Blame view

cpu-all.h 26 KB
bellard authored
1
2
/*
 * defines common to all virtual CPUs
3
 *
bellard authored
4
5
6
7
8
9
10
11
12
13
14
15
16
17
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA  02110-1301 USA
bellard authored
19
20
21
22
 */
#ifndef CPU_ALL_H
#define CPU_ALL_H
23
#include "qemu-common.h"
24
#include "cpu-common.h"
bellard authored
25
26
27
/* some important defines:
 *
bellard authored
28
29
 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
 * memory accesses.
30
 *
bellard authored
31
32
 * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
 * otherwise little endian.
33
 *
bellard authored
34
 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
35
 *
bellard authored
36
37
38
 * TARGET_WORDS_BIGENDIAN : same for target cpu
 */
39
#include "softfloat.h"
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

#if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
#define BSWAP_NEEDED
#endif

#ifdef BSWAP_NEEDED

static inline uint16_t tswap16(uint16_t s)
{
    return bswap16(s);
}

static inline uint32_t tswap32(uint32_t s)
{
    return bswap32(s);
}

static inline uint64_t tswap64(uint64_t s)
{
    return bswap64(s);
}

static inline void tswap16s(uint16_t *s)
{
    *s = bswap16(*s);
}

static inline void tswap32s(uint32_t *s)
{
    *s = bswap32(*s);
}

static inline void tswap64s(uint64_t *s)
{
    *s = bswap64(*s);
}

#else

static inline uint16_t tswap16(uint16_t s)
{
    return s;
}

static inline uint32_t tswap32(uint32_t s)
{
    return s;
}

static inline uint64_t tswap64(uint64_t s)
{
    return s;
}

static inline void tswap16s(uint16_t *s)
{
}

static inline void tswap32s(uint32_t *s)
{
}

static inline void tswap64s(uint64_t *s)
{
}

#endif

#if TARGET_LONG_SIZE == 4
#define tswapl(s) tswap32(s)
#define tswapls(s) tswap32s((uint32_t *)(s))
bellard authored
111
#define bswaptls(s) bswap32s(s)
112
113
114
#else
#define tswapl(s) tswap64(s)
#define tswapls(s) tswap64s((uint64_t *)(s))
bellard authored
115
#define bswaptls(s) bswap64s(s)
116
117
#endif
118
119
120
121
122
typedef union {
    float32 f;
    uint32_t l;
} CPU_FloatU;
bellard authored
123
124
/* NOTE: arm FPA is horrible as double 32 bit words are stored in big
   endian ! */
bellard authored
125
typedef union {
bellard authored
126
    float64 d;
127
128
#if defined(WORDS_BIGENDIAN) \
    || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
bellard authored
129
130
    struct {
        uint32_t upper;
bellard authored
131
        uint32_t lower;
bellard authored
132
133
134
135
    } l;
#else
    struct {
        uint32_t lower;
bellard authored
136
        uint32_t upper;
bellard authored
137
138
139
140
141
    } l;
#endif
    uint64_t ll;
} CPU_DoubleU;
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
#ifdef TARGET_SPARC
typedef union {
    float128 q;
#if defined(WORDS_BIGENDIAN) \
    || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
    struct {
        uint32_t upmost;
        uint32_t upper;
        uint32_t lower;
        uint32_t lowest;
    } l;
    struct {
        uint64_t upper;
        uint64_t lower;
    } ll;
#else
    struct {
        uint32_t lowest;
        uint32_t lower;
        uint32_t upper;
        uint32_t upmost;
    } l;
    struct {
        uint64_t lower;
        uint64_t upper;
    } ll;
#endif
} CPU_QuadU;
#endif
bellard authored
172
173
/* CPU memory access without any memory or io remapping */
174
175
176
177
178
179
180
181
182
183
/*
 * the generic syntax for the memory accesses is:
 *
 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
 *
 * store: st{type}{size}{endian}_{access_type}(ptr, val)
 *
 * type is:
 * (empty): integer access
 *   f    : float access
184
 *
185
186
187
188
189
190
191
192
193
194
 * sign is:
 * (empty): for floats or 32 bit size
 *   u    : unsigned
 *   s    : signed
 *
 * size is:
 *   b: 8 bits
 *   w: 16 bits
 *   l: 32 bits
 *   q: 64 bits
195
 *
196
197
198
199
200
201
202
203
204
205
206
 * endian is:
 * (empty): target cpu endianness or 8 bit access
 *   r    : reversed target cpu endianness (not implemented yet)
 *   be   : big endian (not implemented yet)
 *   le   : little endian (not implemented yet)
 *
 * access_type is:
 *   raw    : host memory access
 *   user   : user mode access using soft MMU
 *   kernel : kernel mode access using soft MMU
 */
207
static inline int ldub_p(const void *ptr)
bellard authored
208
209
210
211
{
    return *(uint8_t *)ptr;
}
212
static inline int ldsb_p(const void *ptr)
bellard authored
213
214
215
216
{
    return *(int8_t *)ptr;
}
bellard authored
217
static inline void stb_p(void *ptr, int v)
bellard authored
218
219
220
221
222
223
224
{
    *(uint8_t *)ptr = v;
}

/* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
   kernel handles unaligned load/stores may give better results, but
   it is a system wide setting : bad */
225
#if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
bellard authored
226
227

/* conservative code for little endian unaligned accesses */
228
static inline int lduw_le_p(const void *ptr)
bellard authored
229
{
230
#ifdef _ARCH_PPC
bellard authored
231
232
233
234
    int val;
    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
    return val;
#else
235
    const uint8_t *p = ptr;
bellard authored
236
237
238
239
    return p[0] | (p[1] << 8);
#endif
}
240
static inline int ldsw_le_p(const void *ptr)
bellard authored
241
{
242
#ifdef _ARCH_PPC
bellard authored
243
244
245
246
    int val;
    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
    return (int16_t)val;
#else
247
    const uint8_t *p = ptr;
bellard authored
248
249
250
251
    return (int16_t)(p[0] | (p[1] << 8));
#endif
}
252
static inline int ldl_le_p(const void *ptr)
bellard authored
253
{
254
#ifdef _ARCH_PPC
bellard authored
255
256
257
258
    int val;
    __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
    return val;
#else
259
    const uint8_t *p = ptr;
bellard authored
260
261
262
263
    return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
#endif
}
264
static inline uint64_t ldq_le_p(const void *ptr)
bellard authored
265
{
266
    const uint8_t *p = ptr;
bellard authored
267
    uint32_t v1, v2;
268
269
    v1 = ldl_le_p(p);
    v2 = ldl_le_p(p + 4);
bellard authored
270
271
272
    return v1 | ((uint64_t)v2 << 32);
}
273
static inline void stw_le_p(void *ptr, int v)
bellard authored
274
{
275
#ifdef _ARCH_PPC
bellard authored
276
277
278
279
280
281
282
283
    __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
#else
    uint8_t *p = ptr;
    p[0] = v;
    p[1] = v >> 8;
#endif
}
284
static inline void stl_le_p(void *ptr, int v)
bellard authored
285
{
286
#ifdef _ARCH_PPC
bellard authored
287
288
289
290
291
292
293
294
295
296
    __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
#else
    uint8_t *p = ptr;
    p[0] = v;
    p[1] = v >> 8;
    p[2] = v >> 16;
    p[3] = v >> 24;
#endif
}
297
static inline void stq_le_p(void *ptr, uint64_t v)
bellard authored
298
299
{
    uint8_t *p = ptr;
300
301
    stl_le_p(p, (uint32_t)v);
    stl_le_p(p + 4, v >> 32);
bellard authored
302
303
304
305
}

/* float access */
306
static inline float32 ldfl_le_p(const void *ptr)
bellard authored
307
308
{
    union {
bellard authored
309
        float32 f;
bellard authored
310
311
        uint32_t i;
    } u;
312
    u.i = ldl_le_p(ptr);
bellard authored
313
314
315
    return u.f;
}
316
static inline void stfl_le_p(void *ptr, float32 v)
bellard authored
317
318
{
    union {
bellard authored
319
        float32 f;
bellard authored
320
321
322
        uint32_t i;
    } u;
    u.f = v;
323
    stl_le_p(ptr, u.i);
bellard authored
324
325
}
326
static inline float64 ldfq_le_p(const void *ptr)
bellard authored
327
{
bellard authored
328
    CPU_DoubleU u;
329
330
    u.l.lower = ldl_le_p(ptr);
    u.l.upper = ldl_le_p(ptr + 4);
bellard authored
331
332
333
    return u.d;
}
334
static inline void stfq_le_p(void *ptr, float64 v)
bellard authored
335
{
bellard authored
336
    CPU_DoubleU u;
bellard authored
337
    u.d = v;
338
339
    stl_le_p(ptr, u.l.lower);
    stl_le_p(ptr + 4, u.l.upper);
bellard authored
340
341
}
342
343
#else
344
static inline int lduw_le_p(const void *ptr)
345
346
347
348
{
    return *(uint16_t *)ptr;
}
349
static inline int ldsw_le_p(const void *ptr)
350
351
352
{
    return *(int16_t *)ptr;
}
353
354
static inline int ldl_le_p(const void *ptr)
355
356
357
358
{
    return *(uint32_t *)ptr;
}
359
static inline uint64_t ldq_le_p(const void *ptr)
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
{
    return *(uint64_t *)ptr;
}

static inline void stw_le_p(void *ptr, int v)
{
    *(uint16_t *)ptr = v;
}

static inline void stl_le_p(void *ptr, int v)
{
    *(uint32_t *)ptr = v;
}

static inline void stq_le_p(void *ptr, uint64_t v)
{
    *(uint64_t *)ptr = v;
}

/* float access */
381
static inline float32 ldfl_le_p(const void *ptr)
382
383
384
385
{
    return *(float32 *)ptr;
}
386
static inline float64 ldfq_le_p(const void *ptr)
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
{
    return *(float64 *)ptr;
}

static inline void stfl_le_p(void *ptr, float32 v)
{
    *(float32 *)ptr = v;
}

static inline void stfq_le_p(void *ptr, float64 v)
{
    *(float64 *)ptr = v;
}
#endif

#if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
404
static inline int lduw_be_p(const void *ptr)
405
{
406
407
408
409
410
411
412
413
#if defined(__i386__)
    int val;
    asm volatile ("movzwl %1, %0\n"
                  "xchgb %b0, %h0\n"
                  : "=q" (val)
                  : "m" (*(uint16_t *)ptr));
    return val;
#else
414
    const uint8_t *b = ptr;
415
416
    return ((b[0] << 8) | b[1]);
#endif
417
418
}
419
static inline int ldsw_be_p(const void *ptr)
420
{
421
422
423
424
425
426
427
428
#if defined(__i386__)
    int val;
    asm volatile ("movzwl %1, %0\n"
                  "xchgb %b0, %h0\n"
                  : "=q" (val)
                  : "m" (*(uint16_t *)ptr));
    return (int16_t)val;
#else
429
    const uint8_t *b = ptr;
430
431
    return (int16_t)((b[0] << 8) | b[1]);
#endif
432
433
}
434
static inline int ldl_be_p(const void *ptr)
435
{
bellard authored
436
#if defined(__i386__) || defined(__x86_64__)
437
438
439
440
441
442
443
    int val;
    asm volatile ("movl %1, %0\n"
                  "bswap %0\n"
                  : "=r" (val)
                  : "m" (*(uint32_t *)ptr));
    return val;
#else
444
    const uint8_t *b = ptr;
445
446
    return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
#endif
447
448
}
449
static inline uint64_t ldq_be_p(const void *ptr)
450
451
{
    uint32_t a,b;
452
    a = ldl_be_p(ptr);
453
    b = ldl_be_p((uint8_t *)ptr + 4);
454
455
456
    return (((uint64_t)a<<32)|b);
}
457
static inline void stw_be_p(void *ptr, int v)
458
{
459
460
461
462
463
464
#if defined(__i386__)
    asm volatile ("xchgb %b0, %h0\n"
                  "movw %w0, %1\n"
                  : "=q" (v)
                  : "m" (*(uint16_t *)ptr), "0" (v));
#else
465
466
467
    uint8_t *d = (uint8_t *) ptr;
    d[0] = v >> 8;
    d[1] = v;
468
#endif
469
470
}
471
static inline void stl_be_p(void *ptr, int v)
472
{
bellard authored
473
#if defined(__i386__) || defined(__x86_64__)
474
475
476
477
478
    asm volatile ("bswap %0\n"
                  "movl %0, %1\n"
                  : "=r" (v)
                  : "m" (*(uint32_t *)ptr), "0" (v));
#else
479
480
481
482
483
    uint8_t *d = (uint8_t *) ptr;
    d[0] = v >> 24;
    d[1] = v >> 16;
    d[2] = v >> 8;
    d[3] = v;
484
#endif
485
486
}
487
static inline void stq_be_p(void *ptr, uint64_t v)
488
{
489
    stl_be_p(ptr, v >> 32);
490
    stl_be_p((uint8_t *)ptr + 4, v);
bellard authored
491
492
493
494
}

/* float access */
495
static inline float32 ldfl_be_p(const void *ptr)
bellard authored
496
497
{
    union {
bellard authored
498
        float32 f;
bellard authored
499
500
        uint32_t i;
    } u;
501
    u.i = ldl_be_p(ptr);
bellard authored
502
503
504
    return u.f;
}
505
static inline void stfl_be_p(void *ptr, float32 v)
bellard authored
506
507
{
    union {
bellard authored
508
        float32 f;
bellard authored
509
510
511
        uint32_t i;
    } u;
    u.f = v;
512
    stl_be_p(ptr, u.i);
bellard authored
513
514
}
515
static inline float64 ldfq_be_p(const void *ptr)
bellard authored
516
517
{
    CPU_DoubleU u;
518
    u.l.upper = ldl_be_p(ptr);
519
    u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
bellard authored
520
521
522
    return u.d;
}
523
static inline void stfq_be_p(void *ptr, float64 v)
bellard authored
524
525
526
{
    CPU_DoubleU u;
    u.d = v;
527
    stl_be_p(ptr, u.l.upper);
528
    stl_be_p((uint8_t *)ptr + 4, u.l.lower);
529
530
}
bellard authored
531
532
#else
533
static inline int lduw_be_p(const void *ptr)
bellard authored
534
535
536
537
{
    return *(uint16_t *)ptr;
}
538
static inline int ldsw_be_p(const void *ptr)
bellard authored
539
540
541
542
{
    return *(int16_t *)ptr;
}
543
static inline int ldl_be_p(const void *ptr)
bellard authored
544
545
546
547
{
    return *(uint32_t *)ptr;
}
548
static inline uint64_t ldq_be_p(const void *ptr)
bellard authored
549
550
551
552
{
    return *(uint64_t *)ptr;
}
553
static inline void stw_be_p(void *ptr, int v)
bellard authored
554
555
556
557
{
    *(uint16_t *)ptr = v;
}
558
static inline void stl_be_p(void *ptr, int v)
bellard authored
559
560
561
562
{
    *(uint32_t *)ptr = v;
}
563
static inline void stq_be_p(void *ptr, uint64_t v)
bellard authored
564
565
566
567
568
569
{
    *(uint64_t *)ptr = v;
}

/* float access */
570
static inline float32 ldfl_be_p(const void *ptr)
bellard authored
571
{
bellard authored
572
    return *(float32 *)ptr;
bellard authored
573
574
}
575
static inline float64 ldfq_be_p(const void *ptr)
bellard authored
576
{
bellard authored
577
    return *(float64 *)ptr;
bellard authored
578
579
}
580
static inline void stfl_be_p(void *ptr, float32 v)
bellard authored
581
{
bellard authored
582
    *(float32 *)ptr = v;
bellard authored
583
584
}
585
static inline void stfq_be_p(void *ptr, float64 v)
bellard authored
586
{
bellard authored
587
    *(float64 *)ptr = v;
bellard authored
588
}
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616

#endif

/* target CPU memory access functions */
#if defined(TARGET_WORDS_BIGENDIAN)
#define lduw_p(p) lduw_be_p(p)
#define ldsw_p(p) ldsw_be_p(p)
#define ldl_p(p) ldl_be_p(p)
#define ldq_p(p) ldq_be_p(p)
#define ldfl_p(p) ldfl_be_p(p)
#define ldfq_p(p) ldfq_be_p(p)
#define stw_p(p, v) stw_be_p(p, v)
#define stl_p(p, v) stl_be_p(p, v)
#define stq_p(p, v) stq_be_p(p, v)
#define stfl_p(p, v) stfl_be_p(p, v)
#define stfq_p(p, v) stfq_be_p(p, v)
#else
#define lduw_p(p) lduw_le_p(p)
#define ldsw_p(p) ldsw_le_p(p)
#define ldl_p(p) ldl_le_p(p)
#define ldq_p(p) ldq_le_p(p)
#define ldfl_p(p) ldfl_le_p(p)
#define ldfq_p(p) ldfq_le_p(p)
#define stw_p(p, v) stw_le_p(p, v)
#define stl_p(p, v) stl_le_p(p, v)
#define stq_p(p, v) stq_le_p(p, v)
#define stfl_p(p, v) stfl_le_p(p, v)
#define stfq_p(p, v) stfq_le_p(p, v)
bellard authored
617
618
#endif
bellard authored
619
620
/* MMU memory access macros */
621
#if defined(CONFIG_USER_ONLY)
622
623
624
#include <assert.h>
#include "qemu-types.h"
625
626
627
628
629
630
631
632
/* On some host systems the guest address space is reserved on the host.
 * This allows the guest address space to be offset to a convenient location.
 */
//#define GUEST_BASE 0x20000000
#define GUEST_BASE 0

/* All direct uses of g2h and h2g need to go away for usermode softmmu.  */
#define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
633
634
635
636
637
638
#define h2g(x) ({ \
    unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
    /* Check if given address fits target address space */ \
    assert(__ret == (abi_ulong)__ret); \
    (abi_ulong)__ret; \
})
639
640
641
642
#define h2g_valid(x) ({ \
    unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
    (__guest == (abi_ulong)__guest); \
})
643
644
645
646
647

#define saddr(x) g2h(x)
#define laddr(x) g2h(x)

#else /* !CONFIG_USER_ONLY */
bellard authored
648
649
/* NOTE: we use double casts if pointers and target_ulong have
   different sizes */
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
#define saddr(x) (uint8_t *)(long)(x)
#define laddr(x) (uint8_t *)(long)(x)
#endif

#define ldub_raw(p) ldub_p(laddr((p)))
#define ldsb_raw(p) ldsb_p(laddr((p)))
#define lduw_raw(p) lduw_p(laddr((p)))
#define ldsw_raw(p) ldsw_p(laddr((p)))
#define ldl_raw(p) ldl_p(laddr((p)))
#define ldq_raw(p) ldq_p(laddr((p)))
#define ldfl_raw(p) ldfl_p(laddr((p)))
#define ldfq_raw(p) ldfq_p(laddr((p)))
#define stb_raw(p, v) stb_p(saddr((p)), v)
#define stw_raw(p, v) stw_p(saddr((p)), v)
#define stl_raw(p, v) stl_p(saddr((p)), v)
#define stq_raw(p, v) stq_p(saddr((p)), v)
#define stfl_raw(p, v) stfl_p(saddr((p)), v)
#define stfq_raw(p, v) stfq_p(saddr((p)), v)
bellard authored
668
669
670
#if defined(CONFIG_USER_ONLY)
bellard authored
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692

/* if user mode, no other memory access functions */
#define ldub(p) ldub_raw(p)
#define ldsb(p) ldsb_raw(p)
#define lduw(p) lduw_raw(p)
#define ldsw(p) ldsw_raw(p)
#define ldl(p) ldl_raw(p)
#define ldq(p) ldq_raw(p)
#define ldfl(p) ldfl_raw(p)
#define ldfq(p) ldfq_raw(p)
#define stb(p, v) stb_raw(p, v)
#define stw(p, v) stw_raw(p, v)
#define stl(p, v) stl_raw(p, v)
#define stq(p, v) stq_raw(p, v)
#define stfl(p, v) stfl_raw(p, v)
#define stfq(p, v) stfq_raw(p, v)

#define ldub_code(p) ldub_raw(p)
#define ldsb_code(p) ldsb_raw(p)
#define lduw_code(p) lduw_raw(p)
#define ldsw_code(p) ldsw_raw(p)
#define ldl_code(p) ldl_raw(p)
693
#define ldq_code(p) ldq_raw(p)
bellard authored
694
695
696
697
698
699

#define ldub_kernel(p) ldub_raw(p)
#define ldsb_kernel(p) ldsb_raw(p)
#define lduw_kernel(p) lduw_raw(p)
#define ldsw_kernel(p) ldsw_raw(p)
#define ldl_kernel(p) ldl_raw(p)
700
#define ldq_kernel(p) ldq_raw(p)
bellard authored
701
702
#define ldfl_kernel(p) ldfl_raw(p)
#define ldfq_kernel(p) ldfq_raw(p)
bellard authored
703
704
705
706
#define stb_kernel(p, v) stb_raw(p, v)
#define stw_kernel(p, v) stw_raw(p, v)
#define stl_kernel(p, v) stl_raw(p, v)
#define stq_kernel(p, v) stq_raw(p, v)
bellard authored
707
708
#define stfl_kernel(p, v) stfl_raw(p, v)
#define stfq_kernel(p, vt) stfq_raw(p, v)
bellard authored
709
710
711

#endif /* defined(CONFIG_USER_ONLY) */
bellard authored
712
713
/* page related stuff */
714
#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
bellard authored
715
716
717
#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
718
/* ??? These should be the larger of unsigned long and target_ulong.  */
719
720
721
722
extern unsigned long qemu_real_host_page_size;
extern unsigned long qemu_host_page_bits;
extern unsigned long qemu_host_page_size;
extern unsigned long qemu_host_page_mask;
bellard authored
723
724
#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
bellard authored
725
726
727
728
729
730
731
732
733

/* same as PROT_xxx */
#define PAGE_READ      0x0001
#define PAGE_WRITE     0x0002
#define PAGE_EXEC      0x0004
#define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
#define PAGE_VALID     0x0008
/* original state of the write flag (used when tracking self-modifying
   code */
734
#define PAGE_WRITE_ORG 0x0010
735
#define PAGE_RESERVED  0x0020
bellard authored
736
737

void page_dump(FILE *f);
738
739
int walk_memory_regions(void *,
    int (*fn)(void *, unsigned long, unsigned long, unsigned long));
740
741
int page_get_flags(target_ulong address);
void page_set_flags(target_ulong start, target_ulong end, int flags);
742
int page_check_range(target_ulong start, target_ulong len, int flags);
bellard authored
743
744
void cpu_exec_init_all(unsigned long tb_size);
745
CPUState *cpu_copy(CPUState *env);
746
CPUState *qemu_get_cpu(int cpu);
747
748
void cpu_dump_state(CPUState *env, FILE *f,
bellard authored
749
750
                    int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
                    int flags);
751
752
753
void cpu_dump_statistics (CPUState *env, FILE *f,
                          int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
                          int flags);
bellard authored
754
755
void QEMU_NORETURN cpu_abort(CPUState *env, const char *fmt, ...)
756
    __attribute__ ((__format__ (__printf__, 2, 3)));
757
extern CPUState *first_cpu;
bellard authored
758
extern CPUState *cpu_single_env;
pbrook authored
759
760
extern int64_t qemu_icount;
extern int use_icount;
bellard authored
761
762
763
#define CPU_INTERRUPT_HARD   0x02 /* hardware interrupt pending */
#define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
bellard authored
764
#define CPU_INTERRUPT_TIMER  0x08 /* internal timer exception pending */
765
#define CPU_INTERRUPT_FIQ    0x10 /* Fast interrupt pending.  */
766
#define CPU_INTERRUPT_HALT   0x20 /* CPU halt wanted */
bellard authored
767
#define CPU_INTERRUPT_SMI    0x40 /* (x86 only) SMI interrupt pending */
768
#define CPU_INTERRUPT_DEBUG  0x80 /* Debug event occured.  */
ths authored
769
#define CPU_INTERRUPT_VIRQ   0x100 /* virtual interrupt pending.  */
770
#define CPU_INTERRUPT_NMI    0x200 /* NMI pending. */
771
772
#define CPU_INTERRUPT_INIT   0x400 /* INIT pending. */
#define CPU_INTERRUPT_SIPI   0x800 /* SIPI pending. */
773
bellard authored
774
void cpu_interrupt(CPUState *s, int mask);
775
void cpu_reset_interrupt(CPUState *env, int mask);
bellard authored
776
777
778
void cpu_exit(CPUState *s);
779
780
int qemu_cpu_has_work(CPUState *env);
781
782
783
784
/* Breakpoint/watchpoint flags */
#define BP_MEM_READ           0x01
#define BP_MEM_WRITE          0x02
#define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
785
#define BP_STOP_BEFORE_ACCESS 0x04
786
#define BP_WATCHPOINT_HIT     0x08
787
#define BP_GDB                0x10
788
#define BP_CPU                0x20
789
790
791
792
793
794
795
796
797
798
799
800

int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
                          CPUBreakpoint **breakpoint);
int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
void cpu_breakpoint_remove_all(CPUState *env, int mask);
int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
                          int flags, CPUWatchpoint **watchpoint);
int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
                          target_ulong len, int flags);
void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
void cpu_watchpoint_remove_all(CPUState *env, int mask);
801
802
803
804
805

#define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
#define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
#define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
806
void cpu_single_step(CPUState *env, int enabled);
bellard authored
807
void cpu_reset(CPUState *s);
bellard authored
808
809
810
811
/* Return the physical page corresponding to a virtual one. Use it
   only for debugging because no protection checks are done. Return -1
   if no page found. */
812
target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
813
814
#define CPU_LOG_TB_OUT_ASM (1 << 0)
815
#define CPU_LOG_TB_IN_ASM  (1 << 1)
816
817
818
819
820
#define CPU_LOG_TB_OP      (1 << 2)
#define CPU_LOG_TB_OP_OPT  (1 << 3)
#define CPU_LOG_INT        (1 << 4)
#define CPU_LOG_EXEC       (1 << 5)
#define CPU_LOG_PCALL      (1 << 6)
821
#define CPU_LOG_IOPORT     (1 << 7)
822
#define CPU_LOG_TB_CPU     (1 << 8)
823
#define CPU_LOG_RESET      (1 << 9)
824
825
826
827
828
829
830
831

/* define log items */
typedef struct CPULogItem {
    int mask;
    const char *name;
    const char *help;
} CPULogItem;
832
extern const CPULogItem cpu_log_items[];
833
834
835
void cpu_set_log(int log_flags);
void cpu_set_log_filename(const char *filename);
836
int cpu_str_to_log_mask(const char *str);
837
838
839
840
841
842
843
844
845
846
847
848
849
850
/* IO ports API */

/* NOTE: as these functions may be even used when there is an isa
   brige on non x86 targets, we always defined them */
#ifndef NO_CPU_IO_DEFS
void cpu_outb(CPUState *env, int addr, int val);
void cpu_outw(CPUState *env, int addr, int val);
void cpu_outl(CPUState *env, int addr, int val);
int cpu_inb(CPUState *env, int addr);
int cpu_inw(CPUState *env, int addr);
int cpu_inl(CPUState *env, int addr);
#endif
851
852
/* memory API */
bellard authored
853
extern int phys_ram_fd;
854
extern uint8_t *phys_ram_dirty;
855
extern ram_addr_t ram_size;
856
extern ram_addr_t last_ram_offset;
bellard authored
857
858

/* physical memory access */
pbrook authored
859
860
861
862
863

/* MMIO pages are identified by a combination of an IO device index and
   3 flags.  The ROMD code stores the page ram offset in iotlb entry, 
   so only a limited number of ids are avaiable.  */
864
#define IO_MEM_NB_ENTRIES  (1 << (TARGET_PAGE_BITS  - IO_MEM_SHIFT))
bellard authored
865
pbrook authored
866
867
868
869
870
871
872
873
874
875
/* Flags stored in the low bits of the TLB virtual address.  These are
   defined so that fast path ram access is all zeros.  */
/* Zero if TLB entry is valid.  */
#define TLB_INVALID_MASK   (1 << 3)
/* Set if TLB entry references a clean RAM page.  The iotlb entry will
   contain the page physical address.  */
#define TLB_NOTDIRTY    (1 << 4)
/* Set if TLB entry is an IO callback.  */
#define TLB_MMIO        (1 << 5)
876
int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
877
                        uint8_t *buf, int len, int is_write);
878
879
880
881
882
#define VGA_DIRTY_FLAG       0x01
#define CODE_DIRTY_FLAG      0x02
#define KQEMU_DIRTY_FLAG     0x04
#define MIGRATION_DIRTY_FLAG 0x08
bellard authored
883
884
/* read dirty bit (return 0 or 1) */
bellard authored
885
static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
886
{
bellard authored
887
888
889
    return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
}
890
static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
bellard authored
891
892
893
                                                int dirty_flags)
{
    return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
894
895
}
bellard authored
896
static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
897
{
bellard authored
898
    phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
899
900
}
bellard authored
901
void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
bellard authored
902
                                     int dirty_flags);
bellard authored
903
void cpu_tlb_update_dirty(CPUState *env);
904
905
906
907
908
int cpu_physical_memory_set_dirty_tracking(int enable);

int cpu_physical_memory_get_dirty_tracking(void);
909
910
int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
                                   target_phys_addr_t end_addr);
911
bellard authored
912
913
914
void dump_exec_info(FILE *f,
                    int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
aliguori authored
915
916
917
918
919
920
921
922
923
/* Coalesced MMIO regions are areas where write operations can be reordered.
 * This usually implies that write operations are side-effect free.  This allows
 * batching which can make a major impact on performance when using
 * virtualization.
 */
void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);

void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
bellard authored
924
925
926
/*******************************************/
/* host CPU ticks (if available) */
927
#if defined(_ARCH_PPC)
bellard authored
928
929
930

static inline int64_t cpu_get_real_ticks(void)
{
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
    int64_t retval;
#ifdef _ARCH_PPC64
    /* This reads timebase in one 64bit go and includes Cell workaround from:
       http://ozlabs.org/pipermail/linuxppc-dev/2006-October/027052.html
     */
    __asm__ __volatile__ (
        "mftb    %0\n\t"
        "cmpwi   %0,0\n\t"
        "beq-    $-8"
        : "=r" (retval));
#else
    /* http://ozlabs.org/pipermail/linuxppc-dev/1999-October/003889.html */
    unsigned long junk;
    __asm__ __volatile__ (
        "mftbu   %1\n\t"
        "mftb    %L0\n\t"
        "mftbu   %0\n\t"
        "cmpw    %0,%1\n\t"
        "bne     $-16"
        : "=r" (retval), "=r" (junk));
#endif
    return retval;
bellard authored
953
954
955
956
957
}

#elif defined(__i386__)

static inline int64_t cpu_get_real_ticks(void)
bellard authored
958
959
960
961
962
963
{
    int64_t val;
    asm volatile ("rdtsc" : "=A" (val));
    return val;
}
bellard authored
964
965
966
967
968
969
970
971
972
973
974
975
976
#elif defined(__x86_64__)

static inline int64_t cpu_get_real_ticks(void)
{
    uint32_t low,high;
    int64_t val;
    asm volatile("rdtsc" : "=a" (low), "=d" (high));
    val = high;
    val <<= 32;
    val |= low;
    return val;
}
aurel32 authored
977
978
979
980
981
982
983
984
985
#elif defined(__hppa__)

static inline int64_t cpu_get_real_ticks(void)
{
    int val;
    asm volatile ("mfctl %%cr16, %0" : "=r"(val));
    return val;
}
bellard authored
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
#elif defined(__ia64)

static inline int64_t cpu_get_real_ticks(void)
{
	int64_t val;
	asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
	return val;
}

#elif defined(__s390__)

static inline int64_t cpu_get_real_ticks(void)
{
    int64_t val;
    asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
    return val;
}
1004
#elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
bellard authored
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024

static inline int64_t cpu_get_real_ticks (void)
{
#if     defined(_LP64)
        uint64_t        rval;
        asm volatile("rd %%tick,%0" : "=r"(rval));
        return rval;
#else
        union {
                uint64_t i64;
                struct {
                        uint32_t high;
                        uint32_t low;
                }       i32;
        } rval;
        asm volatile("rd %%tick,%1; srlx %1,32,%0"
                : "=r"(rval.i32.high), "=r"(rval.i32.low));
        return rval.i64;
#endif
}
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045

#elif defined(__mips__)

static inline int64_t cpu_get_real_ticks(void)
{
#if __mips_isa_rev >= 2
    uint32_t count;
    static uint32_t cyc_per_count = 0;

    if (!cyc_per_count)
        __asm__ __volatile__("rdhwr %0, $3" : "=r" (cyc_per_count));

    __asm__ __volatile__("rdhwr %1, $2" : "=r" (count));
    return (int64_t)(count * cyc_per_count);
#else
    /* FIXME */
    static int64_t ticks = 0;
    return ticks++;
#endif
}
pbrook authored
1046
1047
#else
/* The host CPU doesn't have an easily accessible cycle counter.
ths authored
1048
1049
   Just return a monotonically increasing value.  This will be
   totally wrong, but hopefully better than nothing.  */
pbrook authored
1050
1051
1052
1053
1054
static inline int64_t cpu_get_real_ticks (void)
{
    static int64_t ticks = 0;
    return ticks++;
}
bellard authored
1055
1056
1057
1058
1059
1060
1061
1062
1063
#endif

/* profiling */
#ifdef CONFIG_PROFILER
static inline int64_t profile_getclock(void)
{
    return cpu_get_real_ticks();
}
bellard authored
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
extern int64_t kqemu_time, kqemu_time_start;
extern int64_t qemu_time, qemu_time_start;
extern int64_t tlb_flush_time;
extern int64_t kqemu_exec_count;
extern int64_t dev_time;
extern int64_t kqemu_ret_int_count;
extern int64_t kqemu_ret_excp_count;
extern int64_t kqemu_ret_intr_count;
#endif
bellard authored
1074
#endif /* CPU_ALL_H */