Blame view

hw/sun4m.c 18.6 KB
1
2
3
/*
 * QEMU Sun4m System Emulator
 * 
4
 * Copyright (c) 2003-2005 Fabrice Bellard
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
 * 
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include "vl.h"
25
//#define DEBUG_IRQ
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
/*
 * Sun4m architecture was used in the following machines:
 *
 * SPARCserver 6xxMP/xx
 * SPARCclassic (SPARCclassic Server)(SPARCstation LC) (4/15), SPARCclassic X (4/10)
 * SPARCstation LX/ZX (4/30)
 * SPARCstation Voyager
 * SPARCstation 10/xx, SPARCserver 10/xx
 * SPARCstation 5, SPARCserver 5
 * SPARCstation 20/xx, SPARCserver 20
 * SPARCstation 4
 *
 * See for example: http://www.sunhelp.org/faq/sunref1.html
 */
42
43
44
45
46
47
48
#ifdef DEBUG_IRQ
#define DPRINTF(fmt, args...)                           \
    do { printf("CPUIRQ: " fmt , ##args); } while (0)
#else
#define DPRINTF(fmt, args...)
#endif
49
#define KERNEL_LOAD_ADDR     0x00004000
bellard authored
50
#define CMDLINE_ADDR         0x007ff000
bellard authored
51
#define INITRD_LOAD_ADDR     0x00800000
bellard authored
52
#define PROM_SIZE_MAX        (256 * 1024)
bellard authored
53
#define PROM_ADDR	     0xffd00000
54
#define PROM_FILENAME	     "openbios-sparc32"
55
56
#define MAX_CPUS 16
57
#define MAX_PILS 16
58
59
struct hwdef {
60
61
62
63
64
    target_phys_addr_t iommu_base, slavio_base;
    target_phys_addr_t intctl_base, counter_base, nvram_base, ms_kb_base;
    target_phys_addr_t serial_base, fd_base;
    target_phys_addr_t dma_base, esp_base, le_base;
    target_phys_addr_t tcx_base, cs_base, power_base;
65
66
67
    long vram_size, nvram_size;
    // IRQ numbers are not PIL ones, but master interrupt controller register
    // bit numbers
68
    int intctl_g_intr, esp_irq, le_irq, clock_irq, clock1_irq;
69
70
    int ser_irq, ms_kb_irq, fd_irq, me_irq, cs_irq;
    int machine_id; // For NVRAM
71
    uint32_t intbit_to_level[32];
72
73
};
74
75
76
77
78
79
80
/* TSC handling */

uint64_t cpu_get_tsc()
{
    return qemu_get_clock(vm_clock);
}
bellard authored
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
int DMA_get_channel_mode (int nchan)
{
    return 0;
}
int DMA_read_memory (int nchan, void *buf, int pos, int size)
{
    return 0;
}
int DMA_write_memory (int nchan, void *buf, int pos, int size)
{
    return 0;
}
void DMA_hold_DREQ (int nchan) {}
void DMA_release_DREQ (int nchan) {}
void DMA_schedule(int nchan) {}
void DMA_run (void) {}
void DMA_init (int high_page_enable) {}
void DMA_register_channel (int nchan,
                           DMA_transfer_handler transfer_handler,
                           void *opaque)
{
}
104
static void nvram_set_word (m48t59_t *nvram, uint32_t addr, uint16_t value)
bellard authored
105
{
106
107
    m48t59_write(nvram, addr++, (value >> 8) & 0xff);
    m48t59_write(nvram, addr++, value & 0xff);
bellard authored
108
109
}
110
static void nvram_set_lword (m48t59_t *nvram, uint32_t addr, uint32_t value)
bellard authored
111
{
112
113
114
115
    m48t59_write(nvram, addr++, value >> 24);
    m48t59_write(nvram, addr++, (value >> 16) & 0xff);
    m48t59_write(nvram, addr++, (value >> 8) & 0xff);
    m48t59_write(nvram, addr++, value & 0xff);
bellard authored
116
117
}
118
static void nvram_set_string (m48t59_t *nvram, uint32_t addr,
bellard authored
119
120
121
122
123
                       const unsigned char *str, uint32_t max)
{
    unsigned int i;

    for (i = 0; i < max && str[i] != '\0'; i++) {
124
        m48t59_write(nvram, addr + i, str[i]);
bellard authored
125
    }
126
    m48t59_write(nvram, addr + max - 1, '\0');
bellard authored
127
}
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
static uint32_t nvram_set_var (m48t59_t *nvram, uint32_t addr,
                                const unsigned char *str)
{
    uint32_t len;

    len = strlen(str) + 1;
    nvram_set_string(nvram, addr, str, len);

    return addr + len;
}

static void nvram_finish_partition (m48t59_t *nvram, uint32_t start,
                                    uint32_t end)
{
    unsigned int i, sum;

    // Length divided by 16
    m48t59_write(nvram, start + 2, ((end - start) >> 12) & 0xff);
    m48t59_write(nvram, start + 3, ((end - start) >> 4) & 0xff);
    // Checksum
    sum = m48t59_read(nvram, start);
    for (i = 0; i < 14; i++) {
        sum += m48t59_read(nvram, start + 2 + i);
        sum = (sum + ((sum & 0xff00) >> 8)) & 0xff;
    }
    m48t59_write(nvram, start + 1, sum & 0xff);
}
157
static m48t59_t *nvram;
158
bellard authored
159
160
extern int nographic;
161
static void nvram_init(m48t59_t *nvram, uint8_t *macaddr, const char *cmdline,
bellard authored
162
163
		       int boot_device, uint32_t RAM_size,
		       uint32_t kernel_size,
164
165
		       int width, int height, int depth,
                       int machine_id)
bellard authored
166
167
{
    unsigned char tmp = 0;
168
169
    unsigned int i, j;
    uint32_t start, end;
bellard authored
170
bellard authored
171
172
173
174
    // Try to match PPC NVRAM
    nvram_set_string(nvram, 0x00, "QEMU_BIOS", 16);
    nvram_set_lword(nvram,  0x10, 0x00000001); /* structure v1 */
    // NVRAM_size, arch not applicable
175
176
    m48t59_write(nvram, 0x2D, smp_cpus & 0xff);
    m48t59_write(nvram, 0x2E, 0);
177
    m48t59_write(nvram, 0x2F, nographic & 0xff);
bellard authored
178
    nvram_set_lword(nvram,  0x30, RAM_size);
179
    m48t59_write(nvram, 0x34, boot_device & 0xff);
bellard authored
180
181
    nvram_set_lword(nvram,  0x38, KERNEL_LOAD_ADDR);
    nvram_set_lword(nvram,  0x3C, kernel_size);
bellard authored
182
183
    if (cmdline) {
	strcpy(phys_ram_base + CMDLINE_ADDR, cmdline);
bellard authored
184
185
	nvram_set_lword(nvram,  0x40, CMDLINE_ADDR);
        nvram_set_lword(nvram,  0x44, strlen(cmdline));
bellard authored
186
    }
bellard authored
187
188
189
190
    // initrd_image, initrd_size passed differently
    nvram_set_word(nvram,   0x54, width);
    nvram_set_word(nvram,   0x56, height);
    nvram_set_word(nvram,   0x58, depth);
bellard authored
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
    // OpenBIOS nvram variables
    // Variable partition
    start = 252;
    m48t59_write(nvram, start, 0x70);
    nvram_set_string(nvram, start + 4, "system", 12);

    end = start + 16;
    for (i = 0; i < nb_prom_envs; i++)
        end = nvram_set_var(nvram, end, prom_envs[i]);

    m48t59_write(nvram, end++ , 0);
    end = start + ((end - start + 15) & ~15);
    nvram_finish_partition(nvram, start, end);

    // free partition
    start = end;
    m48t59_write(nvram, start, 0x7f);
    nvram_set_string(nvram, start + 4, "free", 12);

    end = 0x1fd0;
    nvram_finish_partition(nvram, start, end);
bellard authored
214
    // Sun4m specific use
215
    start = i = 0x1fd8;
216
    m48t59_write(nvram, i++, 0x01);
217
    m48t59_write(nvram, i++, machine_id);
bellard authored
218
    j = 0;
219
220
221
222
223
224
    m48t59_write(nvram, i++, macaddr[j++]);
    m48t59_write(nvram, i++, macaddr[j++]);
    m48t59_write(nvram, i++, macaddr[j++]);
    m48t59_write(nvram, i++, macaddr[j++]);
    m48t59_write(nvram, i++, macaddr[j++]);
    m48t59_write(nvram, i, macaddr[j]);
bellard authored
225
226

    /* Calculate checksum */
227
228
    for (i = start; i < start + 15; i++) {
        tmp ^= m48t59_read(nvram, i);
bellard authored
229
    }
230
    m48t59_write(nvram, start + 15, tmp);
bellard authored
231
232
233
234
235
236
237
238
239
240
241
242
243
244
}

static void *slavio_intctl;

void pic_info()
{
    slavio_pic_info(slavio_intctl);
}

void irq_info()
{
    slavio_irq_info(slavio_intctl);
}
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
static void cpu_set_irq(void *opaque, int irq, int level)
{
    CPUState *env = opaque;

    if (level) {
        DPRINTF("Raise CPU IRQ %d\n", irq);

        env->halted = 0;

        if (env->interrupt_index == 0 ||
            ((env->interrupt_index & ~15) == TT_EXTINT &&
             (env->interrupt_index & 15) < irq)) {
            env->interrupt_index = TT_EXTINT | irq;
            cpu_interrupt(env, CPU_INTERRUPT_HARD);
        } else {
            DPRINTF("Not triggered, pending exception %d\n",
                    env->interrupt_index);
        }
    } else {
        DPRINTF("Lower CPU IRQ %d\n", irq);
    }
}

static void dummy_cpu_set_irq(void *opaque, int irq, int level)
{
}
bellard authored
272
273
274
275
276
277
278
static void *slavio_misc;

void qemu_system_powerdown(void)
{
    slavio_set_power_fail(slavio_misc, 1);
}
bellard authored
279
280
281
static void main_cpu_reset(void *opaque)
{
    CPUState *env = opaque;
282
283
284
285
286
287
288
289
290

    cpu_reset(env);
    env->halted = 0;
}

static void secondary_cpu_reset(void *opaque)
{
    CPUState *env = opaque;
bellard authored
291
    cpu_reset(env);
292
    env->halted = 1;
bellard authored
293
294
}
295
296
297
static void sun4m_hw_init(const struct hwdef *hwdef, int ram_size,
                          DisplayState *ds, const char *cpu_model)
298
{
299
    CPUState *env, *envs[MAX_CPUS];
bellard authored
300
    unsigned int i;
301
    void *iommu, *espdma, *ledma, *main_esp;
blueswir1 authored
302
    const sparc_def_t *def;
303
    qemu_irq *cpu_irqs[MAX_CPUS], *slavio_irq, *slavio_cpu_irq,
304
        *espdma_irq, *ledma_irq;
305
306
    /* init CPUs */
blueswir1 authored
307
308
309
310
311
    sparc_find_by_name(cpu_model, &def);
    if (def == NULL) {
        fprintf(stderr, "Unable to find Sparc CPU definition\n");
        exit(1);
    }
312
313
314
    for(i = 0; i < smp_cpus; i++) {
        env = cpu_init();
blueswir1 authored
315
        cpu_sparc_register(env, def);
316
        envs[i] = env;
317
318
319
320
        if (i == 0) {
            qemu_register_reset(main_cpu_reset, env);
        } else {
            qemu_register_reset(secondary_cpu_reset, env);
321
            env->halted = 1;
322
        }
323
        register_savevm("cpu", i, 3, cpu_save, cpu_load, env);
324
        cpu_irqs[i] = qemu_allocate_irqs(cpu_set_irq, envs[i], MAX_PILS);
325
    }
326
327
328
329

    for (i = smp_cpus; i < MAX_CPUS; i++)
        cpu_irqs[i] = qemu_allocate_irqs(dummy_cpu_set_irq, NULL, MAX_PILS);
330
331
332
    /* allocate RAM */
    cpu_register_physical_memory(0, ram_size, 0);
333
334
    iommu = iommu_init(hwdef->iommu_base);
    slavio_intctl = slavio_intctl_init(hwdef->intctl_base,
335
                                       hwdef->intctl_base + 0x10000ULL,
pbrook authored
336
                                       &hwdef->intbit_to_level[0],
337
                                       &slavio_irq, &slavio_cpu_irq,
338
                                       cpu_irqs,
339
                                       hwdef->clock_irq);
340
341
    espdma = sparc32_dma_init(hwdef->dma_base, slavio_irq[hwdef->esp_irq],
342
                              iommu, &espdma_irq);
343
    ledma = sparc32_dma_init(hwdef->dma_base + 16ULL,
344
                             slavio_irq[hwdef->le_irq], iommu, &ledma_irq);
345
blueswir1 authored
346
347
348
349
    if (graphic_depth != 8 && graphic_depth != 24) {
        fprintf(stderr, "qemu: Unsupported depth: %d\n", graphic_depth);
        exit (1);
    }
350
    tcx_init(ds, hwdef->tcx_base, phys_ram_base + ram_size, ram_size,
blueswir1 authored
351
             hwdef->vram_size, graphic_width, graphic_height, graphic_depth);
352
353
354
355

    if (nd_table[0].model == NULL
        || strcmp(nd_table[0].model, "lance") == 0) {
        lance_init(&nd_table[0], hwdef->le_base, ledma, *ledma_irq);
356
357
358
    } else if (strcmp(nd_table[0].model, "?") == 0) {
        fprintf(stderr, "qemu: Supported NICs: lance\n");
        exit (1);
359
360
361
    } else {
        fprintf(stderr, "qemu: Unsupported NIC: %s\n", nd_table[0].model);
        exit (1);
362
    }
363
pbrook authored
364
365
    nvram = m48t59_init(slavio_irq[0], hwdef->nvram_base, 0,
                        hwdef->nvram_size, 8);
366
    for (i = 0; i < MAX_CPUS; i++) {
367
368
        slavio_timer_init(hwdef->counter_base +
                          (target_phys_addr_t)(i * TARGET_PAGE_SIZE),
369
                           slavio_cpu_irq[i], 0);
370
    }
371
372
    slavio_timer_init(hwdef->counter_base + 0x10000ULL,
                      slavio_irq[hwdef->clock1_irq], 2);
pbrook authored
373
    slavio_serial_ms_kbd_init(hwdef->ms_kb_base, slavio_irq[hwdef->ms_kb_irq]);
374
375
    // Slavio TTYA (base+4, Linux ttyS0) is the first Qemu serial device
    // Slavio TTYB (base+0, Linux ttyS1) is the second Qemu serial device
pbrook authored
376
377
378
    slavio_serial_init(hwdef->serial_base, slavio_irq[hwdef->ser_irq],
                       serial_hds[1], serial_hds[0]);
    fdctrl_init(slavio_irq[hwdef->fd_irq], 0, 1, hwdef->fd_base, fd_table);
379
    main_esp = esp_init(bs_table, hwdef->esp_base, espdma, *espdma_irq);
380
381
382
383
384
385
386

    for (i = 0; i < MAX_DISKS; i++) {
        if (bs_table[i]) {
            esp_scsi_attach(main_esp, bs_table[i], i);
        }
    }
387
    slavio_misc = slavio_misc_init(hwdef->slavio_base, hwdef->power_base,
pbrook authored
388
                                   slavio_irq[hwdef->me_irq]);
389
    if (hwdef->cs_base != (target_phys_addr_t)-1)
390
        cs_init(hwdef->cs_base, hwdef->cs_irq, slavio_intctl);
391
392
393
394
395
396
397
398
399
400
401
402
403
404
}

static void sun4m_load_kernel(long vram_size, int ram_size, int boot_device,
                              const char *kernel_filename,
                              const char *kernel_cmdline,
                              const char *initrd_filename,
                              int machine_id)
{
    int ret, linux_boot;
    char buf[1024];
    unsigned int i;
    long prom_offset, initrd_size, kernel_size;

    linux_boot = (kernel_filename != NULL);
405
bellard authored
406
    prom_offset = ram_size + vram_size;
bellard authored
407
408
409
    cpu_register_physical_memory(PROM_ADDR, 
                                 (PROM_SIZE_MAX + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK, 
                                 prom_offset | IO_MEM_ROM);
bellard authored
410
411
    snprintf(buf, sizeof(buf), "%s/%s", bios_dir, PROM_FILENAME);
412
    ret = load_elf(buf, 0, NULL, NULL, NULL);
bellard authored
413
414
415
416
417
418
    if (ret < 0) {
	fprintf(stderr, "qemu: could not load prom '%s'\n", 
		buf);
	exit(1);
    }
bellard authored
419
    kernel_size = 0;
bellard authored
420
    if (linux_boot) {
421
        kernel_size = load_elf(kernel_filename, -0xf0000000, NULL, NULL, NULL);
bellard authored
422
423
424
425
426
        if (kernel_size < 0)
	    kernel_size = load_aout(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
	if (kernel_size < 0)
	    kernel_size = load_image(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
        if (kernel_size < 0) {
427
            fprintf(stderr, "qemu: could not load kernel '%s'\n", 
bellard authored
428
429
                    kernel_filename);
	    exit(1);
430
        }
bellard authored
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451

        /* load initrd */
        initrd_size = 0;
        if (initrd_filename) {
            initrd_size = load_image(initrd_filename, phys_ram_base + INITRD_LOAD_ADDR);
            if (initrd_size < 0) {
                fprintf(stderr, "qemu: could not load initial ram disk '%s'\n", 
                        initrd_filename);
                exit(1);
            }
        }
        if (initrd_size > 0) {
	    for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
		if (ldl_raw(phys_ram_base + KERNEL_LOAD_ADDR + i)
		    == 0x48647253) { // HdrS
		    stl_raw(phys_ram_base + KERNEL_LOAD_ADDR + i + 16, INITRD_LOAD_ADDR);
		    stl_raw(phys_ram_base + KERNEL_LOAD_ADDR + i + 20, initrd_size);
		    break;
		}
	    }
        }
452
    }
453
454
455
456
457
458
459
460
461
462
463
    nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, kernel_cmdline,
               boot_device, ram_size, kernel_size, graphic_width,
               graphic_height, graphic_depth, machine_id);
}

static const struct hwdef hwdefs[] = {
    /* SS-5 */
    {
        .iommu_base   = 0x10000000,
        .tcx_base     = 0x50000000,
        .cs_base      = 0x6c000000,
blueswir1 authored
464
        .slavio_base  = 0x70000000,
465
466
467
468
469
470
471
472
473
        .ms_kb_base   = 0x71000000,
        .serial_base  = 0x71100000,
        .nvram_base   = 0x71200000,
        .fd_base      = 0x71400000,
        .counter_base = 0x71d00000,
        .intctl_base  = 0x71e00000,
        .dma_base     = 0x78400000,
        .esp_base     = 0x78800000,
        .le_base      = 0x78c00000,
474
        .power_base   = 0x7a000000,
475
476
477
478
479
480
481
482
483
484
485
486
        .vram_size    = 0x00100000,
        .nvram_size   = 0x2000,
        .esp_irq = 18,
        .le_irq = 16,
        .clock_irq = 7,
        .clock1_irq = 19,
        .ms_kb_irq = 14,
        .ser_irq = 15,
        .fd_irq = 22,
        .me_irq = 30,
        .cs_irq = 5,
        .machine_id = 0x80,
487
488
489
490
491
492
493
        .intbit_to_level = {
            2, 3, 5, 7, 9, 11, 0, 14,	3, 5, 7, 9, 11, 13, 12, 12,
            6, 0, 4, 10, 8, 0, 11, 0,	0, 0, 0, 0, 15, 0, 15, 0,
        },
    },
    /* SS-10 */
    {
494
495
        .iommu_base   = 0xfe0000000ULL,
        .tcx_base     = 0xe20000000ULL,
496
        .cs_base      = -1,
497
498
499
500
501
502
503
504
505
506
507
        .slavio_base  = 0xff0000000ULL,
        .ms_kb_base   = 0xff1000000ULL,
        .serial_base  = 0xff1100000ULL,
        .nvram_base   = 0xff1200000ULL,
        .fd_base      = 0xff1700000ULL,
        .counter_base = 0xff1300000ULL,
        .intctl_base  = 0xff1400000ULL,
        .dma_base     = 0xef0400000ULL,
        .esp_base     = 0xef0800000ULL,
        .le_base      = 0xef0c00000ULL,
        .power_base   = 0xefa000000ULL,
508
509
510
511
512
513
514
515
516
517
        .vram_size    = 0x00100000,
        .nvram_size   = 0x2000,
        .esp_irq = 18,
        .le_irq = 16,
        .clock_irq = 7,
        .clock1_irq = 19,
        .ms_kb_irq = 14,
        .ser_irq = 15,
        .fd_irq = 22,
        .me_irq = 30,
518
519
        .cs_irq = -1,
        .machine_id = 0x72,
520
521
522
523
        .intbit_to_level = {
            2, 3, 5, 7, 9, 11, 0, 14,	3, 5, 7, 9, 11, 13, 12, 12,
            6, 0, 4, 10, 8, 0, 11, 0,	0, 0, 0, 0, 15, 0, 15, 0,
        },
524
525
526
527
528
529
    },
};

static void sun4m_common_init(int ram_size, int boot_device, DisplayState *ds,
                              const char *kernel_filename, const char *kernel_cmdline,
                              const char *initrd_filename, const char *cpu_model,
530
                              unsigned int machine, int max_ram)
531
{
532
    if ((unsigned int)ram_size > (unsigned int)max_ram) {
533
        fprintf(stderr, "qemu: Too much memory for this machine: %d, maximum %d\n",
534
535
                (unsigned int)ram_size / (1024 * 1024),
                (unsigned int)max_ram / (1024 * 1024));
536
537
        exit(1);
    }
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
    sun4m_hw_init(&hwdefs[machine], ram_size, ds, cpu_model);

    sun4m_load_kernel(hwdefs[machine].vram_size, ram_size, boot_device,
                      kernel_filename, kernel_cmdline, initrd_filename,
                      hwdefs[machine].machine_id);
}

/* SPARCstation 5 hardware initialisation */
static void ss5_init(int ram_size, int vga_ram_size, int boot_device,
                       DisplayState *ds, const char **fd_filename, int snapshot,
                       const char *kernel_filename, const char *kernel_cmdline,
                       const char *initrd_filename, const char *cpu_model)
{
    if (cpu_model == NULL)
        cpu_model = "Fujitsu MB86904";
    sun4m_common_init(ram_size, boot_device, ds, kernel_filename,
                      kernel_cmdline, initrd_filename, cpu_model,
555
                      0, 0x10000000);
556
}
bellard authored
557
558
559
560
561
562
563
564
565
566
567
/* SPARCstation 10 hardware initialisation */
static void ss10_init(int ram_size, int vga_ram_size, int boot_device,
                            DisplayState *ds, const char **fd_filename, int snapshot,
                            const char *kernel_filename, const char *kernel_cmdline,
                            const char *initrd_filename, const char *cpu_model)
{
    if (cpu_model == NULL)
        cpu_model = "TI SuperSparc II";
    sun4m_common_init(ram_size, boot_device, ds, kernel_filename,
                      kernel_cmdline, initrd_filename, cpu_model,
568
                      1, PROM_ADDR); // XXX prom overlap, actually first 4GB ok
569
570
}
571
572
573
574
QEMUMachine ss5_machine = {
    "SS-5",
    "Sun4m platform, SPARCstation 5",
    ss5_init,
bellard authored
575
};
576
577
578
579
580
581

QEMUMachine ss10_machine = {
    "SS-10",
    "Sun4m platform, SPARCstation 10",
    ss10_init,
};