb = cb;
    s->state = RS_SYSCALL;
#ifndef CONFIG_USER_ONLY
    vm_stop(EXCP_DEBUG);
#endif
    s->state = RS_IDLE;
    va_start(va, fmt);
    p = buf;
    *(p++) = 'F';
    while (*fmt) {
        if (*fmt == '%') {
            fmt++;
            switch (*fmt++) {
            case 'x':
                addr = va_arg(va, target_ulong);
2116
                p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx, addr);
pbrook authored
2117
                break;
pbrook authored
2118
2119
2120
2121
            case 'l':
                if (*(fmt++) != 'x')
                    goto bad_format;
                i64 = va_arg(va, uint64_t);
2122
                p += snprintf(p, &buf[sizeof(buf)] - p, "%" PRIx64, i64);
pbrook authored
2123
                break;
pbrook authored
2124
2125
            case 's':
                addr = va_arg(va, target_ulong);
2126
2127
                p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx "/%x",
                              addr, va_arg(va, int));
pbrook authored
2128
2129
                break;
            default:
pbrook authored
2130
            bad_format:
pbrook authored
2131
2132
2133
2134
2135
2136
2137
2138
                fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
                        fmt - 1);
                break;
            }
        } else {
            *(p++) = *(fmt++);
        }
    }
2139
    *p = 0;
pbrook authored
2140
2141
2142
    va_end(va);
    put_packet(s, buf);
#ifdef CONFIG_USER_ONLY
2143
    gdb_handlesig(s->c_cpu, 0);
pbrook authored
2144
#else
2145
    cpu_exit(s->c_cpu);
pbrook authored
2146
2147
2148
#endif
}
bellard authored
2149
static void gdb_read_byte(GDBState *s, int ch)
2150
2151
{
    int i, csum;
2152
    uint8_t reply;
2153
2154
#ifndef CONFIG_USER_ONLY
2155
2156
2157
2158
2159
2160
2161
    if (s->last_packet_len) {
        /* Waiting for a response to the last packet.  If we see the start
           of a new command then abandon the previous response.  */
        if (ch == '-') {
#ifdef DEBUG_GDB
            printf("Got NACK, retransmitting\n");
#endif
2162
            put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
        }
#ifdef DEBUG_GDB
        else if (ch == '+')
            printf("Got ACK\n");
        else
            printf("Got '%c' when expecting ACK/NACK\n", ch);
#endif
        if (ch == '+' || ch == '$')
            s->last_packet_len = 0;
        if (ch != '$')
            return;
    }
2175
2176
2177
2178
    if (vm_running) {
        /* when the CPU is running, we cannot do anything except stop
           it when receiving a char */
        vm_stop(EXCP_INTERRUPT);
2179
    } else
2180
#endif
bellard authored
2181
    {
2182
2183
2184
2185
2186
        switch(s->state) {
        case RS_IDLE:
            if (ch == '$') {
                s->line_buf_index = 0;
                s->state = RS_GETLINE;
2187
            }
bellard authored
2188
            break;
2189
2190
2191
2192
2193
        case RS_GETLINE:
            if (ch == '#') {
            s->state = RS_CHKSUM1;
            } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
                s->state = RS_IDLE;
bellard authored
2194
            } else {
2195
            s->line_buf[s->line_buf_index++] = ch;
bellard authored
2196
2197
            }
            break;
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
        case RS_CHKSUM1:
            s->line_buf[s->line_buf_index] = '\0';
            s->line_csum = fromhex(ch) << 4;
            s->state = RS_CHKSUM2;
            break;
        case RS_CHKSUM2:
            s->line_csum |= fromhex(ch);
            csum = 0;
            for(i = 0; i < s->line_buf_index; i++) {
                csum += s->line_buf[i];
            }
            if (s->line_csum != (csum & 0xff)) {
2210
2211
                reply = '-';
                put_buffer(s, &reply, 1);
2212
                s->state = RS_IDLE;
bellard authored
2213
            } else {
2214
2215
                reply = '+';
                put_buffer(s, &reply, 1);
2216
                s->state = gdb_handle_packet(s, s->line_buf);
bellard authored
2217
2218
            }
            break;
pbrook authored
2219
2220
        default:
            abort();
2221
2222
2223
2224
        }
    }
}
2225
2226
#ifdef CONFIG_USER_ONLY
int
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
gdb_queuesig (void)
{
    GDBState *s;

    s = gdbserver_state;

    if (gdbserver_fd < 0 || s->fd < 0)
        return 0;
    else
        return 1;
}

int
2240
2241
2242
2243
2244
2245
gdb_handlesig (CPUState *env, int sig)
{
  GDBState *s;
  char buf[256];
  int n;
2246
  s = gdbserver_state;
2247
2248
  if (gdbserver_fd < 0 || s->fd < 0)
    return sig;
2249
2250
2251
2252
2253
2254
2255

  /* disable single step if it was enabled */
  cpu_single_step(env, 0);
  tb_flush(env);

  if (sig != 0)
    {
2256
      snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb (sig));
2257
2258
      put_packet(s, buf);
    }
2259
2260
2261
2262
  /* put_packet() might have detected that the peer terminated the 
     connection.  */
  if (s->fd < 0)
      return sig;
2263
2264
2265

  sig = 0;
  s->state = RS_IDLE;
bellard authored
2266
2267
  s->running_state = 0;
  while (s->running_state == 0) {
2268
2269
2270
2271
2272
2273
      n = read (s->fd, buf, 256);
      if (n > 0)
        {
          int i;

          for (i = 0; i < n; i++)
bellard authored
2274
            gdb_read_byte (s, buf[i]);
2275
2276
2277
2278
2279
2280
2281
        }
      else if (n == 0 || errno != EAGAIN)
        {
          /* XXX: Connection closed.  Should probably wait for annother
             connection before continuing.  */
          return sig;
        }
bellard authored
2282
  }
2283
2284
  sig = s->signal;
  s->signal = 0;
2285
2286
  return sig;
}
2287
2288
2289
2290
2291
2292
2293

/* Tell the remote gdb that the process has exited.  */
void gdb_exit(CPUState *env, int code)
{
  GDBState *s;
  char buf[4];
2294
  s = gdbserver_state;
2295
2296
  if (gdbserver_fd < 0 || s->fd < 0)
    return;
2297
2298
2299
2300
2301

  snprintf(buf, sizeof(buf), "W%02x", code);
  put_packet(s, buf);
}
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
/* Tell the remote gdb that the process has exited due to SIG.  */
void gdb_signalled(CPUState *env, int sig)
{
  GDBState *s;
  char buf[4];

  s = gdbserver_state;
  if (gdbserver_fd < 0 || s->fd < 0)
    return;

  snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb (sig));
  put_packet(s, buf);
}
2315
2316
static void gdb_accept(void)
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
{
    GDBState *s;
    struct sockaddr_in sockaddr;
    socklen_t len;
    int val, fd;

    for(;;) {
        len = sizeof(sockaddr);
        fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
        if (fd < 0 && errno != EINTR) {
            perror("accept");
            return;
        } else if (fd >= 0) {
bellard authored
2330
2331
2332
            break;
        }
    }
2333
2334
2335

    /* set short latency */
    val = 1;
bellard authored
2336
    setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
2337
2338
2339
2340
    s = qemu_mallocz(sizeof(GDBState));
    s->c_cpu = first_cpu;
    s->g_cpu = first_cpu;
2341
    s->fd = fd;
2342
    gdb_has_xml = 0;
2343
2344
    gdbserver_state = s;
pbrook authored
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
    fcntl(fd, F_SETFL, O_NONBLOCK);
}

static int gdbserver_open(int port)
{
    struct sockaddr_in sockaddr;
    int fd, val, ret;

    fd = socket(PF_INET, SOCK_STREAM, 0);
    if (fd < 0) {
        perror("socket");
        return -1;
    }

    /* allow fast reuse */
    val = 1;
bellard authored
2362
    setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385

    sockaddr.sin_family = AF_INET;
    sockaddr.sin_port = htons(port);
    sockaddr.sin_addr.s_addr = 0;
    ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
    if (ret < 0) {
        perror("bind");
        return -1;
    }
    ret = listen(fd, 0);
    if (ret < 0) {
        perror("listen");
        return -1;
    }
    return fd;
}

int gdbserver_start(int port)
{
    gdbserver_fd = gdbserver_open(port);
    if (gdbserver_fd < 0)
        return -1;
    /* accept connections */
2386
    gdb_accept();
2387
2388
    return 0;
}
2389
2390
2391
2392
2393

/* Disable gdb stub for child processes.  */
void gdbserver_fork(CPUState *env)
{
    GDBState *s = gdbserver_state;
2394
    if (gdbserver_fd < 0 || s->fd < 0)
2395
2396
2397
2398
2399
2400
      return;
    close(s->fd);
    s->fd = -1;
    cpu_breakpoint_remove_all(env, BP_GDB);
    cpu_watchpoint_remove_all(env, BP_GDB);
}
2401
#else
ths authored
2402
static int gdb_chr_can_receive(void *opaque)
2403
{
2404
2405
2406
  /* We can handle an arbitrarily large amount of data.
   Pick the maximum packet size, which is as good as anything.  */
  return MAX_PACKET_LENGTH;
2407
2408
}
ths authored
2409
static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
2410
2411
2412
2413
{
    int i;

    for (i = 0; i < size; i++) {
2414
        gdb_read_byte(gdbserver_state, buf[i]);
2415
2416
2417
2418
2419
2420
2421
2422
    }
}

static void gdb_chr_event(void *opaque, int event)
{
    switch (event) {
    case CHR_EVENT_RESET:
        vm_stop(EXCP_INTERRUPT);
2423
        gdb_has_xml = 0;
2424
2425
2426
2427
2428
2429
        break;
    default:
        break;
    }
}
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
static void gdb_monitor_output(GDBState *s, const char *msg, int len)
{
    char buf[MAX_PACKET_LENGTH];

    buf[0] = 'O';
    if (len > (MAX_PACKET_LENGTH/2) - 1)
        len = (MAX_PACKET_LENGTH/2) - 1;
    memtohex(buf + 1, (uint8_t *)msg, len);
    put_packet(s, buf);
}

static int gdb_monitor_write(CharDriverState *chr, const uint8_t *buf, int len)
{
    const char *p = (const char *)buf;
    int max_sz;

    max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2;
    for (;;) {
        if (len <= max_sz) {
            gdb_monitor_output(gdbserver_state, p, len);
            break;
        }
        gdb_monitor_output(gdbserver_state, p, max_sz);
        p += max_sz;
        len -= max_sz;
    }
    return len;
}
2459
2460
2461
2462
2463
2464
2465
2466
2467
#ifndef _WIN32
static void gdb_sigterm_handler(int signal)
{
    if (vm_running)
        vm_stop(EXCP_INTERRUPT);
}
#endif

int gdbserver_start(const char *device)
2468
2469
{
    GDBState *s;
2470
    char gdbstub_device_name[128];
2471
2472
    CharDriverState *chr = NULL;
    CharDriverState *mon_chr;
2473
2474
2475
2476
2477
2478
2479
2480
2481
    if (!device)
        return -1;
    if (strcmp(device, "none") != 0) {
        if (strstart(device, "tcp:", NULL)) {
            /* enforce required TCP attributes */
            snprintf(gdbstub_device_name, sizeof(gdbstub_device_name),
                     "%s,nowait,nodelay,server", device);
            device = gdbstub_device_name;
2482
        }
2483
2484
2485
#ifndef _WIN32
        else if (strcmp(device, "stdio") == 0) {
            struct sigaction act;
2486
2487
2488
2489
2490
2491
2492
            memset(&act, 0, sizeof(act));
            act.sa_handler = gdb_sigterm_handler;
            sigaction(SIGINT, &act, NULL);
        }
#endif
        chr = qemu_chr_open("gdb", device, NULL);
2493
2494
2495
2496
2497
        if (!chr)
            return -1;

        qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
                              gdb_chr_event, NULL);
2498
2499
    }
2500
2501
2502
2503
    s = gdbserver_state;
    if (!s) {
        s = qemu_mallocz(sizeof(GDBState));
        gdbserver_state = s;
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
        qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);

        /* Initialize a monitor terminal for gdb */
        mon_chr = qemu_mallocz(sizeof(*mon_chr));
        mon_chr->chr_write = gdb_monitor_write;
        monitor_init(mon_chr, 0);
    } else {
        if (s->chr)
            qemu_chr_close(s->chr);
        mon_chr = s->mon_chr;
        memset(s, 0, sizeof(GDBState));
    }
2517
2518
    s->c_cpu = first_cpu;
    s->g_cpu = first_cpu;
2519
    s->chr = chr;
2520
2521
    s->state = chr ? RS_IDLE : RS_INACTIVE;
    s->mon_chr = mon_chr;
2522
bellard authored
2523
2524
    return 0;
}
2525
#endif