1
2
/*
* defines common to all virtual CPUs
ths
authored
18 years ago
3
*
4
5
6
7
8
9
10
11
12
13
14
15
16
17
* Copyright ( c ) 2003 Fabrice Bellard
*
* This library is free software ; you can redistribute it and / or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation ; either
* version 2 of the License , or ( at your option ) any later version .
*
* This library is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the GNU
* Lesser General Public License for more details .
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library ; if not , write to the Free Software
18
* Foundation , Inc ., 51 Franklin Street , Fifth Floor , Boston MA 02110 - 1301 USA
19
20
21
22
*/
# ifndef CPU_ALL_H
# define CPU_ALL_H
23
# include "qemu-common.h"
24
# include "cpu-common.h"
25
ths
authored
18 years ago
26
27
/* some important defines :
*
28
29
* WORDS_ALIGNED : if defined , the host cpu can only make word aligned
* memory accesses .
ths
authored
18 years ago
30
*
31
32
* WORDS_BIGENDIAN : if defined , the host cpu is big endian and
* otherwise little endian .
ths
authored
18 years ago
33
*
34
* ( TARGET_WORDS_ALIGNED : same for target cpu ( not supported yet ))
ths
authored
18 years ago
35
*
36
37
38
* TARGET_WORDS_BIGENDIAN : same for target cpu
*/
39
# include "softfloat.h"
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
# if defined ( WORDS_BIGENDIAN ) != defined ( TARGET_WORDS_BIGENDIAN )
# define BSWAP_NEEDED
# endif
# ifdef BSWAP_NEEDED
static inline uint16_t tswap16 ( uint16_t s )
{
return bswap16 ( s );
}
static inline uint32_t tswap32 ( uint32_t s )
{
return bswap32 ( s );
}
static inline uint64_t tswap64 ( uint64_t s )
{
return bswap64 ( s );
}
static inline void tswap16s ( uint16_t * s )
{
* s = bswap16 ( * s );
}
static inline void tswap32s ( uint32_t * s )
{
* s = bswap32 ( * s );
}
static inline void tswap64s ( uint64_t * s )
{
* s = bswap64 ( * s );
}
# else
static inline uint16_t tswap16 ( uint16_t s )
{
return s ;
}
static inline uint32_t tswap32 ( uint32_t s )
{
return s ;
}
static inline uint64_t tswap64 ( uint64_t s )
{
return s ;
}
static inline void tswap16s ( uint16_t * s )
{
}
static inline void tswap32s ( uint32_t * s )
{
}
static inline void tswap64s ( uint64_t * s )
{
}
# endif
# if TARGET_LONG_SIZE == 4
# define tswapl ( s ) tswap32 ( s )
# define tswapls ( s ) tswap32s (( uint32_t * )( s ))
111
# define bswaptls ( s ) bswap32s ( s )
112
113
114
# else
# define tswapl ( s ) tswap64 ( s )
# define tswapls ( s ) tswap64s (( uint64_t * )( s ))
115
# define bswaptls ( s ) bswap64s ( s )
116
117
# endif
118
119
120
121
122
typedef union {
float32 f ;
uint32_t l ;
} CPU_FloatU ;
123
124
/* NOTE : arm FPA is horrible as double 32 bit words are stored in big
endian ! */
125
typedef union {
126
float64 d ;
127
128
# if defined ( WORDS_BIGENDIAN ) \
|| ( defined ( __arm__ ) && ! defined ( __VFP_FP__ ) && ! defined ( CONFIG_SOFTFLOAT ))
129
130
struct {
uint32_t upper ;
131
uint32_t lower ;
132
133
134
135
} l ;
# else
struct {
uint32_t lower ;
136
uint32_t upper ;
137
138
139
140
141
} l ;
# endif
uint64_t ll ;
} CPU_DoubleU ;
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# ifdef TARGET_SPARC
typedef union {
float128 q ;
# if defined ( WORDS_BIGENDIAN ) \
|| ( defined ( __arm__ ) && ! defined ( __VFP_FP__ ) && ! defined ( CONFIG_SOFTFLOAT ))
struct {
uint32_t upmost ;
uint32_t upper ;
uint32_t lower ;
uint32_t lowest ;
} l ;
struct {
uint64_t upper ;
uint64_t lower ;
} ll ;
# else
struct {
uint32_t lowest ;
uint32_t lower ;
uint32_t upper ;
uint32_t upmost ;
} l ;
struct {
uint64_t lower ;
uint64_t upper ;
} ll ;
# endif
} CPU_QuadU ;
# endif
172
173
/* CPU memory access without any memory or io remapping */
174
175
176
177
178
179
180
181
182
183
/*
* the generic syntax for the memory accesses is :
*
* load : ld { type }{ sign }{ size }{ endian } _ { access_type }( ptr )
*
* store : st { type }{ size }{ endian } _ { access_type }( ptr , val )
*
* type is :
* ( empty ) : integer access
* f : float access
ths
authored
18 years ago
184
*
185
186
187
188
189
190
191
192
193
194
* sign is :
* ( empty ) : for floats or 32 bit size
* u : unsigned
* s : signed
*
* size is :
* b : 8 bits
* w : 16 bits
* l : 32 bits
* q : 64 bits
ths
authored
18 years ago
195
*
196
197
198
199
200
201
202
203
204
205
206
* endian is :
* ( empty ) : target cpu endianness or 8 bit access
* r : reversed target cpu endianness ( not implemented yet )
* be : big endian ( not implemented yet )
* le : little endian ( not implemented yet )
*
* access_type is :
* raw : host memory access
* user : user mode access using soft MMU
* kernel : kernel mode access using soft MMU
*/
207
static inline int ldub_p ( const void * ptr )
208
209
210
211
{
return * ( uint8_t * ) ptr ;
}
212
static inline int ldsb_p ( const void * ptr )
213
214
215
216
{
return * ( int8_t * ) ptr ;
}
217
static inline void stb_p ( void * ptr , int v )
218
219
220
221
222
223
224
{
* ( uint8_t * ) ptr = v ;
}
/* NOTE : on arm , putting 2 in / proc / sys / debug / alignment so that the
kernel handles unaligned load / stores may give better results , but
it is a system wide setting : bad */
225
# if defined ( WORDS_BIGENDIAN ) || defined ( WORDS_ALIGNED )
226
227
/* conservative code for little endian unaligned accesses */
228
static inline int lduw_le_p ( const void * ptr )
229
{
malc
authored
16 years ago
230
# ifdef _ARCH_PPC
231
232
233
234
int val ;
__asm__ __volatile__ ( "lhbrx %0,0,%1" : "=r" ( val ) : "r" ( ptr ));
return val ;
# else
malc
authored
16 years ago
235
const uint8_t * p = ptr ;
236
237
238
239
return p [ 0 ] | ( p [ 1 ] << 8 );
# endif
}
240
static inline int ldsw_le_p ( const void * ptr )
241
{
malc
authored
16 years ago
242
# ifdef _ARCH_PPC
243
244
245
246
int val ;
__asm__ __volatile__ ( "lhbrx %0,0,%1" : "=r" ( val ) : "r" ( ptr ));
return ( int16_t ) val ;
# else
malc
authored
16 years ago
247
const uint8_t * p = ptr ;
248
249
250
251
return ( int16_t )( p [ 0 ] | ( p [ 1 ] << 8 ));
# endif
}
252
static inline int ldl_le_p ( const void * ptr )
253
{
malc
authored
16 years ago
254
# ifdef _ARCH_PPC
255
256
257
258
int val ;
__asm__ __volatile__ ( "lwbrx %0,0,%1" : "=r" ( val ) : "r" ( ptr ));
return val ;
# else
malc
authored
16 years ago
259
const uint8_t * p = ptr ;
260
261
262
263
return p [ 0 ] | ( p [ 1 ] << 8 ) | ( p [ 2 ] << 16 ) | ( p [ 3 ] << 24 );
# endif
}
264
static inline uint64_t ldq_le_p ( const void * ptr )
265
{
malc
authored
16 years ago
266
const uint8_t * p = ptr ;
267
uint32_t v1 , v2 ;
268
269
v1 = ldl_le_p ( p );
v2 = ldl_le_p ( p + 4 );
270
271
272
return v1 | (( uint64_t ) v2 << 32 );
}
273
static inline void stw_le_p ( void * ptr , int v )
274
{
malc
authored
16 years ago
275
# ifdef _ARCH_PPC
276
277
278
279
280
281
282
283
__asm__ __volatile__ ( "sthbrx %1,0,%2" : "=m" ( * ( uint16_t * ) ptr ) : "r" ( v ), "r" ( ptr ));
# else
uint8_t * p = ptr ;
p [ 0 ] = v ;
p [ 1 ] = v >> 8 ;
# endif
}
284
static inline void stl_le_p ( void * ptr , int v )
285
{
malc
authored
16 years ago
286
# ifdef _ARCH_PPC
287
288
289
290
291
292
293
294
295
296
__asm__ __volatile__ ( "stwbrx %1,0,%2" : "=m" ( * ( uint32_t * ) ptr ) : "r" ( v ), "r" ( ptr ));
# else
uint8_t * p = ptr ;
p [ 0 ] = v ;
p [ 1 ] = v >> 8 ;
p [ 2 ] = v >> 16 ;
p [ 3 ] = v >> 24 ;
# endif
}
297
static inline void stq_le_p ( void * ptr , uint64_t v )
298
299
{
uint8_t * p = ptr ;
300
301
stl_le_p ( p , ( uint32_t ) v );
stl_le_p ( p + 4 , v >> 32 );
302
303
304
305
}
/* float access */
306
static inline float32 ldfl_le_p ( const void * ptr )
307
308
{
union {
309
float32 f ;
310
311
uint32_t i ;
} u ;
312
u . i = ldl_le_p ( ptr );
313
314
315
return u . f ;
}
316
static inline void stfl_le_p ( void * ptr , float32 v )
317
318
{
union {
319
float32 f ;
320
321
322
uint32_t i ;
} u ;
u . f = v ;
323
stl_le_p ( ptr , u . i );
324
325
}
326
static inline float64 ldfq_le_p ( const void * ptr )
327
{
328
CPU_DoubleU u ;
329
330
u . l . lower = ldl_le_p ( ptr );
u . l . upper = ldl_le_p ( ptr + 4 );
331
332
333
return u . d ;
}
334
static inline void stfq_le_p ( void * ptr , float64 v )
335
{
336
CPU_DoubleU u ;
337
u . d = v ;
338
339
stl_le_p ( ptr , u . l . lower );
stl_le_p ( ptr + 4 , u . l . upper );
340
341
}
342
343
# else
344
static inline int lduw_le_p ( const void * ptr )
345
346
347
348
{
return * ( uint16_t * ) ptr ;
}
349
static inline int ldsw_le_p ( const void * ptr )
350
351
352
{
return * ( int16_t * ) ptr ;
}
353
354
static inline int ldl_le_p ( const void * ptr )
355
356
357
358
{
return * ( uint32_t * ) ptr ;
}
359
static inline uint64_t ldq_le_p ( const void * ptr )
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
{
return * ( uint64_t * ) ptr ;
}
static inline void stw_le_p ( void * ptr , int v )
{
* ( uint16_t * ) ptr = v ;
}
static inline void stl_le_p ( void * ptr , int v )
{
* ( uint32_t * ) ptr = v ;
}
static inline void stq_le_p ( void * ptr , uint64_t v )
{
* ( uint64_t * ) ptr = v ;
}
/* float access */
381
static inline float32 ldfl_le_p ( const void * ptr )
382
383
384
385
{
return * ( float32 * ) ptr ;
}
386
static inline float64 ldfq_le_p ( const void * ptr )
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
{
return * ( float64 * ) ptr ;
}
static inline void stfl_le_p ( void * ptr , float32 v )
{
* ( float32 * ) ptr = v ;
}
static inline void stfq_le_p ( void * ptr , float64 v )
{
* ( float64 * ) ptr = v ;
}
# endif
# if ! defined ( WORDS_BIGENDIAN ) || defined ( WORDS_ALIGNED )
404
static inline int lduw_be_p ( const void * ptr )
405
{
406
407
408
409
410
411
412
413
# if defined ( __i386__ )
int val ;
asm volatile ( "movzwl %1, %0 \n "
"xchgb %b0, %h0 \n "
: "=q" ( val )
: "m" ( * ( uint16_t * ) ptr ));
return val ;
# else
malc
authored
16 years ago
414
const uint8_t * b = ptr ;
415
416
return (( b [ 0 ] << 8 ) | b [ 1 ]);
# endif
417
418
}
419
static inline int ldsw_be_p ( const void * ptr )
420
{
421
422
423
424
425
426
427
428
# if defined ( __i386__ )
int val ;
asm volatile ( "movzwl %1, %0 \n "
"xchgb %b0, %h0 \n "
: "=q" ( val )
: "m" ( * ( uint16_t * ) ptr ));
return ( int16_t ) val ;
# else
malc
authored
16 years ago
429
const uint8_t * b = ptr ;
430
431
return ( int16_t )(( b [ 0 ] << 8 ) | b [ 1 ]);
# endif
432
433
}
434
static inline int ldl_be_p ( const void * ptr )
435
{
436
# if defined ( __i386__ ) || defined ( __x86_64__ )
437
438
439
440
441
442
443
int val ;
asm volatile ( "movl %1, %0 \n "
"bswap %0 \n "
: "=r" ( val )
: "m" ( * ( uint32_t * ) ptr ));
return val ;
# else
malc
authored
16 years ago
444
const uint8_t * b = ptr ;
445
446
return ( b [ 0 ] << 24 ) | ( b [ 1 ] << 16 ) | ( b [ 2 ] << 8 ) | b [ 3 ];
# endif
447
448
}
449
static inline uint64_t ldq_be_p ( const void * ptr )
450
451
{
uint32_t a , b ;
452
a = ldl_be_p ( ptr );
453
b = ldl_be_p (( uint8_t * ) ptr + 4 );
454
455
456
return ((( uint64_t ) a << 32 ) | b );
}
457
static inline void stw_be_p ( void * ptr , int v )
458
{
459
460
461
462
463
464
# if defined ( __i386__ )
asm volatile ( "xchgb %b0, %h0 \n "
"movw %w0, %1 \n "
: "=q" ( v )
: "m" ( * ( uint16_t * ) ptr ), "0" ( v ));
# else
465
466
467
uint8_t * d = ( uint8_t * ) ptr ;
d [ 0 ] = v >> 8 ;
d [ 1 ] = v ;
468
# endif
469
470
}
471
static inline void stl_be_p ( void * ptr , int v )
472
{
473
# if defined ( __i386__ ) || defined ( __x86_64__ )
474
475
476
477
478
asm volatile ( "bswap %0 \n "
"movl %0, %1 \n "
: "=r" ( v )
: "m" ( * ( uint32_t * ) ptr ), "0" ( v ));
# else
479
480
481
482
483
uint8_t * d = ( uint8_t * ) ptr ;
d [ 0 ] = v >> 24 ;
d [ 1 ] = v >> 16 ;
d [ 2 ] = v >> 8 ;
d [ 3 ] = v ;
484
# endif
485
486
}
487
static inline void stq_be_p ( void * ptr , uint64_t v )
488
{
489
stl_be_p ( ptr , v >> 32 );
490
stl_be_p (( uint8_t * ) ptr + 4 , v );
491
492
493
494
}
/* float access */
495
static inline float32 ldfl_be_p ( const void * ptr )
496
497
{
union {
498
float32 f ;
499
500
uint32_t i ;
} u ;
501
u . i = ldl_be_p ( ptr );
502
503
504
return u . f ;
}
505
static inline void stfl_be_p ( void * ptr , float32 v )
506
507
{
union {
508
float32 f ;
509
510
511
uint32_t i ;
} u ;
u . f = v ;
512
stl_be_p ( ptr , u . i );
513
514
}
515
static inline float64 ldfq_be_p ( const void * ptr )
516
517
{
CPU_DoubleU u ;
518
u . l . upper = ldl_be_p ( ptr );
519
u . l . lower = ldl_be_p (( uint8_t * ) ptr + 4 );
520
521
522
return u . d ;
}
523
static inline void stfq_be_p ( void * ptr , float64 v )
524
525
526
{
CPU_DoubleU u ;
u . d = v ;
527
stl_be_p ( ptr , u . l . upper );
528
stl_be_p (( uint8_t * ) ptr + 4 , u . l . lower );
529
530
}
531
532
# else
533
static inline int lduw_be_p ( const void * ptr )
534
535
536
537
{
return * ( uint16_t * ) ptr ;
}
538
static inline int ldsw_be_p ( const void * ptr )
539
540
541
542
{
return * ( int16_t * ) ptr ;
}
543
static inline int ldl_be_p ( const void * ptr )
544
545
546
547
{
return * ( uint32_t * ) ptr ;
}
548
static inline uint64_t ldq_be_p ( const void * ptr )
549
550
551
552
{
return * ( uint64_t * ) ptr ;
}
553
static inline void stw_be_p ( void * ptr , int v )
554
555
556
557
{
* ( uint16_t * ) ptr = v ;
}
558
static inline void stl_be_p ( void * ptr , int v )
559
560
561
562
{
* ( uint32_t * ) ptr = v ;
}
563
static inline void stq_be_p ( void * ptr , uint64_t v )
564
565
566
567
568
569
{
* ( uint64_t * ) ptr = v ;
}
/* float access */
570
static inline float32 ldfl_be_p ( const void * ptr )
571
{
572
return * ( float32 * ) ptr ;
573
574
}
575
static inline float64 ldfq_be_p ( const void * ptr )
576
{
577
return * ( float64 * ) ptr ;
578
579
}
580
static inline void stfl_be_p ( void * ptr , float32 v )
581
{
582
* ( float32 * ) ptr = v ;
583
584
}
585
static inline void stfq_be_p ( void * ptr , float64 v )
586
{
587
* ( float64 * ) ptr = v ;
588
}
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
# endif
/* target CPU memory access functions */
# if defined ( TARGET_WORDS_BIGENDIAN )
# define lduw_p ( p ) lduw_be_p ( p )
# define ldsw_p ( p ) ldsw_be_p ( p )
# define ldl_p ( p ) ldl_be_p ( p )
# define ldq_p ( p ) ldq_be_p ( p )
# define ldfl_p ( p ) ldfl_be_p ( p )
# define ldfq_p ( p ) ldfq_be_p ( p )
# define stw_p ( p , v ) stw_be_p ( p , v )
# define stl_p ( p , v ) stl_be_p ( p , v )
# define stq_p ( p , v ) stq_be_p ( p , v )
# define stfl_p ( p , v ) stfl_be_p ( p , v )
# define stfq_p ( p , v ) stfq_be_p ( p , v )
# else
# define lduw_p ( p ) lduw_le_p ( p )
# define ldsw_p ( p ) ldsw_le_p ( p )
# define ldl_p ( p ) ldl_le_p ( p )
# define ldq_p ( p ) ldq_le_p ( p )
# define ldfl_p ( p ) ldfl_le_p ( p )
# define ldfq_p ( p ) ldfq_le_p ( p )
# define stw_p ( p , v ) stw_le_p ( p , v )
# define stl_p ( p , v ) stl_le_p ( p , v )
# define stq_p ( p , v ) stq_le_p ( p , v )
# define stfl_p ( p , v ) stfl_le_p ( p , v )
# define stfq_p ( p , v ) stfq_le_p ( p , v )
617
618
# endif
619
620
/* MMU memory access macros */
621
# if defined ( CONFIG_USER_ONLY )
622
623
624
# include < assert . h >
# include "qemu-types.h"
625
626
627
628
629
630
631
632
/* On some host systems the guest address space is reserved on the host .
* This allows the guest address space to be offset to a convenient location .
*/
// # define GUEST_BASE 0x20000000
# define GUEST_BASE 0
/* All direct uses of g2h and h2g need to go away for usermode softmmu. */
# define g2h ( x ) (( void * )(( unsigned long )( x ) + GUEST_BASE ))
633
634
635
636
637
638
# define h2g ( x ) ({ \
unsigned long __ret = ( unsigned long )( x ) - GUEST_BASE ; \
/* Check if given address fits target address space */ \
assert ( __ret == ( abi_ulong ) __ret ); \
( abi_ulong ) __ret ; \
})
639
640
641
642
# define h2g_valid ( x ) ({ \
unsigned long __guest = ( unsigned long )( x ) - GUEST_BASE ; \
( __guest == ( abi_ulong ) __guest ); \
})
643
644
645
646
647
# define saddr ( x ) g2h ( x )
# define laddr ( x ) g2h ( x )
# else /* !CONFIG_USER_ONLY */
648
649
/* NOTE : we use double casts if pointers and target_ulong have
different sizes */
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
# define saddr ( x ) ( uint8_t * )( long )( x )
# define laddr ( x ) ( uint8_t * )( long )( x )
# endif
# define ldub_raw ( p ) ldub_p ( laddr (( p )))
# define ldsb_raw ( p ) ldsb_p ( laddr (( p )))
# define lduw_raw ( p ) lduw_p ( laddr (( p )))
# define ldsw_raw ( p ) ldsw_p ( laddr (( p )))
# define ldl_raw ( p ) ldl_p ( laddr (( p )))
# define ldq_raw ( p ) ldq_p ( laddr (( p )))
# define ldfl_raw ( p ) ldfl_p ( laddr (( p )))
# define ldfq_raw ( p ) ldfq_p ( laddr (( p )))
# define stb_raw ( p , v ) stb_p ( saddr (( p )), v )
# define stw_raw ( p , v ) stw_p ( saddr (( p )), v )
# define stl_raw ( p , v ) stl_p ( saddr (( p )), v )
# define stq_raw ( p , v ) stq_p ( saddr (( p )), v )
# define stfl_raw ( p , v ) stfl_p ( saddr (( p )), v )
# define stfq_raw ( p , v ) stfq_p ( saddr (( p )), v )
668
669
ths
authored
18 years ago
670
# if defined ( CONFIG_USER_ONLY )
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
/* if user mode, no other memory access functions */
# define ldub ( p ) ldub_raw ( p )
# define ldsb ( p ) ldsb_raw ( p )
# define lduw ( p ) lduw_raw ( p )
# define ldsw ( p ) ldsw_raw ( p )
# define ldl ( p ) ldl_raw ( p )
# define ldq ( p ) ldq_raw ( p )
# define ldfl ( p ) ldfl_raw ( p )
# define ldfq ( p ) ldfq_raw ( p )
# define stb ( p , v ) stb_raw ( p , v )
# define stw ( p , v ) stw_raw ( p , v )
# define stl ( p , v ) stl_raw ( p , v )
# define stq ( p , v ) stq_raw ( p , v )
# define stfl ( p , v ) stfl_raw ( p , v )
# define stfq ( p , v ) stfq_raw ( p , v )
# define ldub_code ( p ) ldub_raw ( p )
# define ldsb_code ( p ) ldsb_raw ( p )
# define lduw_code ( p ) lduw_raw ( p )
# define ldsw_code ( p ) ldsw_raw ( p )
# define ldl_code ( p ) ldl_raw ( p )
693
# define ldq_code ( p ) ldq_raw ( p )
694
695
696
697
698
699
# define ldub_kernel ( p ) ldub_raw ( p )
# define ldsb_kernel ( p ) ldsb_raw ( p )
# define lduw_kernel ( p ) lduw_raw ( p )
# define ldsw_kernel ( p ) ldsw_raw ( p )
# define ldl_kernel ( p ) ldl_raw ( p )
700
# define ldq_kernel ( p ) ldq_raw ( p )
701
702
# define ldfl_kernel ( p ) ldfl_raw ( p )
# define ldfq_kernel ( p ) ldfq_raw ( p )
703
704
705
706
# define stb_kernel ( p , v ) stb_raw ( p , v )
# define stw_kernel ( p , v ) stw_raw ( p , v )
# define stl_kernel ( p , v ) stl_raw ( p , v )
# define stq_kernel ( p , v ) stq_raw ( p , v )
707
708
# define stfl_kernel ( p , v ) stfl_raw ( p , v )
# define stfq_kernel ( p , vt ) stfq_raw ( p , v )
709
710
711
# endif /* defined(CONFIG_USER_ONLY) */
712
713
/* page related stuff */
714
# define TARGET_PAGE_SIZE ( 1 << TARGET_PAGE_BITS )
715
716
717
# define TARGET_PAGE_MASK ~ ( TARGET_PAGE_SIZE - 1 )
# define TARGET_PAGE_ALIGN ( addr ) ((( addr ) + TARGET_PAGE_SIZE - 1 ) & TARGET_PAGE_MASK )
718
/* ??? These should be the larger of unsigned long and target_ulong. */
719
720
721
722
extern unsigned long qemu_real_host_page_size ;
extern unsigned long qemu_host_page_bits ;
extern unsigned long qemu_host_page_size ;
extern unsigned long qemu_host_page_mask ;
723
724
# define HOST_PAGE_ALIGN ( addr ) ((( addr ) + qemu_host_page_size - 1 ) & qemu_host_page_mask )
725
726
727
728
729
730
731
732
733
/* same as PROT_xxx */
# define PAGE_READ 0x0001
# define PAGE_WRITE 0x0002
# define PAGE_EXEC 0x0004
# define PAGE_BITS ( PAGE_READ | PAGE_WRITE | PAGE_EXEC )
# define PAGE_VALID 0x0008
/* original state of the write flag ( used when tracking self - modifying
code */
ths
authored
18 years ago
734
# define PAGE_WRITE_ORG 0x0010
735
# define PAGE_RESERVED 0x0020
736
737
void page_dump ( FILE * f );
738
739
int page_get_flags ( target_ulong address );
void page_set_flags ( target_ulong start , target_ulong end , int flags );
ths
authored
17 years ago
740
int page_check_range ( target_ulong start , target_ulong len , int flags );
741
742
void cpu_exec_init_all ( unsigned long tb_size );
ths
authored
18 years ago
743
744
CPUState * cpu_copy ( CPUState * env );
ths
authored
18 years ago
745
void cpu_dump_state ( CPUState * env , FILE * f ,
746
747
int ( * cpu_fprintf )( FILE * f , const char * fmt , ...),
int flags );
748
749
750
void cpu_dump_statistics ( CPUState * env , FILE * f ,
int ( * cpu_fprintf )( FILE * f , const char * fmt , ...),
int flags );
751
malc
authored
16 years ago
752
void QEMU_NORETURN cpu_abort ( CPUState * env , const char * fmt , ...)
753
__attribute__ (( __format__ ( __printf__ , 2 , 3 )));
754
extern CPUState * first_cpu ;
755
extern CPUState * cpu_single_env ;
756
757
extern int64_t qemu_icount ;
extern int use_icount ;
758
759
760
# define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
# define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
761
# define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */
762
# define CPU_INTERRUPT_FIQ 0x10 /* Fast interrupt pending. */
763
# define CPU_INTERRUPT_HALT 0x20 /* CPU halt wanted */
764
# define CPU_INTERRUPT_SMI 0x40 /* (x86 only) SMI interrupt pending */
765
# define CPU_INTERRUPT_DEBUG 0x80 /* Debug event occured. */
ths
authored
17 years ago
766
# define CPU_INTERRUPT_VIRQ 0x100 /* virtual interrupt pending. */
767
# define CPU_INTERRUPT_NMI 0x200 /* NMI pending. */
768
769
void cpu_interrupt ( CPUState * s , int mask );
770
void cpu_reset_interrupt ( CPUState * env , int mask );
771
772
773
void cpu_exit ( CPUState * s );
774
775
int qemu_cpu_has_work ( CPUState * env );
776
777
778
779
/* Breakpoint/watchpoint flags */
# define BP_MEM_READ 0x01
# define BP_MEM_WRITE 0x02
# define BP_MEM_ACCESS ( BP_MEM_READ | BP_MEM_WRITE )
780
# define BP_STOP_BEFORE_ACCESS 0x04
781
# define BP_WATCHPOINT_HIT 0x08
782
# define BP_GDB 0x10
783
# define BP_CPU 0x20
784
785
786
787
788
789
790
791
792
793
794
795
int cpu_breakpoint_insert ( CPUState * env , target_ulong pc , int flags ,
CPUBreakpoint ** breakpoint );
int cpu_breakpoint_remove ( CPUState * env , target_ulong pc , int flags );
void cpu_breakpoint_remove_by_ref ( CPUState * env , CPUBreakpoint * breakpoint );
void cpu_breakpoint_remove_all ( CPUState * env , int mask );
int cpu_watchpoint_insert ( CPUState * env , target_ulong addr , target_ulong len ,
int flags , CPUWatchpoint ** watchpoint );
int cpu_watchpoint_remove ( CPUState * env , target_ulong addr ,
target_ulong len , int flags );
void cpu_watchpoint_remove_by_ref ( CPUState * env , CPUWatchpoint * watchpoint );
void cpu_watchpoint_remove_all ( CPUState * env , int mask );
796
797
798
799
800
# define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
# define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
# define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
801
void cpu_single_step ( CPUState * env , int enabled );
802
void cpu_reset ( CPUState * s );
803
804
805
806
/* Return the physical page corresponding to a virtual one . Use it
only for debugging because no protection checks are done . Return - 1
if no page found . */
807
target_phys_addr_t cpu_get_phys_page_debug ( CPUState * env , target_ulong addr );
808
ths
authored
18 years ago
809
# define CPU_LOG_TB_OUT_ASM ( 1 << 0 )
810
# define CPU_LOG_TB_IN_ASM ( 1 << 1 )
811
812
813
814
815
# define CPU_LOG_TB_OP ( 1 << 2 )
# define CPU_LOG_TB_OP_OPT ( 1 << 3 )
# define CPU_LOG_INT ( 1 << 4 )
# define CPU_LOG_EXEC ( 1 << 5 )
# define CPU_LOG_PCALL ( 1 << 6 )
816
# define CPU_LOG_IOPORT ( 1 << 7 )
817
# define CPU_LOG_TB_CPU ( 1 << 8 )
818
# define CPU_LOG_RESET ( 1 << 9 )
819
820
821
822
823
824
825
826
/* define log items */
typedef struct CPULogItem {
int mask ;
const char * name ;
const char * help ;
} CPULogItem ;
827
extern const CPULogItem cpu_log_items [];
828
829
830
void cpu_set_log ( int log_flags );
void cpu_set_log_filename ( const char * filename );
831
int cpu_str_to_log_mask ( const char * str );
832
833
834
835
836
837
838
839
840
841
842
843
844
845
/* IO ports API */
/* NOTE : as these functions may be even used when there is an isa
brige on non x86 targets , we always defined them */
# ifndef NO_CPU_IO_DEFS
void cpu_outb ( CPUState * env , int addr , int val );
void cpu_outw ( CPUState * env , int addr , int val );
void cpu_outl ( CPUState * env , int addr , int val );
int cpu_inb ( CPUState * env , int addr );
int cpu_inw ( CPUState * env , int addr );
int cpu_inl ( CPUState * env , int addr );
# endif
846
847
/* memory API */
848
extern int phys_ram_fd ;
849
extern uint8_t * phys_ram_dirty ;
850
extern ram_addr_t ram_size ;
851
extern ram_addr_t last_ram_offset ;
852
853
/* physical memory access */
854
855
856
857
858
/* MMIO pages are identified by a combination of an IO device index and
3 flags . The ROMD code stores the page ram offset in iotlb entry ,
so only a limited number of ids are avaiable . */
859
# define IO_MEM_NB_ENTRIES ( 1 << ( TARGET_PAGE_BITS - IO_MEM_SHIFT ))
860
861
862
863
864
865
866
867
868
869
870
/* Flags stored in the low bits of the TLB virtual address . These are
defined so that fast path ram access is all zeros . */
/* Zero if TLB entry is valid. */
# define TLB_INVALID_MASK ( 1 << 3 )
/* Set if TLB entry references a clean RAM page . The iotlb entry will
contain the page physical address . */
# define TLB_NOTDIRTY ( 1 << 4 )
/* Set if TLB entry is an IO callback. */
# define TLB_MMIO ( 1 << 5 )
ths
authored
18 years ago
871
int cpu_memory_rw_debug ( CPUState * env , target_ulong addr ,
872
uint8_t * buf , int len , int is_write );
873
874
875
876
877
# define VGA_DIRTY_FLAG 0x01
# define CODE_DIRTY_FLAG 0x02
# define KQEMU_DIRTY_FLAG 0x04
# define MIGRATION_DIRTY_FLAG 0x08
878
879
/* read dirty bit (return 0 or 1) */
880
static inline int cpu_physical_memory_is_dirty ( ram_addr_t addr )
881
{
882
883
884
return phys_ram_dirty [ addr >> TARGET_PAGE_BITS ] == 0xff ;
}
ths
authored
18 years ago
885
static inline int cpu_physical_memory_get_dirty ( ram_addr_t addr ,
886
887
888
int dirty_flags )
{
return phys_ram_dirty [ addr >> TARGET_PAGE_BITS ] & dirty_flags ;
889
890
}
891
static inline void cpu_physical_memory_set_dirty ( ram_addr_t addr )
892
{
893
phys_ram_dirty [ addr >> TARGET_PAGE_BITS ] = 0xff ;
894
895
}
896
void cpu_physical_memory_reset_dirty ( ram_addr_t start , ram_addr_t end ,
897
int dirty_flags );
898
void cpu_tlb_update_dirty ( CPUState * env );
899
900
901
902
903
int cpu_physical_memory_set_dirty_tracking ( int enable );
int cpu_physical_memory_get_dirty_tracking ( void );
904
905
int cpu_physical_sync_dirty_bitmap ( target_phys_addr_t start_addr ,
target_phys_addr_t end_addr );
906
907
908
909
void dump_exec_info ( FILE * f ,
int ( * cpu_fprintf )( FILE * f , const char * fmt , ...));
910
911
912
913
914
915
916
917
918
/* Coalesced MMIO regions are areas where write operations can be reordered .
* This usually implies that write operations are side - effect free . This allows
* batching which can make a major impact on performance when using
* virtualization .
*/
void qemu_register_coalesced_mmio ( target_phys_addr_t addr , ram_addr_t size );
void qemu_unregister_coalesced_mmio ( target_phys_addr_t addr , ram_addr_t size );
919
920
921
/*******************************************/
/* host CPU ticks (if available) */
malc
authored
16 years ago
922
# if defined ( _ARCH_PPC )
923
924
925
static inline int64_t cpu_get_real_ticks ( void )
{
malc
authored
16 years ago
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
int64_t retval ;
# ifdef _ARCH_PPC64
/* This reads timebase in one 64 bit go and includes Cell workaround from :
http :// ozlabs . org / pipermail / linuxppc - dev / 2006 - October / 027052 . html
*/
__asm__ __volatile__ (
"mftb %0 \n\t "
"cmpwi %0,0 \n\t "
"beq- $-8"
: "=r" ( retval ));
# else
/* http://ozlabs.org/pipermail/linuxppc-dev/1999-October/003889.html */
unsigned long junk ;
__asm__ __volatile__ (
"mftbu %1 \n\t "
"mftb %L0 \n\t "
"mftbu %0 \n\t "
"cmpw %0,%1 \n\t "
"bne $-16"
: "=r" ( retval ), "=r" ( junk ));
# endif
return retval ;
948
949
950
951
952
}
# elif defined ( __i386__ )
static inline int64_t cpu_get_real_ticks ( void )
953
954
955
956
957
958
{
int64_t val ;
asm volatile ( "rdtsc" : "=A" ( val ));
return val ;
}
959
960
961
962
963
964
965
966
967
968
969
970
971
# elif defined ( __x86_64__ )
static inline int64_t cpu_get_real_ticks ( void )
{
uint32_t low , high ;
int64_t val ;
asm volatile ( "rdtsc" : "=a" ( low ), "=d" ( high ));
val = high ;
val <<= 32 ;
val |= low ;
return val ;
}
972
973
974
975
976
977
978
979
980
# elif defined ( __hppa__ )
static inline int64_t cpu_get_real_ticks ( void )
{
int val ;
asm volatile ( "mfctl %%cr16, %0" : "=r" ( val ));
return val ;
}
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
# elif defined ( __ia64 )
static inline int64_t cpu_get_real_ticks ( void )
{
int64_t val ;
asm volatile ( "mov %0 = ar.itc" : "=r" ( val ) :: "memory" );
return val ;
}
# elif defined ( __s390__ )
static inline int64_t cpu_get_real_ticks ( void )
{
int64_t val ;
asm volatile ( "stck 0(%1)" : "=m" ( val ) : "a" ( & val ) : "cc" );
return val ;
}
999
# elif defined ( __sparc_v8plus__ ) || defined ( __sparc_v8plusa__ ) || defined ( __sparc_v9__ )
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
static inline int64_t cpu_get_real_ticks ( void )
{
# if defined ( _LP64 )
uint64_t rval ;
asm volatile ( "rd %%tick,%0" : "=r" ( rval ));
return rval ;
# else
union {
uint64_t i64 ;
struct {
uint32_t high ;
uint32_t low ;
} i32 ;
} rval ;
asm volatile ( "rd %%tick,%1; srlx %1,32,%0"
: "=r" ( rval . i32 . high ), "=r" ( rval . i32 . low ));
return rval . i64 ;
# endif
}
ths
authored
18 years ago
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
# elif defined ( __mips__ )
static inline int64_t cpu_get_real_ticks ( void )
{
# if __mips_isa_rev >= 2
uint32_t count ;
static uint32_t cyc_per_count = 0 ;
if ( ! cyc_per_count )
__asm__ __volatile__ ( "rdhwr %0, $3" : "=r" ( cyc_per_count ));
__asm__ __volatile__ ( "rdhwr %1, $2" : "=r" ( count ));
return ( int64_t )( count * cyc_per_count );
# else
/* FIXME */
static int64_t ticks = 0 ;
return ticks ++ ;
# endif
}
1041
1042
# else
/* The host CPU doesn ' t have an easily accessible cycle counter .
ths
authored
18 years ago
1043
1044
Just return a monotonically increasing value . This will be
totally wrong , but hopefully better than nothing . */
1045
1046
1047
1048
1049
static inline int64_t cpu_get_real_ticks ( void )
{
static int64_t ticks = 0 ;
return ticks ++ ;
}
1050
1051
1052
1053
1054
1055
1056
1057
1058
# endif
/* profiling */
# ifdef CONFIG_PROFILER
static inline int64_t profile_getclock ( void )
{
return cpu_get_real_ticks ();
}
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
extern int64_t kqemu_time , kqemu_time_start ;
extern int64_t qemu_time , qemu_time_start ;
extern int64_t tlb_flush_time ;
extern int64_t kqemu_exec_count ;
extern int64_t dev_time ;
extern int64_t kqemu_ret_int_count ;
extern int64_t kqemu_ret_excp_count ;
extern int64_t kqemu_ret_intr_count ;
# endif
1069
# endif /* CPU_ALL_H */