Blame view

vl.c 154 KB
1
/*
2
 * QEMU System Emulator
3
 *
bellard authored
4
 * Copyright (c) 2003-2008 Fabrice Bellard
5
 *
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
23
24
25
26
27
28
 */
#include <unistd.h>
#include <fcntl.h>
#include <signal.h>
#include <time.h>
#include <errno.h>
29
#include <sys/time.h>
30
#include <zlib.h>
31
32
/* Needed early for HOST_BSD etc. */
33
34
#include "config-host.h"
35
#ifndef _WIN32
36
#include <pwd.h>
37
#include <sys/times.h>
bellard authored
38
#include <sys/wait.h>
39
40
#include <termios.h>
#include <sys/mman.h>
bellard authored
41
#include <sys/ioctl.h>
42
#include <sys/resource.h>
bellard authored
43
#include <sys/socket.h>
bellard authored
44
#include <netinet/in.h>
45
46
47
48
49
50
51
52
#include <net/if.h>
#if defined(__NetBSD__)
#include <net/if_tap.h>
#endif
#ifdef __linux__
#include <linux/if_tun.h>
#endif
#include <arpa/inet.h>
bellard authored
53
#include <dirent.h>
bellard authored
54
#include <netdb.h>
55
#include <sys/select.h>
56
#ifdef HOST_BSD
bellard authored
57
#include <sys/stat.h>
58
#if defined(__FreeBSD__) || defined(__DragonFly__)
bellard authored
59
#include <libutil.h>
60
61
#else
#include <util.h>
62
#endif
63
64
#elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
#include <freebsd/stdlib.h>
bellard authored
65
#else
66
#ifdef __linux__
bellard authored
67
68
#include <pty.h>
#include <malloc.h>
69
#include <linux/rtc.h>
ths authored
70
71
72
73
74
75

/* For the benefit of older linux systems which don't supply it,
   we use a local copy of hpet.h. */
/* #include <linux/hpet.h> */
#include "hpet.h"
76
#include <linux/ppdev.h>
77
#include <linux/parport.h>
78
79
#endif
#ifdef __sun__
80
81
82
83
84
85
86
87
88
89
90
91
92
#include <sys/stat.h>
#include <sys/ethernet.h>
#include <sys/sockio.h>
#include <netinet/arp.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/ip_icmp.h> // must come after ip.h
#include <netinet/udp.h>
#include <netinet/tcp.h>
#include <net/if.h>
#include <syslog.h>
#include <stropts.h>
93
#endif
bellard authored
94
#endif
bellard authored
95
#endif
96
97
98
99
100
#if defined(__OpenBSD__)
#include <util.h>
#endif
101
102
103
104
#if defined(CONFIG_VDE)
#include <libvdeplug.h>
#endif
105
#ifdef _WIN32
106
#include <windows.h>
bellard authored
107
#include <malloc.h>
108
#include <sys/timeb.h>
109
#include <mmsystem.h>
110
111
112
113
#define getopt_long_only getopt_long
#define memalign(align, size) malloc(size)
#endif
bellard authored
114
#ifdef CONFIG_SDL
bellard authored
115
#ifdef __APPLE__
116
#include <SDL/SDL.h>
malc authored
117
118
119
120
121
122
123
int qemu_main(int argc, char **argv, char **envp);
int main(int argc, char **argv)
{
    qemu_main(argc, argv, NULL);
}
#undef main
#define main qemu_main
bellard authored
124
#endif
bellard authored
125
#endif /* CONFIG_SDL */
126
127
128
129
130
131
#ifdef CONFIG_COCOA
#undef main
#define main qemu_main
#endif /* CONFIG_COCOA */
132
133
134
135
136
137
138
139
140
#include "hw/hw.h"
#include "hw/boards.h"
#include "hw/usb.h"
#include "hw/pcmcia.h"
#include "hw/pc.h"
#include "hw/audiodev.h"
#include "hw/isa.h"
#include "hw/baum.h"
#include "hw/bt.h"
141
#include "hw/smbios.h"
142
#include "hw/xen.h"
aurel32 authored
143
#include "bt-host.h"
144
145
146
147
148
149
150
151
152
#include "net.h"
#include "monitor.h"
#include "console.h"
#include "sysemu.h"
#include "gdbstub.h"
#include "qemu-timer.h"
#include "qemu-char.h"
#include "cache-utils.h"
#include "block.h"
blueswir1 authored
153
#include "dma.h"
154
155
156
157
158
#include "audio/audio.h"
#include "migration.h"
#include "kvm.h"
#include "balloon.h"
159
#include "disas.h"
bellard authored
160
161
#include "exec-all.h"
162
163
164
165
166
167
168
#include "qemu_socket.h"

#if defined(CONFIG_SLIRP)
#include "libslirp.h"
#endif
169
//#define DEBUG_UNUSED_IOPORT
170
//#define DEBUG_IOPORT
171
172
//#define DEBUG_NET
//#define DEBUG_SLIRP
173
174
175

#ifdef DEBUG_IOPORT
176
#  define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
177
178
179
180
#else
#  define LOG_IOPORT(...) do { } while (0)
#endif
181
#define DEFAULT_RAM_SIZE 128
182
pbrook authored
183
184
185
/* Max number of USB devices that can be specified on the commandline.  */
#define MAX_USB_CMDLINE 8
186
187
188
/* Max number of bluetooth switches on the commandline.  */
#define MAX_BT_CMDLINE 10
189
190
/* XXX: use a two level table to limit memory usage */
#define MAX_IOPORTS 65536
191
192
const char *bios_dir = CONFIG_QEMU_SHAREDIR;
193
const char *bios_name = NULL;
blueswir1 authored
194
195
196
static void *ioport_opaque[MAX_IOPORTS];
static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
197
/* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
bellard authored
198
   to store the VM snapshots */
199
200
DriveInfo drives_table[MAX_DRIVES+1];
int nb_drives;
blueswir1 authored
201
static int vga_ram_size;
202
enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
203
static DisplayState *display_state;
204
int nographic;
blueswir1 authored
205
static int curses;
206
static int sdl;
207
const char* keyboard_layout = NULL;
208
int64_t ticks_per_sec;
209
ram_addr_t ram_size;
210
int nb_nics;
bellard authored
211
NICInfo nd_table[MAX_NICS];
212
int vm_running;
213
static int autostart;
214
215
static int rtc_utc = 1;
static int rtc_date_offset = -1; /* -1 means no change */
216
int cirrus_vga_enabled = 1;
217
int std_vga_enabled = 0;
218
int vmsvga_enabled = 0;
219
int xenfb_enabled = 0;
220
221
222
#ifdef TARGET_SPARC
int graphic_width = 1024;
int graphic_height = 768;
blueswir1 authored
223
int graphic_depth = 8;
224
#else
225
226
int graphic_width = 800;
int graphic_height = 600;
227
int graphic_depth = 15;
blueswir1 authored
228
#endif
blueswir1 authored
229
static int full_screen = 0;
230
#ifdef CONFIG_SDL
blueswir1 authored
231
static int no_frame = 0;
232
#endif
233
int no_quit = 0;
234
CharDriverState *serial_hds[MAX_SERIAL_PORTS];
235
CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
236
CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
237
238
#ifdef TARGET_I386
int win2k_install_hack = 0;
239
int rtc_td_hack = 0;
240
#endif
bellard authored
241
int usb_enabled = 0;
242
int singlestep = 0;
bellard authored
243
int smp_cpus = 1;
244
const char *vnc_display;
bellard authored
245
int acpi_enabled = 1;
246
int no_hpet = 0;
247
int fd_bootchk = 1;
bellard authored
248
int no_reboot = 0;
aurel32 authored
249
int no_shutdown = 0;
250
int cursor_hide = 1;
251
int graphic_rotate = 0;
252
#ifndef _WIN32
253
int daemonize = 0;
254
#endif
255
256
const char *option_rom[MAX_OPTION_ROMS];
int nb_option_roms;
257
int semihosting_enabled = 0;
258
259
260
#ifdef TARGET_ARM
int old_param = 0;
#endif
261
const char *qemu_name;
262
int alt_grab = 0;
263
#if defined(TARGET_SPARC) || defined(TARGET_PPC)
264
265
266
unsigned int nb_prom_envs = 0;
const char *prom_envs[MAX_PROM_ENVS];
#endif
267
268
int nb_drives_opt;
struct drive_opt drives_opt[MAX_DRIVES];
269
270
271
272
273
int nb_numa_nodes;
uint64_t node_mem[MAX_NODES];
uint64_t node_cpumask[MAX_NODES];
274
275
static CPUState *cur_cpu;
static CPUState *next_cpu;
276
static int timer_alarm_pending = 1;
277
/* Conversion factor from emulated instructions to virtual clock ticks.  */
pbrook authored
278
static int icount_time_shift;
279
/* Arbitrarily pick 1MIPS as the minimum allowable speed.  */
pbrook authored
280
281
282
#define MAX_ICOUNT_SHIFT 10
/* Compensate for varying guest execution speed.  */
static int64_t qemu_icount_bias;
blueswir1 authored
283
284
static QEMUTimer *icount_rt_timer;
static QEMUTimer *icount_vm_timer;
blueswir1 authored
285
static QEMUTimer *nographic_timer;
286
287
288
uint8_t qemu_uuid[16];
289
/***********************************************************/
290
291
292
/* x86 ISA bus support */

target_phys_addr_t isa_mem_base = 0;
bellard authored
293
PicState2 *isa_pic;
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;

static uint32_t ioport_read(int index, uint32_t address)
{
    static IOPortReadFunc *default_func[3] = {
        default_ioport_readb,
        default_ioport_readw,
        default_ioport_readl
    };
    IOPortReadFunc *func = ioport_read_table[index][address];
    if (!func)
        func = default_func[index];
    return func(ioport_opaque[address], address);
}

static void ioport_write(int index, uint32_t address, uint32_t data)
{
    static IOPortWriteFunc *default_func[3] = {
        default_ioport_writeb,
        default_ioport_writew,
        default_ioport_writel
    };
    IOPortWriteFunc *func = ioport_write_table[index][address];
    if (!func)
        func = default_func[index];
    func(ioport_opaque[address], address, data);
}
324
static uint32_t default_ioport_readb(void *opaque, uint32_t address)
325
326
{
#ifdef DEBUG_UNUSED_IOPORT
ths authored
327
    fprintf(stderr, "unused inb: port=0x%04x\n", address);
328
#endif
bellard authored
329
    return 0xff;
330
331
}
332
static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
333
334
{
#ifdef DEBUG_UNUSED_IOPORT
ths authored
335
    fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
336
337
338
339
#endif
}

/* default is to make two byte accesses */
340
static uint32_t default_ioport_readw(void *opaque, uint32_t address)
341
342
{
    uint32_t data;
343
    data = ioport_read(0, address);
344
    address = (address + 1) & (MAX_IOPORTS - 1);
345
    data |= ioport_read(0, address) << 8;
346
347
348
    return data;
}
349
static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
350
{
351
    ioport_write(0, address, data & 0xff);
352
    address = (address + 1) & (MAX_IOPORTS - 1);
353
    ioport_write(0, address, (data >> 8) & 0xff);
354
355
}
356
static uint32_t default_ioport_readl(void *opaque, uint32_t address)
357
{
bellard authored
358
#ifdef DEBUG_UNUSED_IOPORT
ths authored
359
    fprintf(stderr, "unused inl: port=0x%04x\n", address);
bellard authored
360
361
#endif
    return 0xffffffff;
362
363
}
364
static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
365
{
bellard authored
366
#ifdef DEBUG_UNUSED_IOPORT
ths authored
367
    fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
bellard authored
368
#endif
369
370
}
bellard authored
371
/* size is the word size in byte */
372
int register_ioport_read(int start, int length, int size,
373
                         IOPortReadFunc *func, void *opaque)
bellard authored
374
{
bellard authored
375
    int i, bsize;
bellard authored
376
377
    if (size == 1) {
bellard authored
378
        bsize = 0;
379
    } else if (size == 2) {
bellard authored
380
        bsize = 1;
381
    } else if (size == 4) {
bellard authored
382
        bsize = 2;
383
    } else {
384
        hw_error("register_ioport_read: invalid size");
bellard authored
385
        return -1;
386
387
    }
    for(i = start; i < start + length; i += size) {
bellard authored
388
        ioport_read_table[bsize][i] = func;
389
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
390
            hw_error("register_ioport_read: invalid opaque");
391
392
        ioport_opaque[i] = opaque;
    }
bellard authored
393
394
395
    return 0;
}
bellard authored
396
/* size is the word size in byte */
397
int register_ioport_write(int start, int length, int size,
398
                          IOPortWriteFunc *func, void *opaque)
bellard authored
399
{
bellard authored
400
    int i, bsize;
bellard authored
401
402
    if (size == 1) {
bellard authored
403
        bsize = 0;
404
    } else if (size == 2) {
bellard authored
405
        bsize = 1;
406
    } else if (size == 4) {
bellard authored
407
        bsize = 2;
408
    } else {
409
        hw_error("register_ioport_write: invalid size");
bellard authored
410
        return -1;
411
412
    }
    for(i = start; i < start + length; i += size) {
bellard authored
413
        ioport_write_table[bsize][i] = func;
414
415
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
            hw_error("register_ioport_write: invalid opaque");
416
417
        ioport_opaque[i] = opaque;
    }
bellard authored
418
419
420
    return 0;
}
bellard authored
421
422
423
424
425
426
427
428
429
430
431
432
void isa_unassign_ioport(int start, int length)
{
    int i;

    for(i = start; i < start + length; i++) {
        ioport_read_table[0][i] = default_ioport_readb;
        ioport_read_table[1][i] = default_ioport_readw;
        ioport_read_table[2][i] = default_ioport_readl;

        ioport_write_table[0][i] = default_ioport_writeb;
        ioport_write_table[1][i] = default_ioport_writew;
        ioport_write_table[2][i] = default_ioport_writel;
433
434

        ioport_opaque[i] = NULL;
bellard authored
435
436
437
    }
}
bellard authored
438
439
/***********************************************************/
440
void cpu_outb(CPUState *env, int addr, int val)
441
{
442
    LOG_IOPORT("outb: %04x %02x\n", addr, val);
443
    ioport_write(0, addr, val);
444
#ifdef CONFIG_KQEMU
445
446
447
    if (env)
        env->last_io_time = cpu_get_time_fast();
#endif
448
449
}
450
void cpu_outw(CPUState *env, int addr, int val)
451
{
452
    LOG_IOPORT("outw: %04x %04x\n", addr, val);
453
    ioport_write(1, addr, val);
454
#ifdef CONFIG_KQEMU
455
456
457
    if (env)
        env->last_io_time = cpu_get_time_fast();
#endif
458
459
}
460
void cpu_outl(CPUState *env, int addr, int val)
461
{
462
    LOG_IOPORT("outl: %04x %08x\n", addr, val);
463
    ioport_write(2, addr, val);
464
#ifdef CONFIG_KQEMU
465
466
467
    if (env)
        env->last_io_time = cpu_get_time_fast();
#endif
468
469
}
470
int cpu_inb(CPUState *env, int addr)
471
{
472
    int val;
473
    val = ioport_read(0, addr);
474
    LOG_IOPORT("inb : %04x %02x\n", addr, val);
475
#ifdef CONFIG_KQEMU
476
477
478
    if (env)
        env->last_io_time = cpu_get_time_fast();
#endif
479
    return val;
480
481
}
482
int cpu_inw(CPUState *env, int addr)
483
{
484
    int val;
485
    val = ioport_read(1, addr);
486
    LOG_IOPORT("inw : %04x %04x\n", addr, val);
487
#ifdef CONFIG_KQEMU
488
489
490
    if (env)
        env->last_io_time = cpu_get_time_fast();
#endif
491
    return val;
492
493
}
494
int cpu_inl(CPUState *env, int addr)
495
{
496
    int val;
497
    val = ioport_read(2, addr);
498
    LOG_IOPORT("inl : %04x %08x\n", addr, val);
499
#ifdef CONFIG_KQEMU
500
501
502
    if (env)
        env->last_io_time = cpu_get_time_fast();
#endif
503
    return val;
504
505
506
507
508
509
}

/***********************************************************/
void hw_error(const char *fmt, ...)
{
    va_list ap;
bellard authored
510
    CPUState *env;
511
512
513
514
515

    va_start(ap, fmt);
    fprintf(stderr, "qemu: hardware error: ");
    vfprintf(stderr, fmt, ap);
    fprintf(stderr, "\n");
bellard authored
516
517
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
        fprintf(stderr, "CPU #%d:\n", env->cpu_index);
518
#ifdef TARGET_I386
bellard authored
519
        cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
520
#else
bellard authored
521
        cpu_dump_state(env, stderr, fprintf, 0);
522
#endif
bellard authored
523
    }
524
525
526
    va_end(ap);
    abort();
}
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551

/***************/
/* ballooning */

static QEMUBalloonEvent *qemu_balloon_event;
void *qemu_balloon_event_opaque;

void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
{
    qemu_balloon_event = func;
    qemu_balloon_event_opaque = opaque;
}

void qemu_balloon(ram_addr_t target)
{
    if (qemu_balloon_event)
        qemu_balloon_event(qemu_balloon_event_opaque, target);
}

ram_addr_t qemu_balloon_status(void)
{
    if (qemu_balloon_event)
        return qemu_balloon_event(qemu_balloon_event_opaque, 0);
    return 0;
}
552
553
/***********************************************************/
bellard authored
554
555
556
557
/* keyboard/mouse */

static QEMUPutKBDEvent *qemu_put_kbd_event;
static void *qemu_put_kbd_event_opaque;
558
559
static QEMUPutMouseEntry *qemu_put_mouse_event_head;
static QEMUPutMouseEntry *qemu_put_mouse_event_current;
bellard authored
560
561
562
563
564
565
566

void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
{
    qemu_put_kbd_event_opaque = opaque;
    qemu_put_kbd_event = func;
}
567
568
569
QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
                                                void *opaque, int absolute,
                                                const char *name)
bellard authored
570
{
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
    QEMUPutMouseEntry *s, *cursor;

    s = qemu_mallocz(sizeof(QEMUPutMouseEntry));

    s->qemu_put_mouse_event = func;
    s->qemu_put_mouse_event_opaque = opaque;
    s->qemu_put_mouse_event_absolute = absolute;
    s->qemu_put_mouse_event_name = qemu_strdup(name);
    s->next = NULL;

    if (!qemu_put_mouse_event_head) {
        qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
        return s;
    }

    cursor = qemu_put_mouse_event_head;
    while (cursor->next != NULL)
        cursor = cursor->next;

    cursor->next = s;
    qemu_put_mouse_event_current = s;

    return s;
}

void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
{
    QEMUPutMouseEntry *prev = NULL, *cursor;

    if (!qemu_put_mouse_event_head || entry == NULL)
        return;

    cursor = qemu_put_mouse_event_head;
    while (cursor != NULL && cursor != entry) {
        prev = cursor;
        cursor = cursor->next;
    }

    if (cursor == NULL) // does not exist or list empty
        return;
    else if (prev == NULL) { // entry is head
        qemu_put_mouse_event_head = cursor->next;
        if (qemu_put_mouse_event_current == entry)
            qemu_put_mouse_event_current = cursor->next;
        qemu_free(entry->qemu_put_mouse_event_name);
        qemu_free(entry);
        return;
    }

    prev->next = entry->next;

    if (qemu_put_mouse_event_current == entry)
        qemu_put_mouse_event_current = prev;

    qemu_free(entry->qemu_put_mouse_event_name);
    qemu_free(entry);
bellard authored
627
628
629
630
631
632
633
634
635
636
637
}

void kbd_put_keycode(int keycode)
{
    if (qemu_put_kbd_event) {
        qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
    }
}

void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
{
638
639
    QEMUPutMouseEvent *mouse_event;
    void *mouse_event_opaque;
640
    int width;
641
642
643
644
645
646
647
648
649
650
651

    if (!qemu_put_mouse_event_current) {
        return;
    }

    mouse_event =
        qemu_put_mouse_event_current->qemu_put_mouse_event;
    mouse_event_opaque =
        qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;

    if (mouse_event) {
652
653
654
655
        if (graphic_rotate) {
            if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
                width = 0x7fff;
            else
656
                width = graphic_width - 1;
657
658
659
660
661
            mouse_event(mouse_event_opaque,
                                 width - dy, dx, dz, buttons_state);
        } else
            mouse_event(mouse_event_opaque,
                                 dx, dy, dz, buttons_state);
bellard authored
662
663
664
    }
}
665
666
int kbd_mouse_is_absolute(void)
{
667
668
669
670
671
672
    if (!qemu_put_mouse_event_current)
        return 0;

    return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
}
673
void do_info_mice(Monitor *mon)
674
675
676
677
678
{
    QEMUPutMouseEntry *cursor;
    int index = 0;

    if (!qemu_put_mouse_event_head) {
679
        monitor_printf(mon, "No mouse devices connected\n");
680
681
682
        return;
    }
683
    monitor_printf(mon, "Mouse devices available:\n");
684
685
    cursor = qemu_put_mouse_event_head;
    while (cursor != NULL) {
686
687
688
        monitor_printf(mon, "%c Mouse #%d: %s\n",
                       (cursor == qemu_put_mouse_event_current ? '*' : ' '),
                       index, cursor->qemu_put_mouse_event_name);
689
690
691
692
693
        index++;
        cursor = cursor->next;
    }
}
694
void do_mouse_set(Monitor *mon, int index)
695
696
697
698
699
{
    QEMUPutMouseEntry *cursor;
    int i = 0;

    if (!qemu_put_mouse_event_head) {
700
        monitor_printf(mon, "No mouse devices connected\n");
701
702
703
704
705
706
707
708
709
710
711
712
        return;
    }

    cursor = qemu_put_mouse_event_head;
    while (cursor != NULL && index != i) {
        i++;
        cursor = cursor->next;
    }

    if (cursor != NULL)
        qemu_put_mouse_event_current = cursor;
    else
713
        monitor_printf(mon, "Mouse at given index not found\n");
714
715
}
716
717
/* compute with 96 bit intermediate result: (a*b)/c */
uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
718
{
719
720
721
722
723
724
725
    union {
        uint64_t ll;
        struct {
#ifdef WORDS_BIGENDIAN
            uint32_t high, low;
#else
            uint32_t low, high;
726
#endif
727
728
729
        } l;
    } u, res;
    uint64_t rl, rh;
730
731
732
733
734
735
736
737
    u.ll = a;
    rl = (uint64_t)u.l.low * (uint64_t)b;
    rh = (uint64_t)u.l.high * (uint64_t)b;
    rh += (rl >> 32);
    res.l.high = rh / c;
    res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
    return res.ll;
738
739
}
740
741
/***********************************************************/
/* real time host monotonic timer */
742
743
#define QEMU_TIMER_BASE 1000000000LL
744
745
#ifdef WIN32
746
747
static int64_t clock_freq;
bellard authored
748
749
static void init_get_clock(void)
bellard authored
750
{
751
752
    LARGE_INTEGER freq;
    int ret;
753
754
755
756
757
758
    ret = QueryPerformanceFrequency(&freq);
    if (ret == 0) {
        fprintf(stderr, "Could not calibrate ticks\n");
        exit(1);
    }
    clock_freq = freq.QuadPart;
bellard authored
759
760
}
761
static int64_t get_clock(void)
762
{
763
764
765
    LARGE_INTEGER ti;
    QueryPerformanceCounter(&ti);
    return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
766
767
}
768
#else
bellard authored
769
770
771
772
static int use_rt_clock;

static void init_get_clock(void)
bellard authored
773
{
774
    use_rt_clock = 0;
775
776
#if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
    || defined(__DragonFly__)
777
778
779
780
781
782
783
    {
        struct timespec ts;
        if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
            use_rt_clock = 1;
        }
    }
#endif
bellard authored
784
785
}
786
static int64_t get_clock(void)
787
{
788
789
#if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
	|| defined(__DragonFly__)
790
791
792
793
    if (use_rt_clock) {
        struct timespec ts;
        clock_gettime(CLOCK_MONOTONIC, &ts);
        return ts.tv_sec * 1000000000LL + ts.tv_nsec;
794
    } else
795
#endif
796
797
798
799
800
801
802
    {
        /* XXX: using gettimeofday leads to problems if the date
           changes, so it should be avoided. */
        struct timeval tv;
        gettimeofday(&tv, NULL);
        return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
    }
803
}
804
805
#endif
pbrook authored
806
807
808
809
810
811
812
813
814
815
816
817
818
819
/* Return the virtual CPU time, based on the instruction counter.  */
static int64_t cpu_get_icount(void)
{
    int64_t icount;
    CPUState *env = cpu_single_env;;
    icount = qemu_icount;
    if (env) {
        if (!can_do_io(env))
            fprintf(stderr, "Bad clock read\n");
        icount -= (env->icount_decr.u16.low + env->icount_extra);
    }
    return qemu_icount_bias + (icount << icount_time_shift);
}
820
821
822
/***********************************************************/
/* guest cycle counter */
823
static int64_t cpu_ticks_prev;
824
static int64_t cpu_ticks_offset;
825
static int64_t cpu_clock_offset;
826
static int cpu_ticks_enabled;
827
828
829
/* return the host CPU cycle counter and handle stop/restart */
int64_t cpu_get_ticks(void)
830
{
pbrook authored
831
832
833
    if (use_icount) {
        return cpu_get_icount();
    }
834
835
836
    if (!cpu_ticks_enabled) {
        return cpu_ticks_offset;
    } else {
837
838
839
840
841
842
843
844
845
        int64_t ticks;
        ticks = cpu_get_real_ticks();
        if (cpu_ticks_prev > ticks) {
            /* Note: non increasing ticks may happen if the host uses
               software suspend */
            cpu_ticks_offset += cpu_ticks_prev - ticks;
        }
        cpu_ticks_prev = ticks;
        return ticks + cpu_ticks_offset;
846
    }
847
848
}
849
850
851
852
853
854
855
856
857
858
859
860
/* return the host CPU monotonic timer and handle stop/restart */
static int64_t cpu_get_clock(void)
{
    int64_t ti;
    if (!cpu_ticks_enabled) {
        return cpu_clock_offset;
    } else {
        ti = get_clock();
        return ti + cpu_clock_offset;
    }
}
861
862
863
/* enable cpu_get_ticks() */
void cpu_enable_ticks(void)
{
864
865
    if (!cpu_ticks_enabled) {
        cpu_ticks_offset -= cpu_get_real_ticks();
866
        cpu_clock_offset -= get_clock();
867
868
        cpu_ticks_enabled = 1;
    }
869
870
871
872
873
874
}

/* disable cpu_get_ticks() : the clock is stopped. You must not call
   cpu_get_ticks() after that.  */
void cpu_disable_ticks(void)
{
875
876
    if (cpu_ticks_enabled) {
        cpu_ticks_offset = cpu_get_ticks();
877
        cpu_clock_offset = cpu_get_clock();
878
879
        cpu_ticks_enabled = 0;
    }
880
881
}
882
883
/***********************************************************/
/* timers */
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
#define QEMU_TIMER_REALTIME 0
#define QEMU_TIMER_VIRTUAL  1

struct QEMUClock {
    int type;
    /* XXX: add frequency */
};

struct QEMUTimer {
    QEMUClock *clock;
    int64_t expire_time;
    QEMUTimerCB *cb;
    void *opaque;
    struct QEMUTimer *next;
};
901
902
struct qemu_alarm_timer {
    char const *name;
903
    unsigned int flags;
904
905
906

    int (*start)(struct qemu_alarm_timer *t);
    void (*stop)(struct qemu_alarm_timer *t);
907
    void (*rearm)(struct qemu_alarm_timer *t);
908
909
910
    void *priv;
};
911
#define ALARM_FLAG_DYNTICKS  0x1
912
#define ALARM_FLAG_EXPIRED   0x2
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929

static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
{
    return t->flags & ALARM_FLAG_DYNTICKS;
}

static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
{
    if (!alarm_has_dynticks(t))
        return;

    t->rearm(t);
}

/* TODO: MIN_TIMER_REARM_US should be optimized */
#define MIN_TIMER_REARM_US 250
930
static struct qemu_alarm_timer *alarm_timer;
931
bellard authored
932
#ifdef _WIN32
933
934
935
936

struct qemu_alarm_win32 {
    MMRESULT timerId;
    unsigned int period;
Blue Swirl authored
937
} alarm_win32_data = {0, -1};
938
939
940

static int win32_start_timer(struct qemu_alarm_timer *t);
static void win32_stop_timer(struct qemu_alarm_timer *t);
941
static void win32_rearm_timer(struct qemu_alarm_timer *t);
942
bellard authored
943
#else
944
945
946
947

static int unix_start_timer(struct qemu_alarm_timer *t);
static void unix_stop_timer(struct qemu_alarm_timer *t);
948
949
#ifdef __linux__
950
951
952
953
static int dynticks_start_timer(struct qemu_alarm_timer *t);
static void dynticks_stop_timer(struct qemu_alarm_timer *t);
static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
954
955
956
static int hpet_start_timer(struct qemu_alarm_timer *t);
static void hpet_stop_timer(struct qemu_alarm_timer *t);
957
958
959
static int rtc_start_timer(struct qemu_alarm_timer *t);
static void rtc_stop_timer(struct qemu_alarm_timer *t);
960
#endif /* __linux__ */
961
962
963
#endif /* _WIN32 */
pbrook authored
964
/* Correlation between real and virtual time is always going to be
965
   fairly approximate, so ignore small variation.
pbrook authored
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
   When the guest is idle real and virtual time will be aligned in
   the IO wait loop.  */
#define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)

static void icount_adjust(void)
{
    int64_t cur_time;
    int64_t cur_icount;
    int64_t delta;
    static int64_t last_delta;
    /* If the VM is not running, then do nothing.  */
    if (!vm_running)
        return;

    cur_time = cpu_get_clock();
    cur_icount = qemu_get_clock(vm_clock);
    delta = cur_icount - cur_time;
    /* FIXME: This is a very crude algorithm, somewhat prone to oscillation.  */
    if (delta > 0
        && last_delta + ICOUNT_WOBBLE < delta * 2
        && icount_time_shift > 0) {
        /* The guest is getting too far ahead.  Slow time down.  */
        icount_time_shift--;
    }
    if (delta < 0
        && last_delta - ICOUNT_WOBBLE > delta * 2
        && icount_time_shift < MAX_ICOUNT_SHIFT) {
        /* The guest is getting too far behind.  Speed time up.  */
        icount_time_shift++;
    }
    last_delta = delta;
    qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
}

static void icount_adjust_rt(void * opaque)
{
    qemu_mod_timer(icount_rt_timer,
                   qemu_get_clock(rt_clock) + 1000);
    icount_adjust();
}

static void icount_adjust_vm(void * opaque)
{
    qemu_mod_timer(icount_vm_timer,
                   qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
    icount_adjust();
}

static void init_icount_adjust(void)
{
    /* Have both realtime and virtual time triggers for speed adjustment.
       The realtime trigger catches emulated time passing too slowly,
       the virtual time trigger catches emulated time passing too fast.
       Realtime triggers occur even when idle, so use them less frequently
       than VM triggers.  */
    icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
    qemu_mod_timer(icount_rt_timer,
                   qemu_get_clock(rt_clock) + 1000);
    icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
    qemu_mod_timer(icount_vm_timer,
                   qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
}
1029
static struct qemu_alarm_timer alarm_timers[] = {
1030
#ifndef _WIN32
1031
#ifdef __linux__
1032
1033
    {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
     dynticks_stop_timer, dynticks_rearm_timer, NULL},
1034
    /* HPET - if available - is preferred */
1035
    {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1036
    /* ...otherwise try RTC */
1037
    {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1038
#endif
1039
    {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1040
#else
1041
1042
1043
1044
    {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
     win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
    {"win32", 0, win32_start_timer,
     win32_stop_timer, NULL, &alarm_win32_data},
1045
1046
1047
1048
#endif
    {NULL, }
};
1049
static void show_available_alarms(void)
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
{
    int i;

    printf("Available alarm timers, in order of precedence:\n");
    for (i = 0; alarm_timers[i].name; i++)
        printf("%s\n", alarm_timers[i].name);
}

static void configure_alarms(char const *opt)
{
    int i;
    int cur = 0;
1062
    int count = ARRAY_SIZE(alarm_timers) - 1;
1063
1064
    char *arg;
    char *name;
pbrook authored
1065
    struct qemu_alarm_timer tmp;
1066
1067
    if (!strcmp(opt, "?")) {
1068
1069
1070
1071
1072
1073
1074
1075
1076
        show_available_alarms();
        exit(0);
    }

    arg = strdup(opt);

    /* Reorder the array */
    name = strtok(arg, ",");
    while (name) {
1077
        for (i = 0; i < count && alarm_timers[i].name; i++) {
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
            if (!strcmp(alarm_timers[i].name, name))
                break;
        }

        if (i == count) {
            fprintf(stderr, "Unknown clock %s\n", name);
            goto next;
        }

        if (i < cur)
            /* Ignore */
            goto next;

	/* Swap */
        tmp = alarm_timers[i];
        alarm_timers[i] = alarm_timers[cur];
        alarm_timers[cur] = tmp;

        cur++;
next:
        name = strtok(NULL, ",");
    }

    free(arg);

    if (cur) {
pbrook authored
1104
        /* Disable remaining timers */
1105
1106
        for (i = cur; i < count; i++)
            alarm_timers[i].name = NULL;
1107
1108
1109
    } else {
        show_available_alarms();
        exit(1);
1110
1111
1112
    }
}
1113
1114
1115
1116
1117
QEMUClock *rt_clock;
QEMUClock *vm_clock;

static QEMUTimer *active_timers[2];
1118
static QEMUClock *qemu_new_clock(int type)
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
{
    QEMUClock *clock;
    clock = qemu_mallocz(sizeof(QEMUClock));
    clock->type = type;
    return clock;
}

QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
{
    QEMUTimer *ts;

    ts = qemu_mallocz(sizeof(QEMUTimer));
    ts->clock = clock;
    ts->cb = cb;
    ts->opaque = opaque;
    return ts;
}

void qemu_free_timer(QEMUTimer *ts)
{
    qemu_free(ts);
}

/* stop a timer, but do not dealloc it */
void qemu_del_timer(QEMUTimer *ts)
{
    QEMUTimer **pt, *t;

    /* NOTE: this code must be signal safe because
       qemu_timer_expired() can be called from a signal. */
    pt = &active_timers[ts->clock->type];
    for(;;) {
        t = *pt;
        if (!t)
            break;
        if (t == ts) {
            *pt = t->next;
            break;
        }
        pt = &t->next;
    }
}

/* modify the current timer so that it will be fired when current_time
   >= expire_time. The corresponding callback will be called. */
void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
{
    QEMUTimer **pt, *t;

    qemu_del_timer(ts);

    /* add the timer in the sorted list */
    /* NOTE: this code must be signal safe because
       qemu_timer_expired() can be called from a signal. */
    pt = &active_timers[ts->clock->type];
    for(;;) {
        t = *pt;
        if (!t)
            break;
1178
        if (t->expire_time > expire_time)
1179
1180
1181
1182
1183
1184
            break;
        pt = &t->next;
    }
    ts->expire_time = expire_time;
    ts->next = *pt;
    *pt = ts;
1185
1186

    /* Rearm if necessary  */
pbrook authored
1187
1188
1189
1190
1191
    if (pt == &active_timers[ts->clock->type]) {
        if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
            qemu_rearm_alarm_timer(alarm_timer);
        }
        /* Interrupt execution to force deadline recalculation.  */
1192
1193
        if (use_icount)
            qemu_notify_event();
pbrook authored
1194
    }
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
}

int qemu_timer_pending(QEMUTimer *ts)
{
    QEMUTimer *t;
    for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
        if (t == ts)
            return 1;
    }
    return 0;
}

static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
{
    if (!timer_head)
        return 0;
    return (timer_head->expire_time <= current_time);
}

static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
{
    QEMUTimer *ts;
1217
1218
1219
    for(;;) {
        ts = *ptimer_head;
1220
        if (!ts || ts->expire_time > current_time)
1221
1222
1223
1224
            break;
        /* remove timer from the list before calling the callback */
        *ptimer_head = ts->next;
        ts->next = NULL;
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
        /* run the callback (the timer list can be modified) */
        ts->cb(ts->opaque);
    }
}

int64_t qemu_get_clock(QEMUClock *clock)
{
    switch(clock->type) {
    case QEMU_TIMER_REALTIME:
1235
        return get_clock() / 1000000;
1236
1237
    default:
    case QEMU_TIMER_VIRTUAL:
pbrook authored
1238
1239
1240
1241
1242
        if (use_icount) {
            return cpu_get_icount();
        } else {
            return cpu_get_clock();
        }
1243
1244
1245
    }
}
1246
1247
1248
1249
1250
1251
1252
1253
static void init_timers(void)
{
    init_get_clock();
    ticks_per_sec = QEMU_TIMER_BASE;
    rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
    vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
}
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
/* save a timer */
void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
{
    uint64_t expire_time;

    if (qemu_timer_pending(ts)) {
        expire_time = ts->expire_time;
    } else {
        expire_time = -1;
    }
    qemu_put_be64(f, expire_time);
}

void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
{
    uint64_t expire_time;

    expire_time = qemu_get_be64(f);
    if (expire_time != -1) {
        qemu_mod_timer(ts, expire_time);
    } else {
        qemu_del_timer(ts);
    }
}

static void timer_save(QEMUFile *f, void *opaque)
{
    if (cpu_ticks_enabled) {
        hw_error("cannot save state if virtual timers are running");
    }
1284
1285
1286
    qemu_put_be64(f, cpu_ticks_offset);
    qemu_put_be64(f, ticks_per_sec);
    qemu_put_be64(f, cpu_clock_offset);
1287
1288
1289
1290
}

static int timer_load(QEMUFile *f, void *opaque, int version_id)
{
1291
    if (version_id != 1 && version_id != 2)
1292
1293
1294
1295
        return -EINVAL;
    if (cpu_ticks_enabled) {
        return -EINVAL;
    }
1296
1297
    cpu_ticks_offset=qemu_get_be64(f);
    ticks_per_sec=qemu_get_be64(f);
1298
    if (version_id == 2) {
1299
        cpu_clock_offset=qemu_get_be64(f);
1300
    }
1301
1302
1303
    return 0;
}
1304
1305
static void qemu_event_increment(void);
1306
#ifdef _WIN32
1307
1308
1309
static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
                                        DWORD_PTR dwUser, DWORD_PTR dw1,
                                        DWORD_PTR dw2)
1310
#else
1311
static void host_alarm_handler(int host_signum)
1312
#endif
1313
{
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
#if 0
#define DISP_FREQ 1000
    {
        static int64_t delta_min = INT64_MAX;
        static int64_t delta_max, delta_cum, last_clock, delta, ti;
        static int count;
        ti = qemu_get_clock(vm_clock);
        if (last_clock != 0) {
            delta = ti - last_clock;
            if (delta < delta_min)
                delta_min = delta;
            if (delta > delta_max)
                delta_max = delta;
            delta_cum += delta;
            if (++count == DISP_FREQ) {
bellard authored
1329
                printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
                       muldiv64(delta_min, 1000000, ticks_per_sec),
                       muldiv64(delta_max, 1000000, ticks_per_sec),
                       muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
                       (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
                count = 0;
                delta_min = INT64_MAX;
                delta_max = 0;
                delta_cum = 0;
            }
        }
        last_clock = ti;
    }
#endif
1343
    if (alarm_has_dynticks(alarm_timer) ||
pbrook authored
1344
1345
1346
        (!use_icount &&
            qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
                               qemu_get_clock(vm_clock))) ||
1347
1348
        qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
                           qemu_get_clock(rt_clock))) {
1349
        qemu_event_increment();
1350
1351
        alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1352
1353
#ifndef CONFIG_IOTHREAD
        if (next_cpu) {
1354
            /* stop the currently executing cpu because a timer occured */
1355
            cpu_exit(next_cpu);
1356
#ifdef CONFIG_KQEMU
1357
1358
            if (next_cpu->kqemu_enabled) {
                kqemu_cpu_interrupt(next_cpu);
1359
            }
1360
#endif
1361
        }
1362
#endif
1363
        timer_alarm_pending = 1;
1364
        qemu_notify_event();
1365
1366
1367
    }
}
pbrook authored
1368
static int64_t qemu_next_deadline(void)
1369
{
pbrook authored
1370
    int64_t delta;
1371
1372

    if (active_timers[QEMU_TIMER_VIRTUAL]) {
pbrook authored
1373
1374
1375
1376
1377
        delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
                     qemu_get_clock(vm_clock);
    } else {
        /* To avoid problems with overflow limit this to 2^32.  */
        delta = INT32_MAX;
1378
1379
    }
pbrook authored
1380
1381
    if (delta < 0)
        delta = 0;
1382
pbrook authored
1383
1384
1385
    return delta;
}
1386
#if defined(__linux__) || defined(_WIN32)
pbrook authored
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
static uint64_t qemu_next_deadline_dyntick(void)
{
    int64_t delta;
    int64_t rtdelta;

    if (use_icount)
        delta = INT32_MAX;
    else
        delta = (qemu_next_deadline() + 999) / 1000;

    if (active_timers[QEMU_TIMER_REALTIME]) {
        rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
                 qemu_get_clock(rt_clock))*1000;
        if (rtdelta < delta)
            delta = rtdelta;
    }

    if (delta < MIN_TIMER_REARM_US)
        delta = MIN_TIMER_REARM_US;

    return delta;
1408
}
1409
#endif
1410
1411
1412
#ifndef _WIN32
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
/* Sets a specific flag */
static int fcntl_setfl(int fd, int flag)
{
    int flags;

    flags = fcntl(fd, F_GETFL);
    if (flags == -1)
        return -errno;

    if (fcntl(fd, F_SETFL, flags | flag) == -1)
        return -errno;

    return 0;
}
bellard authored
1428
1429
#if defined(__linux__)
1430
1431
#define RTC_FREQ 1024
1432
static void enable_sigio_timer(int fd)
1433
1434
1435
1436
1437
1438
1439
1440
1441
{
    struct sigaction act;

    /* timer signal */
    sigfillset(&act.sa_mask);
    act.sa_flags = 0;
    act.sa_handler = host_alarm_handler;

    sigaction(SIGIO, &act, NULL);
1442
    fcntl_setfl(fd, O_ASYNC);
1443
1444
    fcntl(fd, F_SETOWN, getpid());
}
bellard authored
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
static int hpet_start_timer(struct qemu_alarm_timer *t)
{
    struct hpet_info info;
    int r, fd;

    fd = open("/dev/hpet", O_RDONLY);
    if (fd < 0)
        return -1;

    /* Set frequency */
    r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
    if (r < 0) {
        fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
                "error, but for better emulation accuracy type:\n"
                "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
        goto fail;
    }

    /* Check capabilities */
    r = ioctl(fd, HPET_INFO, &info);
    if (r < 0)
        goto fail;

    /* Enable periodic mode */
    r = ioctl(fd, HPET_EPI, 0);
    if (info.hi_flags && (r < 0))
        goto fail;

    /* Enable interrupt */
    r = ioctl(fd, HPET_IE_ON, 0);
    if (r < 0)
        goto fail;

    enable_sigio_timer(fd);
1480
    t->priv = (void *)(long)fd;
1481
1482
1483
1484
1485
1486
1487
1488
1489

    return 0;
fail:
    close(fd);
    return -1;
}

static void hpet_stop_timer(struct qemu_alarm_timer *t)
{
1490
    int fd = (long)t->priv;
1491
1492
1493
1494

    close(fd);
}
1495
static int rtc_start_timer(struct qemu_alarm_timer *t)
1496
{
1497
    int rtc_fd;
1498
    unsigned long current_rtc_freq = 0;
1499
1500
    TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1501
1502
    if (rtc_fd < 0)
        return -1;
1503
1504
1505
    ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
    if (current_rtc_freq != RTC_FREQ &&
        ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
        fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
                "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
                "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
        goto fail;
    }
    if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
    fail:
        close(rtc_fd);
        return -1;
    }
1516
1517
1518

    enable_sigio_timer(rtc_fd);
1519
    t->priv = (void *)(long)rtc_fd;
1520
1521
1522
1523
    return 0;
}
1524
static void rtc_stop_timer(struct qemu_alarm_timer *t)
bellard authored
1525
{
1526
    int rtc_fd = (long)t->priv;
1527
1528

    close(rtc_fd);
bellard authored
1529
1530
}
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
static int dynticks_start_timer(struct qemu_alarm_timer *t)
{
    struct sigevent ev;
    timer_t host_timer;
    struct sigaction act;

    sigfillset(&act.sa_mask);
    act.sa_flags = 0;
    act.sa_handler = host_alarm_handler;

    sigaction(SIGALRM, &act, NULL);

    ev.sigev_value.sival_int = 0;
    ev.sigev_notify = SIGEV_SIGNAL;
    ev.sigev_signo = SIGALRM;

    if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
        perror("timer_create");

        /* disable dynticks */
        fprintf(stderr, "Dynamic Ticks disabled\n");

        return -1;
    }
1556
    t->priv = (void *)(long)host_timer;
1557
1558
1559
1560
1561
1562

    return 0;
}

static void dynticks_stop_timer(struct qemu_alarm_timer *t)
{
1563
    timer_t host_timer = (timer_t)(long)t->priv;
1564
1565
1566
1567
1568
1569

    timer_delete(host_timer);
}

static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
{
1570
    timer_t host_timer = (timer_t)(long)t->priv;
1571
1572
1573
1574
1575
1576
    struct itimerspec timeout;
    int64_t nearest_delta_us = INT64_MAX;
    int64_t current_us;

    if (!active_timers[QEMU_TIMER_REALTIME] &&
                !active_timers[QEMU_TIMER_VIRTUAL])
1577
        return;
1578
pbrook authored
1579
    nearest_delta_us = qemu_next_deadline_dyntick();
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601

    /* check whether a timer is already running */
    if (timer_gettime(host_timer, &timeout)) {
        perror("gettime");
        fprintf(stderr, "Internal timer error: aborting\n");
        exit(1);
    }
    current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
    if (current_us && current_us <= nearest_delta_us)
        return;

    timeout.it_interval.tv_sec = 0;
    timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
    timeout.it_value.tv_sec =  nearest_delta_us / 1000000;
    timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
    if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
        perror("settime");
        fprintf(stderr, "Internal timer error: aborting\n");
        exit(1);
    }
}
1602
#endif /* defined(__linux__) */
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
static int unix_start_timer(struct qemu_alarm_timer *t)
{
    struct sigaction act;
    struct itimerval itv;
    int err;

    /* timer signal */
    sigfillset(&act.sa_mask);
    act.sa_flags = 0;
    act.sa_handler = host_alarm_handler;

    sigaction(SIGALRM, &act, NULL);

    itv.it_interval.tv_sec = 0;
    /* for i386 kernel 2.6 to get 1 ms */
    itv.it_interval.tv_usec = 999;
    itv.it_value.tv_sec = 0;
    itv.it_value.tv_usec = 10 * 1000;

    err = setitimer(ITIMER_REAL, &itv, NULL);
    if (err)
        return -1;

    return 0;
}

static void unix_stop_timer(struct qemu_alarm_timer *t)
{
    struct itimerval itv;

    memset(&itv, 0, sizeof(itv));
    setitimer(ITIMER_REAL, &itv, NULL);
}
bellard authored
1638
#endif /* !defined(_WIN32) */
1639
1640
1641
1642
1643
1644
1645
1646
#ifdef _WIN32

static int win32_start_timer(struct qemu_alarm_timer *t)
{
    TIMECAPS tc;
    struct qemu_alarm_win32 *data = t->priv;
1647
    UINT flags;
1648
1649
1650
1651
1652
1653
1654
1655
1656

    memset(&tc, 0, sizeof(tc));
    timeGetDevCaps(&tc, sizeof(tc));

    if (data->period < tc.wPeriodMin)
        data->period = tc.wPeriodMin;

    timeBeginPeriod(data->period);
1657
1658
1659
1660
1661
1662
    flags = TIME_CALLBACK_FUNCTION;
    if (alarm_has_dynticks(t))
        flags |= TIME_ONESHOT;
    else
        flags |= TIME_PERIODIC;
1663
1664
1665
1666
    data->timerId = timeSetEvent(1,         // interval (ms)
                        data->period,       // resolution
                        host_alarm_handler, // function
                        (DWORD)t,           // parameter
1667
                        flags);
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685

    if (!data->timerId) {
        perror("Failed to initialize win32 alarm timer");
        timeEndPeriod(data->period);
        return -1;
    }

    return 0;
}

static void win32_stop_timer(struct qemu_alarm_timer *t)
{
    struct qemu_alarm_win32 *data = t->priv;

    timeKillEvent(data->timerId);
    timeEndPeriod(data->period);
}
1686
1687
1688
1689
1690
1691
1692
static void win32_rearm_timer(struct qemu_alarm_timer *t)
{
    struct qemu_alarm_win32 *data = t->priv;
    uint64_t nearest_delta_us;

    if (!active_timers[QEMU_TIMER_REALTIME] &&
                !active_timers[QEMU_TIMER_VIRTUAL])
1693
        return;
1694
pbrook authored
1695
    nearest_delta_us = qemu_next_deadline_dyntick();
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
    nearest_delta_us /= 1000;

    timeKillEvent(data->timerId);

    data->timerId = timeSetEvent(1,
                        data->period,
                        host_alarm_handler,
                        (DWORD)t,
                        TIME_ONESHOT | TIME_PERIODIC);

    if (!data->timerId) {
        perror("Failed to re-arm win32 alarm timer");

        timeEndPeriod(data->period);
        exit(1);
    }
}
1714
1715
#endif /* _WIN32 */
1716
static int init_timer_alarm(void)
1717
{
1718
    struct qemu_alarm_timer *t = NULL;
1719
    int i, err = -1;
1720
1721
1722
1723
1724
1725
1726
    for (i = 0; alarm_timers[i].name; i++) {
        t = &alarm_timers[i];

        err = t->start(t);
        if (!err)
            break;
1727
    }
1728
1729
    if (err) {
1730
1731
        err = -ENOENT;
        goto fail;
1732
    }
1733
1734

    alarm_timer = t;
1735
1736
    return 0;
1737
1738
1739

fail:
    return err;
1740
1741
}
1742
static void quit_timers(void)
bellard authored
1743
{
1744
1745
    alarm_timer->stop(alarm_timer);
    alarm_timer = NULL;
bellard authored
1746
1747
}
1748
/***********************************************************/
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
/* host time/date access */
void qemu_get_timedate(struct tm *tm, int offset)
{
    time_t ti;
    struct tm *ret;

    time(&ti);
    ti += offset;
    if (rtc_date_offset == -1) {
        if (rtc_utc)
            ret = gmtime(&ti);
        else
            ret = localtime(&ti);
    } else {
        ti -= rtc_date_offset;
        ret = gmtime(&ti);
    }

    memcpy(tm, ret, sizeof(struct tm));
}

int qemu_timedate_diff(struct tm *tm)
{
    time_t seconds;

    if (rtc_date_offset == -1)
        if (rtc_utc)
            seconds = mktimegm(tm);
        else
            seconds = mktime(tm);
    else
        seconds = mktimegm(tm) + rtc_date_offset;

    return seconds - time(NULL);
}
bellard authored
1785
1786
1787
1788
1789
#ifdef _WIN32
static void socket_cleanup(void)
{
    WSACleanup();
}
bellard authored
1790
bellard authored
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
static int socket_init(void)
{
    WSADATA Data;
    int ret, err;

    ret = WSAStartup(MAKEWORD(2,2), &Data);
    if (ret != 0) {
        err = WSAGetLastError();
        fprintf(stderr, "WSAStartup: %d\n", err);
        return -1;
    }
    atexit(socket_cleanup);
    return 0;
}
1805
1806
#endif
1807
const char *get_opt_name(char *buf, int buf_size, const char *p, char delim)
1808
1809
1810
1811
{
    char *q;

    q = buf;
1812
    while (*p != '\0' && *p != delim) {
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
        if (q && (q - buf) < buf_size - 1)
            *q++ = *p;
        p++;
    }
    if (q)
        *q = '\0';

    return p;
}
1823
const char *get_opt_value(char *buf, int buf_size, const char *p)
1824
1825
1826
1827
1828
{
    char *q;

    q = buf;
    while (*p != '\0') {
1829
1830
        if (*p == ',') {
            if (*(p + 1) != ',')
1831
1832
                break;
            p++;
1833
        }
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
        if (q && (q - buf) < buf_size - 1)
            *q++ = *p;
        p++;
    }
    if (q)
        *q = '\0';

    return p;
}
1844
1845
int get_param_value(char *buf, int buf_size,
                    const char *tag, const char *str)
bellard authored
1846
1847
1848
1849
1850
1851
{
    const char *p;
    char option[128];

    p = str;
    for(;;) {
1852
        p = get_opt_name(option, sizeof(option), p, '=');
bellard authored
1853
1854
1855
1856
        if (*p != '=')
            break;
        p++;
        if (!strcmp(tag, option)) {
1857
            (void)get_opt_value(buf, buf_size, p);
1858
            return strlen(buf);
bellard authored
1859
        } else {
1860
            p = get_opt_value(NULL, 0, p);
bellard authored
1861
1862
1863
1864
1865
1866
1867
1868
        }
        if (*p != ',')
            break;
        p++;
    }
    return 0;
}
1869
int check_params(const char * const *params, const char *str)
1870
{
1871
    int name_buf_size = 1;
1872
    const char *p;
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
    char *name_buf;
    int i, len;
    int ret = 0;

    for (i = 0; params[i] != NULL; i++) {
        len = strlen(params[i]) + 1;
        if (len > name_buf_size) {
            name_buf_size = len;
        }
    }
    name_buf = qemu_malloc(name_buf_size);
1884
1885

    p = str;
1886
    while (*p != '\0') {
1887
1888
1889
1890
1891
        p = get_opt_name(name_buf, name_buf_size, p, '=');
        if (*p != '=') {
            ret = -1;
            break;
        }
1892
1893
        p++;
        for(i = 0; params[i] != NULL; i++)
1894
            if (!strcmp(params[i], name_buf))
1895
                break;
1896
1897
1898
1899
        if (params[i] == NULL) {
            ret = -1;
            break;
        }
1900
        p = get_opt_value(NULL, 0, p);
1901
1902
1903
1904
        if (*p != ',')
            break;
        p++;
    }
1905
1906
1907

    qemu_free(name_buf);
    return ret;
1908
1909
}
1910
1911
1912
1913
1914
/***********************************************************/
/* Bluetooth support */
static int nb_hcis;
static int cur_hci;
static struct HCIInfo *hci_table[MAX_NICS];
1915
1916
1917
1918
1919
1920
1921
1922
static struct bt_vlan_s {
    struct bt_scatternet_s net;
    int id;
    struct bt_vlan_s *next;
} *first_bt_vlan;

/* find or alloc a new bluetooth "VLAN" */
1923
static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
{
    struct bt_vlan_s **pvlan, *vlan;
    for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
        if (vlan->id == id)
            return &vlan->net;
    }
    vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
    vlan->id = id;
    pvlan = &first_bt_vlan;
    while (*pvlan != NULL)
        pvlan = &(*pvlan)->next;
    *pvlan = vlan;
    return &vlan->net;
}

static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
{
}

static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
{
    return -ENOTSUP;
}

static struct HCIInfo null_hci = {
    .cmd_send = null_hci_send,
    .sco_send = null_hci_send,
    .acl_send = null_hci_send,
    .bdaddr_set = null_hci_addr_set,
};

struct HCIInfo *qemu_next_hci(void)
{
    if (cur_hci == nb_hcis)
        return &null_hci;

    return hci_table[cur_hci++];
}
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
static struct HCIInfo *hci_init(const char *str)
{
    char *endp;
    struct bt_scatternet_s *vlan = 0;

    if (!strcmp(str, "null"))
        /* null */
        return &null_hci;
    else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
        /* host[:hciN] */
        return bt_host_hci(str[4] ? str + 5 : "hci0");
    else if (!strncmp(str, "hci", 3)) {
        /* hci[,vlan=n] */
        if (str[3]) {
            if (!strncmp(str + 3, ",vlan=", 6)) {
                vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
                if (*endp)
                    vlan = 0;
            }
        } else
            vlan = qemu_find_bt_vlan(0);
        if (vlan)
           return bt_new_hci(vlan);
    }

    fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);

    return 0;
}

static int bt_hci_parse(const char *str)
{
    struct HCIInfo *hci;
    bdaddr_t bdaddr;

    if (nb_hcis >= MAX_NICS) {
        fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
        return -1;
    }

    hci = hci_init(str);
    if (!hci)
        return -1;

    bdaddr.b[0] = 0x52;
    bdaddr.b[1] = 0x54;
    bdaddr.b[2] = 0x00;
    bdaddr.b[3] = 0x12;
    bdaddr.b[4] = 0x34;
    bdaddr.b[5] = 0x56 + nb_hcis;
    hci->bdaddr_set(hci, bdaddr.b);

    hci_table[nb_hcis++] = hci;

    return 0;
}

static void bt_vhci_add(int vlan_id)
{
    struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);

    if (!vlan->slave)
        fprintf(stderr, "qemu: warning: adding a VHCI to "
                        "an empty scatternet %i\n", vlan_id);

    bt_vhci_init(bt_new_hci(vlan));
}

static struct bt_device_s *bt_device_add(const char *opt)
{
    struct bt_scatternet_s *vlan;
    int vlan_id = 0;
    char *endp = strstr(opt, ",vlan=");
    int len = (endp ? endp - opt : strlen(opt)) + 1;
    char devname[10];

    pstrcpy(devname, MIN(sizeof(devname), len), opt);

    if (endp) {
        vlan_id = strtol(endp + 6, &endp, 0);
        if (*endp) {
            fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
            return 0;
        }
    }

    vlan = qemu_find_bt_vlan(vlan_id);

    if (!vlan->slave)
        fprintf(stderr, "qemu: warning: adding a slave device to "
                        "an empty scatternet %i\n", vlan_id);

    if (!strcmp(devname, "keyboard"))
        return bt_keyboard_init(vlan);

    fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
    return 0;
}

static int bt_parse(const char *opt)
{
    const char *endp, *p;
    int vlan;

    if (strstart(opt, "hci", &endp)) {
        if (!*endp || *endp == ',') {
            if (*endp)
                if (!strstart(endp, ",vlan=", 0))
                    opt = endp + 1;

            return bt_hci_parse(opt);
       }
    } else if (strstart(opt, "vhci", &endp)) {
        if (!*endp || *endp == ',') {
            if (*endp) {
                if (strstart(endp, ",vlan=", &p)) {
                    vlan = strtol(p, (char **) &endp, 0);
                    if (*endp) {
                        fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
                        return 1;
                    }
                } else {
                    fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
                    return 1;
                }
            } else
                vlan = 0;

            bt_vhci_add(vlan);
            return 0;
        }
    } else if (strstart(opt, "device:", &endp))
        return !bt_device_add(endp);

    fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
    return 1;
}
2101
2102
2103
/***********************************************************/
/* QEMU Block devices */
2104
#define HD_ALIAS "index=%d,media=disk"
2105
2106
#define CDROM_ALIAS "index=2,media=cdrom"
#define FD_ALIAS "index=%d,if=floppy"
2107
2108
#define PFLASH_ALIAS "if=pflash"
#define MTD_ALIAS "if=mtd"
2109
#define SD_ALIAS "index=0,if=sd"
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
static int drive_opt_get_free_idx(void)
{
    int index;

    for (index = 0; index < MAX_DRIVES; index++)
        if (!drives_opt[index].used) {
            drives_opt[index].used = 1;
            return index;
        }

    return -1;
}

static int drive_get_free_idx(void)
{
    int index;

    for (index = 0; index < MAX_DRIVES; index++)
        if (!drives_table[index].used) {
            drives_table[index].used = 1;
            return index;
        }

    return -1;
}
2137
int drive_add(const char *file, const char *fmt, ...)
2138
2139
{
    va_list ap;
2140
    int index = drive_opt_get_free_idx();
2141
2142
    if (nb_drives_opt >= MAX_DRIVES || index == -1) {
2143
        fprintf(stderr, "qemu: too many drives\n");
2144
        return -1;
2145
2146
    }
2147
    drives_opt[index].file = file;
2148
    va_start(ap, fmt);
2149
    vsnprintf(drives_opt[index].opt,
2150
              sizeof(drives_opt[0].opt), fmt, ap);
2151
2152
    va_end(ap);
2153
2154
    nb_drives_opt++;
    return index;
2155
2156
}
2157
2158
2159
2160
2161
2162
void drive_remove(int index)
{
    drives_opt[index].used = 0;
    nb_drives_opt--;
}
2163
int drive_get_index(BlockInterfaceType type, int bus, int unit)
2164
2165
2166
2167
2168
{
    int index;

    /* seek interface, bus and unit */
2169
    for (index = 0; index < MAX_DRIVES; index++)
2170
        if (drives_table[index].type == type &&
2171
	    drives_table[index].bus == bus &&
2172
2173
	    drives_table[index].unit == unit &&
	    drives_table[index].used)
2174
2175
2176
2177
2178
        return index;

    return -1;
}
2179
int drive_get_max_bus(BlockInterfaceType type)
2180
2181
2182
2183
2184
2185
{
    int max_bus;
    int index;

    max_bus = -1;
    for (index = 0; index < nb_drives; index++) {
2186
        if(drives_table[index].type == type &&
2187
2188
2189
2190
2191
2192
           drives_table[index].bus > max_bus)
            max_bus = drives_table[index].bus;
    }
    return max_bus;
}
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
const char *drive_get_serial(BlockDriverState *bdrv)
{
    int index;

    for (index = 0; index < nb_drives; index++)
        if (drives_table[index].bdrv == bdrv)
            return drives_table[index].serial;

    return "\0";
}
2204
2205
2206
2207
2208
2209
2210
2211
BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
{
    int index;

    for (index = 0; index < nb_drives; index++)
        if (drives_table[index].bdrv == bdrv)
            return drives_table[index].onerror;
2212
    return BLOCK_ERR_STOP_ENOSPC;
2213
2214
}
2215
2216
2217
2218
2219
static void bdrv_format_print(void *opaque, const char *name)
{
    fprintf(stderr, " %s", name);
}
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
void drive_uninit(BlockDriverState *bdrv)
{
    int i;

    for (i = 0; i < MAX_DRIVES; i++)
        if (drives_table[i].bdrv == bdrv) {
            drives_table[i].bdrv = NULL;
            drives_table[i].used = 0;
            drive_remove(drives_table[i].drive_opt_idx);
            nb_drives--;
            break;
        }
}
2234
int drive_init(struct drive_opt *arg, int snapshot, void *opaque)
2235
2236
2237
{
    char buf[128];
    char file[1024];
2238
    char devname[128];
2239
    char serial[21];
2240
    const char *mediastr = "";
2241
    BlockInterfaceType type;
2242
2243
2244
2245
    enum { MEDIA_DISK, MEDIA_CDROM } media;
    int bus_id, unit_id;
    int cyls, heads, secs, translation;
    BlockDriverState *bdrv;
2246
    BlockDriver *drv = NULL;
2247
    QEMUMachine *machine = opaque;
2248
2249
    int max_devs;
    int index;
2250
    int cache;
2251
    int bdrv_flags, onerror;
2252
    int drives_table_idx;
2253
    char *str = arg->opt;
2254
2255
2256
    static const char * const params[] = { "bus", "unit", "if", "index",
                                           "cyls", "heads", "secs", "trans",
                                           "media", "snapshot", "file",
2257
2258
                                           "cache", "format", "serial", "werror",
                                           NULL };
2259
2260
    if (check_params(params, str) < 0) {
2261
         fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
                         buf, str);
         return -1;
    }

    file[0] = 0;
    cyls = heads = secs = 0;
    bus_id = 0;
    unit_id = -1;
    translation = BIOS_ATA_TRANSLATION_AUTO;
    index = -1;
2272
    cache = 3;
2273
2274
    if (machine->use_scsi) {
2275
        type = IF_SCSI;
2276
        max_devs = MAX_SCSI_DEVS;
2277
        pstrcpy(devname, sizeof(devname), "scsi");
2278
    } else {
2279
        type = IF_IDE;
2280
        max_devs = MAX_IDE_DEVS;
2281
        pstrcpy(devname, sizeof(devname), "ide");
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
    }
    media = MEDIA_DISK;

    /* extract parameters */

    if (get_param_value(buf, sizeof(buf), "bus", str)) {
        bus_id = strtol(buf, NULL, 0);
	if (bus_id < 0) {
	    fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
	    return -1;
	}
    }

    if (get_param_value(buf, sizeof(buf), "unit", str)) {
        unit_id = strtol(buf, NULL, 0);
	if (unit_id < 0) {
	    fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
	    return -1;
	}
    }

    if (get_param_value(buf, sizeof(buf), "if", str)) {
2304
        pstrcpy(devname, sizeof(devname), buf);
2305
        if (!strcmp(buf, "ide")) {
2306
	    type = IF_IDE;
2307
2308
            max_devs = MAX_IDE_DEVS;
        } else if (!strcmp(buf, "scsi")) {
2309
	    type = IF_SCSI;
2310
2311
            max_devs = MAX_SCSI_DEVS;
        } else if (!strcmp(buf, "floppy")) {
2312
	    type = IF_FLOPPY;
2313
2314
            max_devs = 0;
        } else if (!strcmp(buf, "pflash")) {
2315
	    type = IF_PFLASH;
2316
2317
            max_devs = 0;
	} else if (!strcmp(buf, "mtd")) {
2318
	    type = IF_MTD;
2319
2320
            max_devs = 0;
	} else if (!strcmp(buf, "sd")) {
2321
	    type = IF_SD;
2322
            max_devs = 0;
aliguori authored
2323
2324
2325
        } else if (!strcmp(buf, "virtio")) {
            type = IF_VIRTIO;
            max_devs = 0;
2326
2327
2328
2329
	} else if (!strcmp(buf, "xen")) {
	    type = IF_XEN;
            max_devs = 0;
	} else {
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
            fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
            return -1;
	}
    }

    if (get_param_value(buf, sizeof(buf), "index", str)) {
        index = strtol(buf, NULL, 0);
	if (index < 0) {
	    fprintf(stderr, "qemu: '%s' invalid index\n", str);
	    return -1;
	}
    }

    if (get_param_value(buf, sizeof(buf), "cyls", str)) {
        cyls = strtol(buf, NULL, 0);
    }

    if (get_param_value(buf, sizeof(buf), "heads", str)) {
        heads = strtol(buf, NULL, 0);
    }

    if (get_param_value(buf, sizeof(buf), "secs", str)) {
        secs = strtol(buf, NULL, 0);
    }

    if (cyls || heads || secs) {
        if (cyls < 1 || cyls > 16383) {
            fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
	    return -1;
	}
        if (heads < 1 || heads > 16) {
            fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
	    return -1;
	}
        if (secs < 1 || secs > 63) {
            fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
	    return -1;
	}
    }

    if (get_param_value(buf, sizeof(buf), "trans", str)) {
        if (!cyls) {
            fprintf(stderr,
                    "qemu: '%s' trans must be used with cyls,heads and secs\n",
                    str);
            return -1;
        }
        if (!strcmp(buf, "none"))
            translation = BIOS_ATA_TRANSLATION_NONE;
        else if (!strcmp(buf, "lba"))
            translation = BIOS_ATA_TRANSLATION_LBA;
        else if (!strcmp(buf, "auto"))
            translation = BIOS_ATA_TRANSLATION_AUTO;
	else {
            fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
	    return -1;
	}
    }

    if (get_param_value(buf, sizeof(buf), "media", str)) {
        if (!strcmp(buf, "disk")) {
	    media = MEDIA_DISK;
	} else if (!strcmp(buf, "cdrom")) {
            if (cyls || secs || heads) {
                fprintf(stderr,
                        "qemu: '%s' invalid physical CHS format\n", str);
	        return -1;
            }
	    media = MEDIA_CDROM;
	} else {
	    fprintf(stderr, "qemu: '%s' invalid media\n", str);
	    return -1;
	}
    }

    if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
        if (!strcmp(buf, "on"))
	    snapshot = 1;
        else if (!strcmp(buf, "off"))
	    snapshot = 0;
	else {
	    fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
	    return -1;
	}
    }
2416
    if (get_param_value(buf, sizeof(buf), "cache", str)) {
2417
        if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2418
            cache = 0;
2419
        else if (!strcmp(buf, "writethrough"))
2420
            cache = 1;
2421
2422
        else if (!strcmp(buf, "writeback"))
            cache = 2;
2423
2424
2425
2426
2427
2428
        else {
           fprintf(stderr, "qemu: invalid cache option\n");
           return -1;
        }
    }
2429
    if (get_param_value(buf, sizeof(buf), "format", str)) {
2430
2431
2432
2433
2434
2435
       if (strcmp(buf, "?") == 0) {
            fprintf(stderr, "qemu: Supported formats:");
            bdrv_iterate_format(bdrv_format_print, NULL);
            fprintf(stderr, "\n");
	    return -1;
        }
2436
2437
2438
2439
2440
2441
2442
        drv = bdrv_find_format(buf);
        if (!drv) {
            fprintf(stderr, "qemu: '%s' invalid format\n", buf);
            return -1;
        }
    }
2443
2444
2445
2446
    if (arg->file == NULL)
        get_param_value(file, sizeof(file), "file", str);
    else
        pstrcpy(file, sizeof(file), arg->file);
2447
2448
2449
2450
    if (!get_param_value(serial, sizeof(serial), "serial", str))
	    memset(serial, 0,  sizeof(serial));
2451
    onerror = BLOCK_ERR_STOP_ENOSPC;
2452
    if (get_param_value(buf, sizeof(serial), "werror", str)) {
2453
        if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2454
            fprintf(stderr, "werror is no supported by this format\n");
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
            return -1;
        }
        if (!strcmp(buf, "ignore"))
            onerror = BLOCK_ERR_IGNORE;
        else if (!strcmp(buf, "enospc"))
            onerror = BLOCK_ERR_STOP_ENOSPC;
        else if (!strcmp(buf, "stop"))
            onerror = BLOCK_ERR_STOP_ANY;
        else if (!strcmp(buf, "report"))
            onerror = BLOCK_ERR_REPORT;
        else {
            fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
            return -1;
        }
    }
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
    /* compute bus and unit according index */

    if (index != -1) {
        if (bus_id != 0 || unit_id != -1) {
            fprintf(stderr,
                    "qemu: '%s' index cannot be used with bus and unit\n", str);
            return -1;
        }
        if (max_devs == 0)
        {
            unit_id = index;
            bus_id = 0;
        } else {
            unit_id = index % max_devs;
            bus_id = index / max_devs;
        }
    }

    /* if user doesn't specify a unit_id,
     * try to find the first free
     */

    if (unit_id == -1) {
       unit_id = 0;
2495
       while (drive_get_index(type, bus_id, unit_id) != -1) {
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
           unit_id++;
           if (max_devs && unit_id >= max_devs) {
               unit_id -= max_devs;
               bus_id++;
           }
       }
    }

    /* check unit id */

    if (max_devs && unit_id >= max_devs) {
        fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
                        str, unit_id, max_devs - 1);
        return -1;
    }

    /*
     * ignore multiple definitions
     */
2516
    if (drive_get_index(type, bus_id, unit_id) != -1)
2517
        return -2;
2518
2519
2520

    /* init */
2521
    if (type == IF_IDE || type == IF_SCSI)
2522
        mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2523
2524
2525
2526
2527
2528
    if (max_devs)
        snprintf(buf, sizeof(buf), "%s%i%s%i",
                 devname, bus_id, mediastr, unit_id);
    else
        snprintf(buf, sizeof(buf), "%s%s%i",
                 devname, mediastr, unit_id);
2529
    bdrv = bdrv_new(buf);
2530
2531
2532
2533
2534
2535
    drives_table_idx = drive_get_free_idx();
    drives_table[drives_table_idx].bdrv = bdrv;
    drives_table[drives_table_idx].type = type;
    drives_table[drives_table_idx].bus = bus_id;
    drives_table[drives_table_idx].unit = unit_id;
    drives_table[drives_table_idx].onerror = onerror;
2536
    drives_table[drives_table_idx].drive_opt_idx = arg - drives_opt;
2537
    strncpy(drives_table[nb_drives].serial, serial, sizeof(serial));
2538
2539
    nb_drives++;
2540
    switch(type) {
2541
2542
    case IF_IDE:
    case IF_SCSI:
2543
    case IF_XEN:
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
        switch(media) {
	case MEDIA_DISK:
            if (cyls != 0) {
                bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
                bdrv_set_translation_hint(bdrv, translation);
            }
	    break;
	case MEDIA_CDROM:
            bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
	    break;
	}
        break;
    case IF_SD:
        /* FIXME: This isn't really a floppy, but it's a reasonable
           approximation.  */
    case IF_FLOPPY:
        bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
        break;
    case IF_PFLASH:
    case IF_MTD:
aliguori authored
2564
    case IF_VIRTIO:
2565
2566
2567
        break;
    }
    if (!file[0])
2568
        return -2;
2569
    bdrv_flags = 0;
2570
    if (snapshot) {
2571
        bdrv_flags |= BDRV_O_SNAPSHOT;
2572
2573
2574
2575
2576
2577
        cache = 2; /* always use write-back with snapshot */
    }
    if (cache == 0) /* no caching */
        bdrv_flags |= BDRV_O_NOCACHE;
    else if (cache == 2) /* write-back */
        bdrv_flags |= BDRV_O_CACHE_WB;
2578
2579
    else if (cache == 3) /* not specified */
        bdrv_flags |= BDRV_O_CACHE_DEF;
2580
    if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0) {
2581
2582
2583
2584
        fprintf(stderr, "qemu: could not open disk image %s\n",
                        file);
        return -1;
    }
2585
2586
    if (bdrv_key_required(bdrv))
        autostart = 0;
2587
    return drives_table_idx;
2588
2589
}
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
static void numa_add(const char *optarg)
{
    char option[128];
    char *endptr;
    unsigned long long value, endvalue;
    int nodenr;

    optarg = get_opt_name(option, 128, optarg, ',') + 1;
    if (!strcmp(option, "node")) {
        if (get_param_value(option, 128, "nodeid", optarg) == 0) {
            nodenr = nb_numa_nodes;
        } else {
            nodenr = strtoull(option, NULL, 10);
        }

        if (get_param_value(option, 128, "mem", optarg) == 0) {
            node_mem[nodenr] = 0;
        } else {
            value = strtoull(option, &endptr, 0);
            switch (*endptr) {
            case 0: case 'M': case 'm':
                value <<= 20;
                break;
            case 'G': case 'g':
                value <<= 30;
                break;
            }
            node_mem[nodenr] = value;
        }
        if (get_param_value(option, 128, "cpus", optarg) == 0) {
            node_cpumask[nodenr] = 0;
        } else {
            value = strtoull(option, &endptr, 10);
            if (value >= 64) {
                value = 63;
                fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
            } else {
                if (*endptr == '-') {
                    endvalue = strtoull(endptr+1, &endptr, 10);
                    if (endvalue >= 63) {
                        endvalue = 62;
                        fprintf(stderr,
                            "only 63 CPUs in NUMA mode supported.\n");
                    }
                    value = (1 << (endvalue + 1)) - (1 << value);
                } else {
                    value = 1 << value;
                }
            }
            node_cpumask[nodenr] = value;
        }
        nb_numa_nodes++;
    }
    return;
}
2646
/***********************************************************/
bellard authored
2647
2648
/* USB devices */
pbrook authored
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
static USBPort *used_usb_ports;
static USBPort *free_usb_ports;

/* ??? Maybe change this to register a hub to keep track of the topology.  */
void qemu_register_usb_port(USBPort *port, void *opaque, int index,
                            usb_attachfn attach)
{
    port->opaque = opaque;
    port->index = index;
    port->attach = attach;
    port->next = free_usb_ports;
    free_usb_ports = port;
}
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
int usb_device_add_dev(USBDevice *dev)
{
    USBPort *port;

    /* Find a USB port to add the device to.  */
    port = free_usb_ports;
    if (!port->next) {
        USBDevice *hub;

        /* Create a new hub and chain it on.  */
        free_usb_ports = NULL;
        port->next = used_usb_ports;
        used_usb_ports = port;

        hub = usb_hub_init(VM_USB_HUB_SIZE);
        usb_attach(port, hub);
        port = free_usb_ports;
    }

    free_usb_ports = port->next;
    port->next = used_usb_ports;
    used_usb_ports = port;
    usb_attach(port, dev);
    return 0;
}
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
static void usb_msd_password_cb(void *opaque, int err)
{
    USBDevice *dev = opaque;

    if (!err)
        usb_device_add_dev(dev);
    else
        dev->handle_destroy(dev);
}
2699
static int usb_device_add(const char *devname, int is_hotplug)
bellard authored
2700
2701
2702
2703
{
    const char *p;
    USBDevice *dev;
pbrook authored
2704
    if (!free_usb_ports)
bellard authored
2705
2706
2707
2708
2709
2710
        return -1;

    if (strstart(devname, "host:", &p)) {
        dev = usb_host_device_open(p);
    } else if (!strcmp(devname, "mouse")) {
        dev = usb_mouse_init();
2711
    } else if (!strcmp(devname, "tablet")) {
balrog authored
2712
2713
2714
        dev = usb_tablet_init();
    } else if (!strcmp(devname, "keyboard")) {
        dev = usb_keyboard_init();
2715
    } else if (strstart(devname, "disk:", &p)) {
2716
2717
        BlockDriverState *bs;
2718
        dev = usb_msd_init(p);
2719
2720
        if (!dev)
            return -1;
2721
        bs = usb_msd_get_bdrv(dev);
2722
2723
        if (bdrv_key_required(bs)) {
            autostart = 0;
2724
            if (is_hotplug) {
2725
2726
                monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
                                            dev);
2727
                return 0;
2728
2729
            }
        }
2730
2731
    } else if (!strcmp(devname, "wacom-tablet")) {
        dev = usb_wacom_init();
2732
2733
    } else if (strstart(devname, "serial:", &p)) {
        dev = usb_serial_init(p);
aurel32 authored
2734
2735
2736
2737
#ifdef CONFIG_BRLAPI
    } else if (!strcmp(devname, "braille")) {
        dev = usb_baum_init();
#endif
2738
    } else if (strstart(devname, "net:", &p)) {
2739
        int nic = nb_nics;
2740
2741
        if (net_client_init("nic", p) < 0)
2742
            return -1;
2743
2744
        nd_table[nic].model = "usb";
        dev = usb_net_init(&nd_table[nic]);
2745
2746
2747
    } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
        dev = usb_bt_init(devname[2] ? hci_init(p) :
                        bt_new_hci(qemu_find_bt_vlan(0)));
bellard authored
2748
2749
2750
    } else {
        return -1;
    }
pbrook authored
2751
2752
2753
    if (!dev)
        return -1;
2754
    return usb_device_add_dev(dev);
bellard authored
2755
2756
}
2757
int usb_device_del_addr(int bus_num, int addr)
bellard authored
2758
{
pbrook authored
2759
2760
    USBPort *port;
    USBPort **lastp;
2761
    USBDevice *dev;
bellard authored
2762
pbrook authored
2763
    if (!used_usb_ports)
bellard authored
2764
2765
2766
2767
        return -1;

    if (bus_num != 0)
        return -1;
pbrook authored
2768
2769
2770
2771
2772
2773

    lastp = &used_usb_ports;
    port = used_usb_ports;
    while (port && port->dev->addr != addr) {
        lastp = &port->next;
        port = port->next;
bellard authored
2774
    }
pbrook authored
2775
2776

    if (!port)
bellard authored
2777
        return -1;
pbrook authored
2778
2779
    dev = port->dev;
pbrook authored
2780
2781
    *lastp = port->next;
    usb_attach(port, NULL);
2782
    dev->handle_destroy(dev);
pbrook authored
2783
2784
    port->next = free_usb_ports;
    free_usb_ports = port;
bellard authored
2785
2786
2787
    return 0;
}
2788
2789
2790
2791
2792
static int usb_device_del(const char *devname)
{
    int bus_num, addr;
    const char *p;
2793
2794
2795
    if (strstart(devname, "host:", &p))
        return usb_host_device_close(p);
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
    if (!used_usb_ports)
        return -1;

    p = strchr(devname, '.');
    if (!p)
        return -1;
    bus_num = strtoul(devname, NULL, 0);
    addr = strtoul(p + 1, NULL, 0);

    return usb_device_del_addr(bus_num, addr);
}
2808
void do_usb_add(Monitor *mon, const char *devname)
bellard authored
2809
{
2810
    usb_device_add(devname, 1);
bellard authored
2811
2812
}
2813
void do_usb_del(Monitor *mon, const char *devname)
bellard authored
2814
{
2815
    usb_device_del(devname);
bellard authored
2816
2817
}
2818
void usb_info(Monitor *mon)
bellard authored
2819
2820
{
    USBDevice *dev;
pbrook authored
2821
    USBPort *port;
bellard authored
2822
2823
    const char *speed_str;
pbrook authored
2824
    if (!usb_enabled) {
2825
        monitor_printf(mon, "USB support not enabled\n");
bellard authored
2826
2827
2828
        return;
    }
pbrook authored
2829
2830
2831
2832
2833
    for (port = used_usb_ports; port; port = port->next) {
        dev = port->dev;
        if (!dev)
            continue;
        switch(dev->speed) {
2834
2835
        case USB_SPEED_LOW:
            speed_str = "1.5";
pbrook authored
2836
            break;
2837
2838
        case USB_SPEED_FULL:
            speed_str = "12";
pbrook authored
2839
            break;
2840
2841
        case USB_SPEED_HIGH:
            speed_str = "480";
pbrook authored
2842
2843
            break;
        default:
2844
            speed_str = "?";
pbrook authored
2845
            break;
bellard authored
2846
        }
2847
2848
        monitor_printf(mon, "  Device %d.%d, Speed %s Mb/s, Product %s\n",
                       0, dev->addr, speed_str, dev->devname);
bellard authored
2849
2850
2851
    }
}
bellard authored
2852
/***********************************************************/
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
/* PCMCIA/Cardbus */

static struct pcmcia_socket_entry_s {
    struct pcmcia_socket_s *socket;
    struct pcmcia_socket_entry_s *next;
} *pcmcia_sockets = 0;

void pcmcia_socket_register(struct pcmcia_socket_s *socket)
{
    struct pcmcia_socket_entry_s *entry;

    entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
    entry->socket = socket;
    entry->next = pcmcia_sockets;
    pcmcia_sockets = entry;
}

void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
{
    struct pcmcia_socket_entry_s *entry, **ptr;

    ptr = &pcmcia_sockets;
    for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
        if (entry->socket == socket) {
            *ptr = entry->next;
            qemu_free(entry);
        }
}
2882
void pcmcia_info(Monitor *mon)
2883
2884
{
    struct pcmcia_socket_entry_s *iter;
2885
2886
    if (!pcmcia_sockets)
2887
        monitor_printf(mon, "No PCMCIA sockets\n");
2888
2889

    for (iter = pcmcia_sockets; iter; iter = iter->next)
2890
2891
2892
        monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
                       iter->socket->attached ? iter->socket->card_string :
                       "Empty");
2893
2894
2895
}

/***********************************************************/
2896
2897
/* register display */
2898
2899
2900
2901
2902
2903
struct DisplayAllocator default_allocator = {
    defaultallocator_create_displaysurface,
    defaultallocator_resize_displaysurface,
    defaultallocator_free_displaysurface
};
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
void register_displaystate(DisplayState *ds)
{
    DisplayState **s;
    s = &display_state;
    while (*s != NULL)
        s = &(*s)->next;
    ds->next = NULL;
    *s = ds;
}

DisplayState *get_displaystate(void)
{
    return display_state;
}
2919
2920
2921
2922
2923
2924
DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
{
    if(ds->allocator ==  &default_allocator) ds->allocator = da;
    return ds->allocator;
}
2925
2926
/* dumb display */
2927
static void dumb_display_init(void)
2928
{
2929
    DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2930
2931
    ds->allocator = &default_allocator;
    ds->surface = qemu_create_displaysurface(ds, 640, 480);
2932
    register_displaystate(ds);
2933
2934
2935
}

/***********************************************************/
2936
/* I/O handling */
2937
2938
2939
typedef struct IOHandlerRecord {
    int fd;
bellard authored
2940
2941
2942
    IOCanRWHandler *fd_read_poll;
    IOHandler *fd_read;
    IOHandler *fd_write;
2943
    int deleted;
2944
2945
2946
    void *opaque;
    /* temporary data */
    struct pollfd *ufd;
2947
    struct IOHandlerRecord *next;
2948
2949
} IOHandlerRecord;
2950
static IOHandlerRecord *first_io_handler;
2951
bellard authored
2952
2953
/* XXX: fd_read_poll should be suppressed, but an API change is
   necessary in the character devices to suppress fd_can_read(). */
2954
2955
2956
2957
int qemu_set_fd_handler2(int fd,
                         IOCanRWHandler *fd_read_poll,
                         IOHandler *fd_read,
                         IOHandler *fd_write,
bellard authored
2958
                         void *opaque)
2959
{
bellard authored
2960
    IOHandlerRecord **pioh, *ioh;
2961
bellard authored
2962
2963
2964
2965
2966
2967
2968
    if (!fd_read && !fd_write) {
        pioh = &first_io_handler;
        for(;;) {
            ioh = *pioh;
            if (ioh == NULL)
                break;
            if (ioh->fd == fd) {
2969
                ioh->deleted = 1;
bellard authored
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
                break;
            }
            pioh = &ioh->next;
        }
    } else {
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
            if (ioh->fd == fd)
                goto found;
        }
        ioh = qemu_mallocz(sizeof(IOHandlerRecord));
        ioh->next = first_io_handler;
        first_io_handler = ioh;
    found:
        ioh->fd = fd;
        ioh->fd_read_poll = fd_read_poll;
        ioh->fd_read = fd_read;
        ioh->fd_write = fd_write;
        ioh->opaque = opaque;
2988
        ioh->deleted = 0;
bellard authored
2989
    }
2990
2991
2992
    return 0;
}
2993
2994
2995
int qemu_set_fd_handler(int fd,
                        IOHandler *fd_read,
                        IOHandler *fd_write,
bellard authored
2996
                        void *opaque)
2997
{
bellard authored
2998
    return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2999
3000
}
aliguori authored
3001
#ifdef _WIN32
3002
/***********************************************************/
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
/* Polling handling */

typedef struct PollingEntry {
    PollingFunc *func;
    void *opaque;
    struct PollingEntry *next;
} PollingEntry;

static PollingEntry *first_polling_entry;

int qemu_add_polling_cb(PollingFunc *func, void *opaque)
{
    PollingEntry **ppe, *pe;
    pe = qemu_mallocz(sizeof(PollingEntry));
    pe->func = func;
    pe->opaque = opaque;
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
    *ppe = pe;
    return 0;
}

void qemu_del_polling_cb(PollingFunc *func, void *opaque)
{
    PollingEntry **ppe, *pe;
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
        pe = *ppe;
        if (pe->func == func && pe->opaque == opaque) {
            *ppe = pe->next;
            qemu_free(pe);
            break;
        }
    }
}
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
/***********************************************************/
/* Wait objects support */
typedef struct WaitObjects {
    int num;
    HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
    WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
    void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
} WaitObjects;

static WaitObjects wait_objects = {0};
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
{
    WaitObjects *w = &wait_objects;

    if (w->num >= MAXIMUM_WAIT_OBJECTS)
        return -1;
    w->events[w->num] = handle;
    w->func[w->num] = func;
    w->opaque[w->num] = opaque;
    w->num++;
    return 0;
}

void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
{
    int i, found;
    WaitObjects *w = &wait_objects;

    found = 0;
    for (i = 0; i < w->num; i++) {
        if (w->events[i] == handle)
            found = 1;
        if (found) {
            w->events[i] = w->events[i + 1];
            w->func[i] = w->func[i + 1];
            w->opaque[i] = w->opaque[i + 1];
3074
        }
3075
3076
3077
3078
3079
3080
    }
    if (found)
        w->num--;
}
#endif
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
/***********************************************************/
/* ram save/restore */

static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
{
    int v;

    v = qemu_get_byte(f);
    switch(v) {
    case 0:
        if (qemu_get_buffer(f, buf, len) != len)
            return -EIO;
        break;
    case 1:
        v = qemu_get_byte(f);
        memset(buf, v, len);
        break;
    default:
        return -EINVAL;
    }
3101
3102
3103
3104

    if (qemu_file_has_error(f))
        return -EIO;
3105
3106
3107
    return 0;
}
3108
3109
static int ram_load_v1(QEMUFile *f, void *opaque)
{
3110
3111
    int ret;
    ram_addr_t i;
3112
3113
    if (qemu_get_be32(f) != last_ram_offset)
3114
        return -EINVAL;
3115
    for(i = 0; i < last_ram_offset; i+= TARGET_PAGE_SIZE) {
3116
        ret = ram_get_page(f, qemu_get_ram_ptr(i), TARGET_PAGE_SIZE);
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
        if (ret)
            return ret;
    }
    return 0;
}

#define BDRV_HASH_BLOCK_SIZE 1024
#define IOBUF_SIZE 4096
#define RAM_CBLOCK_MAGIC 0xfabe

typedef struct RamDecompressState {
    z_stream zstream;
    QEMUFile *f;
    uint8_t buf[IOBUF_SIZE];
} RamDecompressState;

static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
{
    int ret;
    memset(s, 0, sizeof(*s));
    s->f = f;
    ret = inflateInit(&s->zstream);
    if (ret != Z_OK)
        return -1;
    return 0;
}

static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
{
    int ret, clen;

    s->zstream.avail_out = len;
    s->zstream.next_out = buf;
    while (s->zstream.avail_out > 0) {
        if (s->zstream.avail_in == 0) {
            if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
                return -1;
            clen = qemu_get_be16(s->f);
            if (clen > IOBUF_SIZE)
                return -1;
            qemu_get_buffer(s->f, s->buf, clen);
            s->zstream.avail_in = clen;
            s->zstream.next_in = s->buf;
        }
        ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
        if (ret != Z_OK && ret != Z_STREAM_END) {
            return -1;
        }
    }
    return 0;
}

static void ram_decompress_close(RamDecompressState *s)
{
    inflateEnd(&s->zstream);
}
3174
3175
3176
3177
3178
3179
3180
#define RAM_SAVE_FLAG_FULL	0x01
#define RAM_SAVE_FLAG_COMPRESS	0x02
#define RAM_SAVE_FLAG_MEM_SIZE	0x04
#define RAM_SAVE_FLAG_PAGE	0x08
#define RAM_SAVE_FLAG_EOS	0x10

static int is_dup_page(uint8_t *page, uint8_t ch)
3181
{
3182
3183
3184
    uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
    uint32_t *array = (uint32_t *)page;
    int i;
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
    for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
        if (array[i] != val)
            return 0;
    }

    return 1;
}

static int ram_save_block(QEMUFile *f)
{
    static ram_addr_t current_addr = 0;
    ram_addr_t saved_addr = current_addr;
    ram_addr_t addr = 0;
    int found = 0;
3201
    while (addr < last_ram_offset) {
3202
        if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3203
            uint8_t *p;
3204
3205
3206
3207
3208

            cpu_physical_memory_reset_dirty(current_addr,
                                            current_addr + TARGET_PAGE_SIZE,
                                            MIGRATION_DIRTY_FLAG);
3209
            p = qemu_get_ram_ptr(current_addr);
3210
3211
            if (is_dup_page(p, *p)) {
3212
                qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3213
                qemu_put_byte(f, *p);
3214
3215
            } else {
                qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3216
                qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
3217
            }
3218
3219
3220

            found = 1;
            break;
3221
        }
3222
        addr += TARGET_PAGE_SIZE;
3223
        current_addr = (saved_addr + addr) % last_ram_offset;
3224
    }
3225
3226

    return found;
3227
3228
}
3229
3230
3231
3232
3233
3234
3235
static ram_addr_t ram_save_threshold = 10;

static ram_addr_t ram_save_remaining(void)
{
    ram_addr_t addr;
    ram_addr_t count = 0;
3236
    for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
        if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
            count++;
    }

    return count;
}

static int ram_save_live(QEMUFile *f, int stage, void *opaque)
{
    ram_addr_t addr;

    if (stage == 1) {
        /* Make sure all dirty bits are set */
3250
        for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3251
3252
3253
3254
3255
3256
3257
            if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
                cpu_physical_memory_set_dirty(addr);
        }

        /* Enable dirty memory tracking */
        cpu_physical_memory_set_dirty_tracking(1);
3258
        qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
    }

    while (!qemu_file_rate_limit(f)) {
        int ret;

        ret = ram_save_block(f);
        if (ret == 0) /* no more blocks */
            break;
    }

    /* try transferring iterative blocks of memory */

    if (stage == 3) {

        /* flush all remaining blocks regardless of rate limiting */
        while (ram_save_block(f) != 0);
3275
        cpu_physical_memory_set_dirty_tracking(0);
3276
3277
3278
3279
3280
3281
3282
3283
    }

    qemu_put_be64(f, RAM_SAVE_FLAG_EOS);

    return (stage == 2) && (ram_save_remaining() < ram_save_threshold);
}

static int ram_load_dead(QEMUFile *f, void *opaque)
3284
{
3285
3286
    RamDecompressState s1, *s = &s1;
    uint8_t buf[10];
3287
    ram_addr_t i;
3288
3289
3290
    if (ram_decompress_open(s, f) < 0)
        return -EINVAL;
3291
    for(i = 0; i < last_ram_offset; i+= BDRV_HASH_BLOCK_SIZE) {
3292
3293
3294
3295
3296
        if (ram_decompress_buf(s, buf, 1) < 0) {
            fprintf(stderr, "Error while reading ram block header\n");
            goto error;
        }
        if (buf[0] == 0) {
3297
3298
            if (ram_decompress_buf(s, qemu_get_ram_ptr(i),
                                   BDRV_HASH_BLOCK_SIZE) < 0) {
3299
                fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3300
3301
                goto error;
            }
3302
        } else {
3303
3304
3305
3306
        error:
            printf("Error block header\n");
            return -EINVAL;
        }
3307
    }
3308
    ram_decompress_close(s);
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321

    return 0;
}

static int ram_load(QEMUFile *f, void *opaque, int version_id)
{
    ram_addr_t addr;
    int flags;

    if (version_id == 1)
        return ram_load_v1(f, opaque);

    if (version_id == 2) {
3322
        if (qemu_get_be32(f) != last_ram_offset)
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
            return -EINVAL;
        return ram_load_dead(f, opaque);
    }

    if (version_id != 3)
        return -EINVAL;

    do {
        addr = qemu_get_be64(f);

        flags = addr & ~TARGET_PAGE_MASK;
        addr &= TARGET_PAGE_MASK;

        if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3337
            if (addr != last_ram_offset)
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
                return -EINVAL;
        }

        if (flags & RAM_SAVE_FLAG_FULL) {
            if (ram_load_dead(f, opaque) < 0)
                return -EINVAL;
        }

        if (flags & RAM_SAVE_FLAG_COMPRESS) {
            uint8_t ch = qemu_get_byte(f);
3348
            memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3349
        } else if (flags & RAM_SAVE_FLAG_PAGE)
3350
            qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3351
3352
    } while (!(flags & RAM_SAVE_FLAG_EOS));
3353
3354
3355
    return 0;
}
3356
3357
void qemu_service_io(void)
{
3358
    qemu_notify_event();
3359
3360
}
3361
/***********************************************************/
bellard authored
3362
3363
3364
3365
3366
3367
/* bottom halves (can be seen as timers which expire ASAP) */

struct QEMUBH {
    QEMUBHFunc *cb;
    void *opaque;
    int scheduled;
3368
3369
    int idle;
    int deleted;
bellard authored
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
    QEMUBH *next;
};

static QEMUBH *first_bh = NULL;

QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
{
    QEMUBH *bh;
    bh = qemu_mallocz(sizeof(QEMUBH));
    bh->cb = cb;
    bh->opaque = opaque;
3381
3382
    bh->next = first_bh;
    first_bh = bh;
bellard authored
3383
3384
3385
    return bh;
}
bellard authored
3386
int qemu_bh_poll(void)
bellard authored
3387
{
3388
    QEMUBH *bh, **bhp;
bellard authored
3389
    int ret;
bellard authored
3390
bellard authored
3391
    ret = 0;
3392
3393
3394
3395
3396
3397
3398
3399
    for (bh = first_bh; bh; bh = bh->next) {
        if (!bh->deleted && bh->scheduled) {
            bh->scheduled = 0;
            if (!bh->idle)
                ret = 1;
            bh->idle = 0;
            bh->cb(bh->opaque);
        }
bellard authored
3400
    }
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412

    /* remove deleted bhs */
    bhp = &first_bh;
    while (*bhp) {
        bh = *bhp;
        if (bh->deleted) {
            *bhp = bh->next;
            qemu_free(bh);
        } else
            bhp = &bh->next;
    }
bellard authored
3413
    return ret;
bellard authored
3414
3415
}
3416
3417
3418
3419
3420
3421
3422
3423
void qemu_bh_schedule_idle(QEMUBH *bh)
{
    if (bh->scheduled)
        return;
    bh->scheduled = 1;
    bh->idle = 1;
}
bellard authored
3424
3425
3426
3427
3428
void qemu_bh_schedule(QEMUBH *bh)
{
    if (bh->scheduled)
        return;
    bh->scheduled = 1;
3429
    bh->idle = 0;
bellard authored
3430
    /* stop the currently executing CPU to execute the BH ASAP */
3431
    qemu_notify_event();
bellard authored
3432
3433
3434
3435
}

void qemu_bh_cancel(QEMUBH *bh)
{
3436
    bh->scheduled = 0;
bellard authored
3437
3438
3439
3440
}

void qemu_bh_delete(QEMUBH *bh)
{
3441
3442
    bh->scheduled = 0;
    bh->deleted = 1;
bellard authored
3443
3444
}
aliguori authored
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
static void qemu_bh_update_timeout(int *timeout)
{
    QEMUBH *bh;

    for (bh = first_bh; bh; bh = bh->next) {
        if (!bh->deleted && bh->scheduled) {
            if (bh->idle) {
                /* idle bottom halves will be polled at least
                 * every 10ms */
                *timeout = MIN(10, *timeout);
            } else {
                /* non-idle bottom halves will be executed
                 * immediately */
                *timeout = 0;
                break;
            }
        }
    }
}
bellard authored
3465
/***********************************************************/
3466
3467
/* machine registration */
3468
static QEMUMachine *first_machine = NULL;
3469
QEMUMachine *current_machine = NULL;
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481

int qemu_register_machine(QEMUMachine *m)
{
    QEMUMachine **pm;
    pm = &first_machine;
    while (*pm != NULL)
        pm = &(*pm)->next;
    m->next = NULL;
    *pm = m;
    return 0;
}
3482
static QEMUMachine *find_machine(const char *name)
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
{
    QEMUMachine *m;

    for(m = first_machine; m != NULL; m = m->next) {
        if (!strcmp(m->name, name))
            return m;
    }
    return NULL;
}

/***********************************************************/
3494
3495
/* main execution loop */
3496
static void gui_update(void *opaque)
3497
{
3498
    uint64_t interval = GUI_REFRESH_INTERVAL;
3499
    DisplayState *ds = opaque;
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
    DisplayChangeListener *dcl = ds->listeners;

    dpy_refresh(ds);

    while (dcl != NULL) {
        if (dcl->gui_timer_interval &&
            dcl->gui_timer_interval < interval)
            interval = dcl->gui_timer_interval;
        dcl = dcl->next;
    }
    qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3511
3512
}
blueswir1 authored
3513
3514
3515
3516
3517
3518
3519
static void nographic_update(void *opaque)
{
    uint64_t interval = GUI_REFRESH_INTERVAL;

    qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
}
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
struct vm_change_state_entry {
    VMChangeStateHandler *cb;
    void *opaque;
    LIST_ENTRY (vm_change_state_entry) entries;
};

static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;

VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
                                                     void *opaque)
{
    VMChangeStateEntry *e;

    e = qemu_mallocz(sizeof (*e));

    e->cb = cb;
    e->opaque = opaque;
    LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
    return e;
}

void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
{
    LIST_REMOVE (e, entries);
    qemu_free (e);
}
3547
static void vm_state_notify(int running, int reason)
3548
3549
3550
3551
{
    VMChangeStateEntry *e;

    for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3552
        e->cb(e->opaque, running, reason);
3553
3554
3555
    }
}
3556
3557
3558
static void resume_all_vcpus(void);
static void pause_all_vcpus(void);
3559
3560
3561
3562
3563
void vm_start(void)
{
    if (!vm_running) {
        cpu_enable_ticks();
        vm_running = 1;
3564
        vm_state_notify(1, 0);
3565
        qemu_rearm_alarm_timer(alarm_timer);
3566
        resume_all_vcpus();
3567
3568
3569
    }
}
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
/* reset/shutdown handler */

typedef struct QEMUResetEntry {
    QEMUResetHandler *func;
    void *opaque;
    struct QEMUResetEntry *next;
} QEMUResetEntry;

static QEMUResetEntry *first_reset_entry;
static int reset_requested;
static int shutdown_requested;
bellard authored
3581
static int powerdown_requested;
3582
static int debug_requested;
3583
static int vmstop_requested;
3584
aurel32 authored
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
int qemu_shutdown_requested(void)
{
    int r = shutdown_requested;
    shutdown_requested = 0;
    return r;
}

int qemu_reset_requested(void)
{
    int r = reset_requested;
    reset_requested = 0;
    return r;
}

int qemu_powerdown_requested(void)
{
    int r = powerdown_requested;
    powerdown_requested = 0;
    return r;
}
3606
3607
3608
3609
3610
3611
3612
static int qemu_debug_requested(void)
{
    int r = debug_requested;
    debug_requested = 0;
    return r;
}
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
static int qemu_vmstop_requested(void)
{
    int r = vmstop_requested;
    vmstop_requested = 0;
    return r;
}

static void do_vm_stop(int reason)
{
    if (vm_running) {
        cpu_disable_ticks();
        vm_running = 0;
3625
        pause_all_vcpus();
3626
3627
3628
3629
        vm_state_notify(0, reason);
    }
}
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
void qemu_register_reset(QEMUResetHandler *func, void *opaque)
{
    QEMUResetEntry **pre, *re;

    pre = &first_reset_entry;
    while (*pre != NULL)
        pre = &(*pre)->next;
    re = qemu_mallocz(sizeof(QEMUResetEntry));
    re->func = func;
    re->opaque = opaque;
    re->next = NULL;
    *pre = re;
}
aurel32 authored
3644
void qemu_system_reset(void)
3645
3646
3647
3648
3649
3650
3651
{
    QEMUResetEntry *re;

    /* reset all devices */
    for(re = first_reset_entry; re != NULL; re = re->next) {
        re->func(re->opaque);
    }
3652
3653
    if (kvm_enabled())
        kvm_sync_vcpus();
3654
3655
3656
3657
}

void qemu_system_reset_request(void)
{
bellard authored
3658
3659
3660
3661
3662
    if (no_reboot) {
        shutdown_requested = 1;
    } else {
        reset_requested = 1;
    }
3663
    qemu_notify_event();
3664
3665
3666
3667
3668
}

void qemu_system_shutdown_request(void)
{
    shutdown_requested = 1;
3669
    qemu_notify_event();
3670
3671
}
bellard authored
3672
3673
3674
void qemu_system_powerdown_request(void)
{
    powerdown_requested = 1;
3675
3676
3677
    qemu_notify_event();
}
3678
3679
#ifdef CONFIG_IOTHREAD
static void qemu_system_vmstop_request(int reason)
3680
{
3681
3682
    vmstop_requested = reason;
    qemu_notify_event();
3683
}
3684
#endif
3685
3686
3687
3688
3689
#ifndef _WIN32
static int io_thread_fd = -1;

static void qemu_event_increment(void)
3690
{
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
    static const char byte = 0;

    if (io_thread_fd == -1)
        return;

    write(io_thread_fd, &byte, sizeof(byte));
}

static void qemu_event_read(void *opaque)
{
    int fd = (unsigned long)opaque;
    ssize_t len;

    /* Drain the notify pipe */
    do {
        char buffer[512];
        len = read(fd, buffer, sizeof(buffer));
    } while ((len == -1 && errno == EINTR) || len > 0);
}

static int qemu_event_init(void)
{
    int err;
    int fds[2];

    err = pipe(fds);
    if (err == -1)
        return -errno;

    err = fcntl_setfl(fds[0], O_NONBLOCK);
    if (err < 0)
        goto fail;

    err = fcntl_setfl(fds[1], O_NONBLOCK);
    if (err < 0)
        goto fail;

    qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
                         (void *)(unsigned long)fds[0]);

    io_thread_fd = fds[1];
Jan Kiszka authored
3732
3733
    return 0;
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
fail:
    close(fds[0]);
    close(fds[1]);
    return err;
}
#else
HANDLE qemu_event_handle;

static void dummy_event_handler(void *opaque)
{
}

static int qemu_event_init(void)
{
    qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
    if (!qemu_event_handle) {
        perror("Failed CreateEvent");
        return -1;
    }
    qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3754
3755
3756
    return 0;
}
3757
3758
3759
3760
3761
3762
static void qemu_event_increment(void)
{
    SetEvent(qemu_event_handle);
}
#endif
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
static int cpu_can_run(CPUState *env)
{
    if (env->stop)
        return 0;
    if (env->stopped)
        return 0;
    return 1;
}

#ifndef CONFIG_IOTHREAD
3773
3774
3775
3776
3777
static int qemu_init_main_loop(void)
{
    return qemu_event_init();
}
3778
3779
3780
3781
3782
3783
3784
3785
3786
void qemu_init_vcpu(void *_env)
{
    CPUState *env = _env;

    if (kvm_enabled())
        kvm_init_vcpu(env);
    return;
}
3787
3788
3789
3790
3791
int qemu_cpu_self(void *env)
{
    return 1;
}
3792
3793
3794
3795
3796
3797
3798
3799
static void resume_all_vcpus(void)
{
}

static void pause_all_vcpus(void)
{
}
3800
3801
3802
3803
3804
void qemu_cpu_kick(void *env)
{
    return;
}
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
void qemu_notify_event(void)
{
    CPUState *env = cpu_single_env;

    if (env) {
        cpu_exit(env);
#ifdef USE_KQEMU
        if (env->kqemu_enabled)
            kqemu_cpu_interrupt(env);
#endif
     }
}
3818
3819
3820
#define qemu_mutex_lock_iothread() do { } while (0)
#define qemu_mutex_unlock_iothread() do { } while (0)
3821
3822
3823
3824
3825
void vm_stop(int reason)
{
    do_vm_stop(reason);
}
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
#else /* CONFIG_IOTHREAD */

#include "qemu-thread.h"

QemuMutex qemu_global_mutex;
static QemuMutex qemu_fair_mutex;

static QemuThread io_thread;

static QemuThread *tcg_cpu_thread;
static QemuCond *tcg_halt_cond;

static int qemu_system_ready;
/* cpu creation */
static QemuCond qemu_cpu_cond;
/* system init */
static QemuCond qemu_system_cond;
static QemuCond qemu_pause_cond;

static void block_io_signals(void);
static void unblock_io_signals(void);
static int tcg_has_work(void);

static int qemu_init_main_loop(void)
{
    int ret;

    ret = qemu_event_init();
    if (ret)
        return ret;

    qemu_cond_init(&qemu_pause_cond);
    qemu_mutex_init(&qemu_fair_mutex);
    qemu_mutex_init(&qemu_global_mutex);
    qemu_mutex_lock(&qemu_global_mutex);

    unblock_io_signals();
    qemu_thread_self(&io_thread);

    return 0;
}

static void qemu_wait_io_event(CPUState *env)
{
    while (!tcg_has_work())
        qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);

    qemu_mutex_unlock(&qemu_global_mutex);

    /*
     * Users of qemu_global_mutex can be starved, having no chance
     * to acquire it since this path will get to it first.
     * So use another lock to provide fairness.
     */
    qemu_mutex_lock(&qemu_fair_mutex);
    qemu_mutex_unlock(&qemu_fair_mutex);

    qemu_mutex_lock(&qemu_global_mutex);
    if (env->stop) {
        env->stop = 0;
        env->stopped = 1;
        qemu_cond_signal(&qemu_pause_cond);
    }
}

static int qemu_cpu_exec(CPUState *env);

static void *kvm_cpu_thread_fn(void *arg)
{
    CPUState *env = arg;

    block_io_signals();
    qemu_thread_self(env->thread);

    /* signal CPU creation */
    qemu_mutex_lock(&qemu_global_mutex);
    env->created = 1;
    qemu_cond_signal(&qemu_cpu_cond);

    /* and wait for machine initialization */
    while (!qemu_system_ready)
        qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);

    while (1) {
        if (cpu_can_run(env))
            qemu_cpu_exec(env);
        qemu_wait_io_event(env);
    }

    return NULL;
}

static void tcg_cpu_exec(void);

static void *tcg_cpu_thread_fn(void *arg)
{
    CPUState *env = arg;

    block_io_signals();
    qemu_thread_self(env->thread);

    /* signal CPU creation */
    qemu_mutex_lock(&qemu_global_mutex);
    for (env = first_cpu; env != NULL; env = env->next_cpu)
        env->created = 1;
    qemu_cond_signal(&qemu_cpu_cond);

    /* and wait for machine initialization */
    while (!qemu_system_ready)
        qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);

    while (1) {
        tcg_cpu_exec();
        qemu_wait_io_event(cur_cpu);
    }

    return NULL;
}

void qemu_cpu_kick(void *_env)
{
    CPUState *env = _env;
    qemu_cond_broadcast(env->halt_cond);
    if (kvm_enabled())
        qemu_thread_signal(env->thread, SIGUSR1);
}

int qemu_cpu_self(void *env)
{
    return (cpu_single_env != NULL);
}

static void cpu_signal(int sig)
{
    if (cpu_single_env)
        cpu_exit(cpu_single_env);
}

static void block_io_signals(void)
{
    sigset_t set;
    struct sigaction sigact;

    sigemptyset(&set);
    sigaddset(&set, SIGUSR2);
    sigaddset(&set, SIGIO);
    sigaddset(&set, SIGALRM);
    pthread_sigmask(SIG_BLOCK, &set, NULL);

    sigemptyset(&set);
    sigaddset(&set, SIGUSR1);
    pthread_sigmask(SIG_UNBLOCK, &set, NULL);

    memset(&sigact, 0, sizeof(sigact));
    sigact.sa_handler = cpu_signal;
    sigaction(SIGUSR1, &sigact, NULL);
}

static void unblock_io_signals(void)
{
    sigset_t set;

    sigemptyset(&set);
    sigaddset(&set, SIGUSR2);
    sigaddset(&set, SIGIO);
    sigaddset(&set, SIGALRM);
    pthread_sigmask(SIG_UNBLOCK, &set, NULL);

    sigemptyset(&set);
    sigaddset(&set, SIGUSR1);
    pthread_sigmask(SIG_BLOCK, &set, NULL);
}

static void qemu_signal_lock(unsigned int msecs)
{
    qemu_mutex_lock(&qemu_fair_mutex);

    while (qemu_mutex_trylock(&qemu_global_mutex)) {
        qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
        if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
            break;
    }
    qemu_mutex_unlock(&qemu_fair_mutex);
}

static void qemu_mutex_lock_iothread(void)
{
    if (kvm_enabled()) {
        qemu_mutex_lock(&qemu_fair_mutex);
        qemu_mutex_lock(&qemu_global_mutex);
        qemu_mutex_unlock(&qemu_fair_mutex);
    } else
        qemu_signal_lock(100);
}

static void qemu_mutex_unlock_iothread(void)
{
    qemu_mutex_unlock(&qemu_global_mutex);
}

static int all_vcpus_paused(void)
{
    CPUState *penv = first_cpu;

    while (penv) {
        if (!penv->stopped)
            return 0;
        penv = (CPUState *)penv->next_cpu;
    }

    return 1;
}

static void pause_all_vcpus(void)
{
    CPUState *penv = first_cpu;

    while (penv) {
        penv->stop = 1;
        qemu_thread_signal(penv->thread, SIGUSR1);
        qemu_cpu_kick(penv);
        penv = (CPUState *)penv->next_cpu;
    }

    while (!all_vcpus_paused()) {
        qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
        penv = first_cpu;
        while (penv) {
            qemu_thread_signal(penv->thread, SIGUSR1);
            penv = (CPUState *)penv->next_cpu;
        }
    }
}

static void resume_all_vcpus(void)
{
    CPUState *penv = first_cpu;

    while (penv) {
        penv->stop = 0;
        penv->stopped = 0;
        qemu_thread_signal(penv->thread, SIGUSR1);
        qemu_cpu_kick(penv);
        penv = (CPUState *)penv->next_cpu;
    }
}

static void tcg_init_vcpu(void *_env)
{
    CPUState *env = _env;
    /* share a single thread for all cpus with TCG */
    if (!tcg_cpu_thread) {
        env->thread = qemu_mallocz(sizeof(QemuThread));
        env->halt_cond = qemu_mallocz(sizeof(QemuCond));
        qemu_cond_init(env->halt_cond);
        qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
        while (env->created == 0)
            qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
        tcg_cpu_thread = env->thread;
        tcg_halt_cond = env->halt_cond;
    } else {
        env->thread = tcg_cpu_thread;
        env->halt_cond = tcg_halt_cond;
    }
}

static void kvm_start_vcpu(CPUState *env)
{
    kvm_init_vcpu(env);
    env->thread = qemu_mallocz(sizeof(QemuThread));
    env->halt_cond = qemu_mallocz(sizeof(QemuCond));
    qemu_cond_init(env->halt_cond);
    qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
    while (env->created == 0)
        qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
}

void qemu_init_vcpu(void *_env)
{
    CPUState *env = _env;

    if (kvm_enabled())
        kvm_start_vcpu(env);
    else
        tcg_init_vcpu(env);
}

void qemu_notify_event(void)
{
    qemu_event_increment();
}

void vm_stop(int reason)
{
    QemuThread me;
    qemu_thread_self(&me);

    if (!qemu_thread_equal(&me, &io_thread)) {
        qemu_system_vmstop_request(reason);
        /*
         * FIXME: should not return to device code in case
         * vm_stop() has been requested.
         */
        if (cpu_single_env) {
            cpu_exit(cpu_single_env);
            cpu_single_env->stop = 1;
        }
        return;
    }
    do_vm_stop(reason);
}

#endif
ths authored
4141
#ifdef _WIN32
4142
static void host_main_loop_wait(int *timeout)
aliguori authored
4143
4144
{
    int ret, ret2, i;
4145
4146
    PollingEntry *pe;
4147
4148
4149
4150
4151
4152
    /* XXX: need to suppress polling by better using win32 events */
    ret = 0;
    for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
        ret |= pe->func(pe->opaque);
    }
4153
    if (ret == 0) {
4154
4155
        int err;
        WaitObjects *w = &wait_objects;
4156
aliguori authored
4157
        ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
4158
4159
4160
        if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
            if (w->func[ret - WAIT_OBJECT_0])
                w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
4161
4162
            /* Check for additional signaled events */
4163
            for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
                /* Check if event is signaled */
                ret2 = WaitForSingleObject(w->events[i], 0);
                if(ret2 == WAIT_OBJECT_0) {
                    if (w->func[i])
                        w->func[i](w->opaque[i]);
                } else if (ret2 == WAIT_TIMEOUT) {
                } else {
                    err = GetLastError();
                    fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
4174
4175
                }
            }
4176
4177
4178
        } else if (ret == WAIT_TIMEOUT) {
        } else {
            err = GetLastError();
4179
            fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
4180
        }
4181
    }
aliguori authored
4182
4183
4184
4185

    *timeout = 0;
}
#else
4186
static void host_main_loop_wait(int *timeout)
aliguori authored
4187
4188
{
}
bellard authored
4189
#endif
aliguori authored
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201

void main_loop_wait(int timeout)
{
    IOHandlerRecord *ioh;
    fd_set rfds, wfds, xfds;
    int ret, nfds;
    struct timeval tv;

    qemu_bh_update_timeout(&timeout);

    host_main_loop_wait(&timeout);
bellard authored
4202
4203
    /* poll any events */
    /* XXX: separate device handlers from system ones */
4204
    nfds = -1;
bellard authored
4205
4206
    FD_ZERO(&rfds);
    FD_ZERO(&wfds);
4207
    FD_ZERO(&xfds);
bellard authored
4208
    for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4209
4210
        if (ioh->deleted)
            continue;
bellard authored
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
        if (ioh->fd_read &&
            (!ioh->fd_read_poll ||
             ioh->fd_read_poll(ioh->opaque) != 0)) {
            FD_SET(ioh->fd, &rfds);
            if (ioh->fd > nfds)
                nfds = ioh->fd;
        }
        if (ioh->fd_write) {
            FD_SET(ioh->fd, &wfds);
            if (ioh->fd > nfds)
                nfds = ioh->fd;
        }
    }
4224
aliguori authored
4225
4226
4227
    tv.tv_sec = timeout / 1000;
    tv.tv_usec = (timeout % 1000) * 1000;
4228
#if defined(CONFIG_SLIRP)
4229
    if (slirp_is_inited()) {
4230
4231
4232
        slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
    }
#endif
4233
    qemu_mutex_unlock_iothread();
4234
    ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
4235
    qemu_mutex_lock_iothread();
bellard authored
4236
    if (ret > 0) {
4237
4238
4239
        IOHandlerRecord **pioh;

        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4240
            if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
bellard authored
4241
                ioh->fd_read(ioh->opaque);
bellard authored
4242
            }
4243
            if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
bellard authored
4244
                ioh->fd_write(ioh->opaque);
4245
            }
bellard authored
4246
        }
4247
4248
4249
4250
4251
4252
4253
4254

	/* remove deleted IO handlers */
	pioh = &first_io_handler;
	while (*pioh) {
            ioh = *pioh;
            if (ioh->deleted) {
                *pioh = ioh->next;
                qemu_free(ioh);
4255
            } else
4256
4257
                pioh = &ioh->next;
        }
bellard authored
4258
    }
4259
#if defined(CONFIG_SLIRP)
4260
    if (slirp_is_inited()) {
4261
4262
4263
4264
        if (ret < 0) {
            FD_ZERO(&rfds);
            FD_ZERO(&wfds);
            FD_ZERO(&xfds);
4265
        }
4266
        slirp_select_poll(&rfds, &wfds, &xfds);
bellard authored
4267
    }
4268
4269
#endif
4270
4271
4272
4273
4274
4275
    /* rearm timer, if not periodic */
    if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
        alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
        qemu_rearm_alarm_timer(alarm_timer);
    }
4276
    /* vm time timers */
4277
4278
4279
4280
4281
    if (vm_running) {
        if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
            qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
                qemu_get_clock(vm_clock));
    }
4282
4283
4284
4285
4286

    /* real time timers */
    qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
                    qemu_get_clock(rt_clock));
4287
4288
4289
    /* Check bottom-halves last in case any of the earlier events triggered
       them.  */
    qemu_bh_poll();
4290
bellard authored
4291
4292
}
4293
static int qemu_cpu_exec(CPUState *env)
bellard authored
4294
{
4295
    int ret;
4296
4297
4298
#ifdef CONFIG_PROFILER
    int64_t ti;
#endif
bellard authored
4299
4300
#ifdef CONFIG_PROFILER
4301
    ti = profile_getclock();
4302
#endif
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
    if (use_icount) {
        int64_t count;
        int decr;
        qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
        env->icount_decr.u16.low = 0;
        env->icount_extra = 0;
        count = qemu_next_deadline();
        count = (count + (1 << icount_time_shift) - 1)
                >> icount_time_shift;
        qemu_icount += count;
        decr = (count > 0xffff) ? 0xffff : count;
        count -= decr;
        env->icount_decr.u16.low = decr;
        env->icount_extra = count;
    }
    ret = cpu_exec(env);
4319
#ifdef CONFIG_PROFILER
4320
    qemu_time += profile_getclock() - ti;
4321
#endif
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
    if (use_icount) {
        /* Fold pending instructions back into the
           instruction counter, and clear the interrupt flag.  */
        qemu_icount -= (env->icount_decr.u16.low
                        + env->icount_extra);
        env->icount_decr.u32 = 0;
        env->icount_extra = 0;
    }
    return ret;
}
4333
4334
static void tcg_cpu_exec(void)
{
4335
    int ret = 0;
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347

    if (next_cpu == NULL)
        next_cpu = first_cpu;
    for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
        CPUState *env = cur_cpu = next_cpu;

        if (!vm_running)
            break;
        if (timer_alarm_pending) {
            timer_alarm_pending = 0;
            break;
        }
4348
4349
        if (cpu_can_run(env))
            ret = qemu_cpu_exec(env);
4350
4351
4352
4353
4354
4355
4356
4357
        if (ret == EXCP_DEBUG) {
            gdb_set_stop_cpu(env);
            debug_requested = 1;
            break;
        }
    }
}
4358
4359
static int cpu_has_work(CPUState *env)
{
4360
4361
4362
4363
    if (env->stop)
        return 1;
    if (env->stopped)
        return 0;
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
    if (!env->halted)
        return 1;
    if (qemu_cpu_has_work(env))
        return 1;
    return 0;
}

static int tcg_has_work(void)
{
    CPUState *env;

    for (env = first_cpu; env != NULL; env = env->next_cpu)
        if (cpu_has_work(env))
            return 1;
    return 0;
}

static int qemu_calculate_timeout(void)
{
    int timeout;

    if (!vm_running)
        timeout = 5000;
    else if (tcg_has_work())
        timeout = 0;
    else if (!use_icount)
        timeout = 5000;
    else {
     /* XXX: use timeout computed from timers */
        int64_t add;
        int64_t delta;
        /* Advance virtual time to the next event.  */
        if (use_icount == 1) {
            /* When not using an adaptive execution frequency
               we tend to get badly out of sync with real time,
               so just delay for a reasonable amount of time.  */
            delta = 0;
        } else {
            delta = cpu_get_icount() - cpu_get_clock();
        }
        if (delta > 0) {
            /* If virtual time is ahead of real time then just
               wait for IO.  */
            timeout = (delta / 1000000) + 1;
        } else {
            /* Wait for either IO to occur or the next
               timer event.  */
            add = qemu_next_deadline();
            /* We advance the timer before checking for IO.
               Limit the amount we advance so that early IO
               activity won't get the guest too far ahead.  */
            if (add > 10000000)
                add = 10000000;
            delta += add;
            add = (add + (1 << icount_time_shift) - 1)
                  >> icount_time_shift;
            qemu_icount += add;
            timeout = delta / 1000000;
            if (timeout < 0)
                timeout = 0;
        }
    }

    return timeout;
}

static int vm_can_run(void)
{
    if (powerdown_requested)
        return 0;
    if (reset_requested)
        return 0;
    if (shutdown_requested)
        return 0;
4438
4439
    if (debug_requested)
        return 0;
4440
4441
4442
4443
4444
    return 1;
}

static void main_loop(void)
{
4445
    int r;
4446
4447
4448
4449
4450
4451
#ifdef CONFIG_IOTHREAD
    qemu_system_ready = 1;
    qemu_cond_broadcast(&qemu_system_cond);
#endif
4452
    for (;;) {
4453
        do {
4454
4455
4456
#ifdef CONFIG_PROFILER
            int64_t ti;
#endif
4457
#ifndef CONFIG_IOTHREAD
4458
            tcg_cpu_exec();
4459
#endif
4460
#ifdef CONFIG_PROFILER
4461
            ti = profile_getclock();
4462
#endif
4463
4464
4465
#ifdef CONFIG_IOTHREAD
            main_loop_wait(1000);
#else
4466
            main_loop_wait(qemu_calculate_timeout());
4467
#endif
4468
#ifdef CONFIG_PROFILER
4469
            dev_time += profile_getclock() - ti;
4470
#endif
4471
        } while (vm_can_run());
4472
4473
4474
        if (qemu_debug_requested())
            vm_stop(EXCP_DEBUG);
4475
4476
4477
4478
4479
4480
4481
        if (qemu_shutdown_requested()) {
            if (no_shutdown) {
                vm_stop(0);
                no_shutdown = 0;
            } else
                break;
        }
4482
4483
        if (qemu_reset_requested()) {
            pause_all_vcpus();
4484
            qemu_system_reset();
4485
4486
            resume_all_vcpus();
        }
4487
4488
        if (qemu_powerdown_requested())
            qemu_system_powerdown();
4489
4490
        if ((r = qemu_vmstop_requested()))
            vm_stop(r);
bellard authored
4491
    }
4492
    pause_all_vcpus();
bellard authored
4493
4494
}
pbrook authored
4495
4496
static void version(void)
{
pbrook authored
4497
    printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
pbrook authored
4498
4499
}
4500
static void help(int exitcode)
4501
{
pbrook authored
4502
4503
    version();
    printf("usage: %s [options] [disk_image]\n"
4504
           "\n"
4505
           "'disk_image' is a raw hard image image for IDE hard disk 0\n"
bellard authored
4506
           "\n"
4507
4508
4509
4510
4511
4512
4513
#define DEF(option, opt_arg, opt_enum, opt_help)        \
           opt_help
#define DEFHEADING(text) stringify(text) "\n"
#include "qemu-options.h"
#undef DEF
#undef DEFHEADING
#undef GEN_DOCS
4514
           "\n"
bellard authored
4515
           "During emulation, the following keys are useful:\n"
bellard authored
4516
4517
4518
           "ctrl-alt-f      toggle full screen\n"
           "ctrl-alt-n      switch to virtual console 'n'\n"
           "ctrl-alt        toggle mouse and keyboard grab\n"
bellard authored
4519
4520
4521
           "\n"
           "When using -nographic, press 'ctrl-a h' to get some help.\n"
           ,
4522
           "qemu",
4523
           DEFAULT_RAM_SIZE,
bellard authored
4524
#ifndef _WIN32
4525
           DEFAULT_NETWORK_SCRIPT,
4526
           DEFAULT_NETWORK_DOWN_SCRIPT,
bellard authored
4527
#endif
4528
           DEFAULT_GDBSTUB_PORT,
4529
           "/tmp/qemu.log");
4530
    exit(exitcode);
4531
4532
}
4533
4534
4535
#define HAS_ARG 0x0001

enum {
4536
4537
4538
4539
4540
4541
4542
#define DEF(option, opt_arg, opt_enum, opt_help)        \
    opt_enum,
#define DEFHEADING(text)
#include "qemu-options.h"
#undef DEF
#undef DEFHEADING
#undef GEN_DOCS
4543
4544
4545
4546
4547
4548
4549
4550
};

typedef struct QEMUOption {
    const char *name;
    int flags;
    int index;
} QEMUOption;
blueswir1 authored
4551
static const QEMUOption qemu_options[] = {
4552
    { "h", 0, QEMU_OPTION_h },
4553
4554
4555
4556
4557
4558
4559
#define DEF(option, opt_arg, opt_enum, opt_help)        \
    { option, opt_arg, opt_enum },
#define DEFHEADING(text)
#include "qemu-options.h"
#undef DEF
#undef DEFHEADING
#undef GEN_DOCS
4560
    { NULL },
bellard authored
4561
4562
};
4563
#ifdef HAS_AUDIO
4564
struct soundhw soundhw[] = {
4565
#ifdef HAS_AUDIO_CHOICE
aurel32 authored
4566
#if defined(TARGET_I386) || defined(TARGET_MIPS)
4567
4568
4569
4570
4571
4572
4573
4574
    {
        "pcspk",
        "PC speaker",
        0,
        1,
        { .init_isa = pcspk_audio_init }
    },
#endif
4575
4576

#ifdef CONFIG_SB16
4577
4578
4579
4580
4581
4582
4583
    {
        "sb16",
        "Creative Sound Blaster 16",
        0,
        1,
        { .init_isa = SB16_init }
    },
4584
#endif
4585
malc authored
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
#ifdef CONFIG_CS4231A
    {
        "cs4231a",
        "CS4231A",
        0,
        1,
        { .init_isa = cs4231a_init }
    },
#endif
4596
#ifdef CONFIG_ADLIB
4597
4598
    {
        "adlib",
4599
#ifdef HAS_YMF262
4600
        "Yamaha YMF262 (OPL3)",
4601
#else
4602
        "Yamaha YM3812 (OPL2)",
4603
#endif
4604
4605
4606
4607
        0,
        1,
        { .init_isa = Adlib_init }
    },
4608
#endif
4609
4610
#ifdef CONFIG_GUS
4611
4612
4613
4614
4615
4616
4617
    {
        "gus",
        "Gravis Ultrasound GF1",
        0,
        1,
        { .init_isa = GUS_init }
    },
4618
#endif
4619
4620
#ifdef CONFIG_AC97
balrog authored
4621
4622
4623
4624
4625
4626
4627
    {
        "ac97",
        "Intel 82801AA AC97 Audio",
        0,
        0,
        { .init_pci = ac97_init }
    },
4628
#endif
balrog authored
4629
4630
#ifdef CONFIG_ES1370
4631
4632
4633
4634
4635
4636
4637
    {
        "es1370",
        "ENSONIQ AudioPCI ES1370",
        0,
        0,
        { .init_pci = es1370_init }
    },
4638
#endif
4639
4640
4641
#endif /* HAS_AUDIO_CHOICE */
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
    { NULL, NULL, 0, 0, { NULL } }
};

static void select_soundhw (const char *optarg)
{
    struct soundhw *c;

    if (*optarg == '?') {
    show_valid_cards:

        printf ("Valid sound card names (comma separated):\n");
        for (c = soundhw; c->name; ++c) {
            printf ("%-11s %s\n", c->name, c->descr);
        }
        printf ("\n-soundhw all will enable all of the above\n");
4657
4658
4659
        exit (*optarg != '?');
    }
    else {
4660
        size_t l;
4661
4662
4663
4664
        const char *p;
        char *e;
        int bad_card = 0;
4665
4666
4667
4668
4669
4670
        if (!strcmp (optarg, "all")) {
            for (c = soundhw; c->name; ++c) {
                c->enabled = 1;
            }
            return;
        }
4671
4672
        p = optarg;
4673
4674
4675
        while (*p) {
            e = strchr (p, ',');
            l = !e ? strlen (p) : (size_t) (e - p);
4676
4677
4678
4679

            for (c = soundhw; c->name; ++c) {
                if (!strncmp (c->name, p, l)) {
                    c->enabled = 1;
4680
4681
4682
                    break;
                }
            }
4683
4684

            if (!c->name) {
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
                if (l > 80) {
                    fprintf (stderr,
                             "Unknown sound card name (too big to show)\n");
                }
                else {
                    fprintf (stderr, "Unknown sound card name `%.*s'\n",
                             (int) l, p);
                }
                bad_card = 1;
            }
            p += l + (e != NULL);
        }

        if (bad_card)
            goto show_valid_cards;
    }
}
#endif
4704
4705
4706
4707
static void select_vgahw (const char *p)
{
    const char *opts;
4708
4709
4710
    cirrus_vga_enabled = 0;
    std_vga_enabled = 0;
    vmsvga_enabled = 0;
4711
    xenfb_enabled = 0;
4712
    if (strstart(p, "std", &opts)) {
4713
        std_vga_enabled = 1;
4714
4715
4716
4717
    } else if (strstart(p, "cirrus", &opts)) {
        cirrus_vga_enabled = 1;
    } else if (strstart(p, "vmware", &opts)) {
        vmsvga_enabled = 1;
4718
4719
    } else if (strstart(p, "xenfb", &opts)) {
        xenfb_enabled = 1;
4720
    } else if (!strstart(p, "none", &opts)) {
4721
4722
4723
4724
    invalid_vga:
        fprintf(stderr, "Unknown vga type: %s\n", p);
        exit(1);
    }
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
    while (*opts) {
        const char *nextopt;

        if (strstart(opts, ",retrace=", &nextopt)) {
            opts = nextopt;
            if (strstart(opts, "dumb", &nextopt))
                vga_retrace_method = VGA_RETRACE_DUMB;
            else if (strstart(opts, "precise", &nextopt))
                vga_retrace_method = VGA_RETRACE_PRECISE;
            else goto invalid_vga;
        } else goto invalid_vga;
        opts = nextopt;
    }
4738
4739
}
4740
4741
4742
4743
4744
4745
4746
4747
#ifdef _WIN32
static BOOL WINAPI qemu_ctrl_handler(DWORD type)
{
    exit(STATUS_CONTROL_C_EXIT);
    return TRUE;
}
#endif
4748
int qemu_uuid_parse(const char *str, uint8_t *uuid)
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
{
    int ret;

    if(strlen(str) != 36)
        return -1;

    ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
            &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
            &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);

    if(ret != 16)
        return -1;
4762
4763
4764
4765
#ifdef TARGET_I386
    smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
#endif
4766
4767
4768
    return 0;
}
bellard authored
4769
#define MAX_NET_CLIENTS 32
4770
4771
4772
4773
4774
4775
4776
4777
#ifndef _WIN32

static void termsig_handler(int signal)
{
    qemu_system_shutdown_request();
}
blueswir1 authored
4778
static void termsig_setup(void)
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
{
    struct sigaction act;

    memset(&act, 0, sizeof(act));
    act.sa_handler = termsig_handler;
    sigaction(SIGINT,  &act, NULL);
    sigaction(SIGHUP,  &act, NULL);
    sigaction(SIGTERM, &act, NULL);
}

#endif
4791
int main(int argc, char **argv, char **envp)
4792
{
4793
#ifdef CONFIG_GDBSTUB
4794
    const char *gdbstub_dev = NULL;
4795
#endif
4796
    uint32_t boot_devices_bitmap = 0;
4797
    int i;
4798
    int snapshot, linux_boot, net_boot;
4799
    const char *initrd_filename;
4800
    const char *kernel_filename, *kernel_cmdline;
4801
    const char *boot_devices = "";
4802
    DisplayState *ds;
4803
    DisplayChangeListener *dcl;
4804
    int cyls, heads, secs, translation;
4805
    const char *net_clients[MAX_NET_CLIENTS];
bellard authored
4806
    int nb_net_clients;
4807
4808
    const char *bt_opts[MAX_BT_CMDLINE];
    int nb_bt_opts;
4809
    int hda_index;
4810
4811
    int optind;
    const char *r, *optarg;
4812
    CharDriverState *monitor_hd = NULL;
4813
4814
    const char *monitor_device;
    const char *serial_devices[MAX_SERIAL_PORTS];
4815
    int serial_device_index;
4816
    const char *parallel_devices[MAX_PARALLEL_PORTS];
4817
    int parallel_device_index;
4818
4819
    const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
    int virtio_console_index;
4820
    const char *loadvm = NULL;
4821
    QEMUMachine *machine;
4822
    const char *cpu_model;
4823
    const char *usb_devices[MAX_USB_CMDLINE];
bellard authored
4824
    int usb_devices_index;
4825
#ifndef _WIN32
4826
    int fds[2];
4827
#endif
4828
    int tb_size;
4829
    const char *pid_file = NULL;
4830
    const char *incoming = NULL;
4831
#ifndef _WIN32
4832
4833
    int fd = 0;
    struct passwd *pwd = NULL;
4834
4835
    const char *chroot_dir = NULL;
    const char *run_as = NULL;
4836
#endif
4837
    CPUState *env;
4838
4839
4840
    qemu_cache_utils_init(envp);
4841
    LIST_INIT (&vm_change_state_head);
4842
4843
4844
4845
4846
4847
4848
4849
#ifndef _WIN32
    {
        struct sigaction act;
        sigfillset(&act.sa_mask);
        act.sa_flags = 0;
        act.sa_handler = SIG_IGN;
        sigaction(SIGPIPE, &act, NULL);
    }
4850
4851
#else
    SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
    /* Note: cpu_interrupt() is currently not SMP safe, so we force
       QEMU to run on a single CPU */
    {
        HANDLE h;
        DWORD mask, smask;
        int i;
        h = GetCurrentProcess();
        if (GetProcessAffinityMask(h, &mask, &smask)) {
            for(i = 0; i < 32; i++) {
                if (mask & (1 << i))
                    break;
            }
            if (i != 32) {
                mask = 1 << i;
                SetProcessAffinityMask(h, mask);
            }
        }
    }
4870
#endif
4871
4872
4873
    register_machines();
    machine = first_machine;
4874
    cpu_model = NULL;
bellard authored
4875
    initrd_filename = NULL;
4876
    ram_size = 0;
4877
    vga_ram_size = VGA_RAM_SIZE;
4878
    snapshot = 0;
4879
    nographic = 0;
balrog authored
4880
    curses = 0;
4881
4882
    kernel_filename = NULL;
    kernel_cmdline = "";
4883
    cyls = heads = secs = 0;
4884
    translation = BIOS_ATA_TRANSLATION_AUTO;
4885
    monitor_device = "vc:80Cx24C";
4886
aurel32 authored
4887
    serial_devices[0] = "vc:80Cx24C";
4888
    for(i = 1; i < MAX_SERIAL_PORTS; i++)
4889
        serial_devices[i] = NULL;
4890
    serial_device_index = 0;
4891
4892
    parallel_devices[0] = "vc:80Cx24C";
4893
    for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4894
        parallel_devices[i] = NULL;
4895
    parallel_device_index = 0;
4896
4897
    for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4898
4899
4900
        virtio_consoles[i] = NULL;
    virtio_console_index = 0;
4901
4902
4903
4904
4905
    for (i = 0; i < MAX_NODES; i++) {
        node_mem[i] = 0;
        node_cpumask[i] = 0;
    }
bellard authored
4906
    usb_devices_index = 0;
4907
bellard authored
4908
    nb_net_clients = 0;
4909
    nb_bt_opts = 0;
4910
4911
    nb_drives = 0;
    nb_drives_opt = 0;
4912
    nb_numa_nodes = 0;
4913
    hda_index = -1;
bellard authored
4914
4915

    nb_nics = 0;
4916
4917
    tb_size = 0;
4918
4919
    autostart= 1;
4920
    optind = 1;
4921
    for(;;) {
4922
        if (optind >= argc)
4923
            break;
4924
4925
        r = argv[optind];
        if (r[0] != '-') {
4926
	    hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
4927
4928
4929
4930
        } else {
            const QEMUOption *popt;

            optind++;
4931
4932
4933
            /* Treat --foo the same as -foo.  */
            if (r[1] == '-')
                r++;
4934
4935
4936
            popt = qemu_options;
            for(;;) {
                if (!popt->name) {
4937
                    fprintf(stderr, "%s: invalid option -- '%s'\n",
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
                            argv[0], r);
                    exit(1);
                }
                if (!strcmp(popt->name, r + 1))
                    break;
                popt++;
            }
            if (popt->flags & HAS_ARG) {
                if (optind >= argc) {
                    fprintf(stderr, "%s: option '%s' requires an argument\n",
                            argv[0], r);
                    exit(1);
                }
                optarg = argv[optind++];
            } else {
                optarg = NULL;
            }

            switch(popt->index) {
4957
4958
4959
4960
4961
4962
4963
            case QEMU_OPTION_M:
                machine = find_machine(optarg);
                if (!machine) {
                    QEMUMachine *m;
                    printf("Supported machines are:\n");
                    for(m = first_machine; m != NULL; m = m->next) {
                        printf("%-10s %s%s\n",
4964
                               m->name, m->desc,
4965
4966
                               m == first_machine ? " (default)" : "");
                    }
4967
                    exit(*optarg != '?');
4968
4969
                }
                break;
4970
4971
            case QEMU_OPTION_cpu:
                /* hw initialization will check this */
4972
                if (*optarg == '?') {
j_mayer authored
4973
4974
4975
/* XXX: implement xxx_cpu_list for targets that still miss it */
#if defined(cpu_list)
                    cpu_list(stdout, &fprintf);
4976
#endif
4977
                    exit(0);
4978
4979
4980
4981
                } else {
                    cpu_model = optarg;
                }
                break;
4982
            case QEMU_OPTION_initrd:
bellard authored
4983
4984
                initrd_filename = optarg;
                break;
4985
            case QEMU_OPTION_hda:
4986
                if (cyls == 0)
4987
                    hda_index = drive_add(optarg, HD_ALIAS, 0);
4988
                else
4989
                    hda_index = drive_add(optarg, HD_ALIAS
4990
			     ",cyls=%d,heads=%d,secs=%d%s",
4991
                             0, cyls, heads, secs,
4992
4993
4994
4995
4996
                             translation == BIOS_ATA_TRANSLATION_LBA ?
                                 ",trans=lba" :
                             translation == BIOS_ATA_TRANSLATION_NONE ?
                                 ",trans=none" : "");
                 break;
4997
            case QEMU_OPTION_hdb:
4998
4999
            case QEMU_OPTION_hdc:
            case QEMU_OPTION_hdd:
5000
                drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
bellard authored
5001
                break;
5002
            case QEMU_OPTION_drive:
5003
                drive_add(NULL, "%s", optarg);
5004
	        break;
5005
            case QEMU_OPTION_mtdblock:
5006
                drive_add(optarg, MTD_ALIAS);
5007
                break;
5008
            case QEMU_OPTION_sd:
5009
                drive_add(optarg, SD_ALIAS);
5010
                break;
5011
            case QEMU_OPTION_pflash:
5012
                drive_add(optarg, PFLASH_ALIAS);
5013
                break;
5014
            case QEMU_OPTION_snapshot:
5015
5016
                snapshot = 1;
                break;
5017
            case QEMU_OPTION_hdachs:
5018
5019
5020
5021
                {
                    const char *p;
                    p = optarg;
                    cyls = strtol(p, (char **)&p, 0);
5022
5023
                    if (cyls < 1 || cyls > 16383)
                        goto chs_fail;
5024
5025
5026
5027
                    if (*p != ',')
                        goto chs_fail;
                    p++;
                    heads = strtol(p, (char **)&p, 0);
5028
5029
                    if (heads < 1 || heads > 16)
                        goto chs_fail;
5030
5031
5032
5033
                    if (*p != ',')
                        goto chs_fail;
                    p++;
                    secs = strtol(p, (char **)&p, 0);
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
                    if (secs < 1 || secs > 63)
                        goto chs_fail;
                    if (*p == ',') {
                        p++;
                        if (!strcmp(p, "none"))
                            translation = BIOS_ATA_TRANSLATION_NONE;
                        else if (!strcmp(p, "lba"))
                            translation = BIOS_ATA_TRANSLATION_LBA;
                        else if (!strcmp(p, "auto"))
                            translation = BIOS_ATA_TRANSLATION_AUTO;
                        else
                            goto chs_fail;
                    } else if (*p != '\0') {
5047
                    chs_fail:
5048
5049
                        fprintf(stderr, "qemu: invalid physical CHS format\n");
                        exit(1);
5050
                    }
5051
		    if (hda_index != -1)
5052
5053
5054
5055
                        snprintf(drives_opt[hda_index].opt,
                                 sizeof(drives_opt[hda_index].opt),
                                 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
                                 0, cyls, heads, secs,
5056
5057
5058
5059
			         translation == BIOS_ATA_TRANSLATION_LBA ?
			     	    ",trans=lba" :
			         translation == BIOS_ATA_TRANSLATION_NONE ?
			             ",trans=none" : "");
5060
5061
                }
                break;
5062
5063
5064
5065
5066
5067
5068
            case QEMU_OPTION_numa:
                if (nb_numa_nodes >= MAX_NODES) {
                    fprintf(stderr, "qemu: too many NUMA nodes\n");
                    exit(1);
                }
                numa_add(optarg);
                break;
5069
            case QEMU_OPTION_nographic:
5070
5071
                nographic = 1;
                break;
balrog authored
5072
5073
5074
5075
5076
#ifdef CONFIG_CURSES
            case QEMU_OPTION_curses:
                curses = 1;
                break;
#endif
5077
5078
5079
            case QEMU_OPTION_portrait:
                graphic_rotate = 1;
                break;
5080
            case QEMU_OPTION_kernel:
5081
5082
                kernel_filename = optarg;
                break;
5083
            case QEMU_OPTION_append:
5084
                kernel_cmdline = optarg;
5085
                break;
5086
            case QEMU_OPTION_cdrom:
5087
                drive_add(optarg, CDROM_ALIAS);
5088
                break;
5089
            case QEMU_OPTION_boot:
5090
5091
5092
5093
                boot_devices = optarg;
                /* We just do some generic consistency checks */
                {
                    /* Could easily be extended to 64 devices if needed */
5094
                    const char *p;
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117

                    boot_devices_bitmap = 0;
                    for (p = boot_devices; *p != '\0'; p++) {
                        /* Allowed boot devices are:
                         * a b     : floppy disk drives
                         * c ... f : IDE disk drives
                         * g ... m : machine implementation dependant drives
                         * n ... p : network devices
                         * It's up to each machine implementation to check
                         * if the given boot devices match the actual hardware
                         * implementation and firmware features.
                         */
                        if (*p < 'a' || *p > 'q') {
                            fprintf(stderr, "Invalid boot device '%c'\n", *p);
                            exit(1);
                        }
                        if (boot_devices_bitmap & (1 << (*p - 'a'))) {
                            fprintf(stderr,
                                    "Boot device '%c' was given twice\n",*p);
                            exit(1);
                        }
                        boot_devices_bitmap |= 1 << (*p - 'a');
                    }
5118
5119
                }
                break;
5120
5121
            case QEMU_OPTION_fda:
            case QEMU_OPTION_fdb:
5122
                drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
5123
                break;
5124
5125
5126
5127
5128
#ifdef TARGET_I386
            case QEMU_OPTION_no_fd_bootchk:
                fd_bootchk = 0;
                break;
#endif
bellard authored
5129
5130
5131
            case QEMU_OPTION_net:
                if (nb_net_clients >= MAX_NET_CLIENTS) {
                    fprintf(stderr, "qemu: too many network clients\n");
5132
5133
                    exit(1);
                }
5134
                net_clients[nb_net_clients] = optarg;
bellard authored
5135
                nb_net_clients++;
bellard authored
5136
                break;
bellard authored
5137
5138
5139
#ifdef CONFIG_SLIRP
            case QEMU_OPTION_tftp:
		tftp_prefix = optarg;
bellard authored
5140
                break;
5141
5142
5143
            case QEMU_OPTION_bootp:
                bootp_filename = optarg;
                break;
bellard authored
5144
#ifndef _WIN32
bellard authored
5145
5146
5147
            case QEMU_OPTION_smb:
		net_slirp_smb(optarg);
                break;
bellard authored
5148
#endif
bellard authored
5149
            case QEMU_OPTION_redir:
5150
                net_slirp_redir(NULL, optarg);
bellard authored
5151
                break;
bellard authored
5152
#endif
5153
5154
5155
5156
5157
5158
5159
            case QEMU_OPTION_bt:
                if (nb_bt_opts >= MAX_BT_CMDLINE) {
                    fprintf(stderr, "qemu: too many bluetooth options\n");
                    exit(1);
                }
                bt_opts[nb_bt_opts++] = optarg;
                break;
5160
5161
5162
5163
5164
5165
5166
5167
5168
#ifdef HAS_AUDIO
            case QEMU_OPTION_audio_help:
                AUD_help ();
                exit (0);
                break;
            case QEMU_OPTION_soundhw:
                select_soundhw (optarg);
                break;
#endif
5169
            case QEMU_OPTION_h:
5170
                help(0);
5171
                break;
pbrook authored
5172
5173
5174
5175
            case QEMU_OPTION_version:
                version();
                exit(0);
                break;
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
            case QEMU_OPTION_m: {
                uint64_t value;
                char *ptr;

                value = strtoul(optarg, &ptr, 10);
                switch (*ptr) {
                case 0: case 'M': case 'm':
                    value <<= 20;
                    break;
                case 'G': case 'g':
                    value <<= 30;
                    break;
                default:
                    fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5190
5191
                    exit(1);
                }
5192
5193
5194

                /* On 32-bit hosts, QEMU is limited by virtual address space */
                if (value > (2047 << 20)
5195
#ifndef CONFIG_KQEMU
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
                    && HOST_LONG_BITS == 32
#endif
                    ) {
                    fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
                    exit(1);
                }
                if (value != (uint64_t)(ram_addr_t)value) {
                    fprintf(stderr, "qemu: ram size too large\n");
                    exit(1);
                }
                ram_size = value;
5207
                break;
5208
            }
5209
5210
5211
            case QEMU_OPTION_d:
                {
                    int mask;
5212
                    const CPULogItem *item;
5213
5214
5215
5216
                    mask = cpu_str_to_log_mask(optarg);
                    if (!mask) {
                        printf("Log items (comma separated):\n");
5217
5218
5219
5220
                    for(item = cpu_log_items; item->mask != 0; item++) {
                        printf("%-10s %s\n", item->name, item->help);
                    }
                    exit(1);
5221
5222
                    }
                    cpu_set_log(mask);
5223
                }
5224
                break;
5225
#ifdef CONFIG_GDBSTUB
5226
            case QEMU_OPTION_s:
5227
                gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5228
                break;
5229
5230
            case QEMU_OPTION_gdb:
                gdbstub_dev = optarg;
5231
                break;
5232
#endif
5233
5234
5235
            case QEMU_OPTION_L:
                bios_dir = optarg;
                break;
5236
5237
5238
            case QEMU_OPTION_bios:
                bios_name = optarg;
                break;
5239
5240
5241
            case QEMU_OPTION_singlestep:
                singlestep = 1;
                break;
5242
            case QEMU_OPTION_S:
5243
                autostart = 0;
5244
                break;
5245
#ifndef _WIN32
5246
5247
5248
	    case QEMU_OPTION_k:
		keyboard_layout = optarg;
		break;
5249
#endif
bellard authored
5250
5251
5252
            case QEMU_OPTION_localtime:
                rtc_utc = 0;
                break;
5253
5254
            case QEMU_OPTION_vga:
                select_vgahw (optarg);
5255
                break;
5256
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
            case QEMU_OPTION_g:
                {
                    const char *p;
                    int w, h, depth;
                    p = optarg;
                    w = strtol(p, (char **)&p, 10);
                    if (w <= 0) {
                    graphic_error:
                        fprintf(stderr, "qemu: invalid resolution or depth\n");
                        exit(1);
                    }
                    if (*p != 'x')
                        goto graphic_error;
                    p++;
                    h = strtol(p, (char **)&p, 10);
                    if (h <= 0)
                        goto graphic_error;
                    if (*p == 'x') {
                        p++;
                        depth = strtol(p, (char **)&p, 10);
5277
                        if (depth != 8 && depth != 15 && depth != 16 &&
5278
5279
5280
5281
5282
5283
5284
                            depth != 24 && depth != 32)
                            goto graphic_error;
                    } else if (*p == '\0') {
                        depth = graphic_depth;
                    } else {
                        goto graphic_error;
                    }
5285
5286
5287
5288
5289
5290
                    graphic_width = w;
                    graphic_height = h;
                    graphic_depth = depth;
                }
                break;
5291
#endif
5292
5293
5294
5295
5296
5297
5298
5299
            case QEMU_OPTION_echr:
                {
                    char *r;
                    term_escape_char = strtol(optarg, &r, 0);
                    if (r == optarg)
                        printf("Bad argument to echr\n");
                    break;
                }
bellard authored
5300
            case QEMU_OPTION_monitor:
5301
                monitor_device = optarg;
bellard authored
5302
5303
                break;
            case QEMU_OPTION_serial:
5304
5305
5306
5307
                if (serial_device_index >= MAX_SERIAL_PORTS) {
                    fprintf(stderr, "qemu: too many serial ports\n");
                    exit(1);
                }
5308
                serial_devices[serial_device_index] = optarg;
5309
                serial_device_index++;
bellard authored
5310
                break;
5311
5312
5313
5314
5315
5316
5317
5318
            case QEMU_OPTION_virtiocon:
                if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
                    fprintf(stderr, "qemu: too many virtio consoles\n");
                    exit(1);
                }
                virtio_consoles[virtio_console_index] = optarg;
                virtio_console_index++;
                break;
5319
5320
5321
5322
5323
            case QEMU_OPTION_parallel:
                if (parallel_device_index >= MAX_PARALLEL_PORTS) {
                    fprintf(stderr, "qemu: too many parallel ports\n");
                    exit(1);
                }
5324
                parallel_devices[parallel_device_index] = optarg;
5325
5326
                parallel_device_index++;
                break;
5327
5328
5329
5330
5331
5332
	    case QEMU_OPTION_loadvm:
		loadvm = optarg;
		break;
            case QEMU_OPTION_full_screen:
                full_screen = 1;
                break;
5333
#ifdef CONFIG_SDL
5334
5335
5336
            case QEMU_OPTION_no_frame:
                no_frame = 1;
                break;
5337
5338
5339
            case QEMU_OPTION_alt_grab:
                alt_grab = 1;
                break;
5340
5341
5342
            case QEMU_OPTION_no_quit:
                no_quit = 1;
                break;
5343
5344
5345
            case QEMU_OPTION_sdl:
                sdl = 1;
                break;
5346
#endif
bellard authored
5347
            case QEMU_OPTION_pidfile:
5348
                pid_file = optarg;
bellard authored
5349
                break;
5350
5351
5352
5353
#ifdef TARGET_I386
            case QEMU_OPTION_win2k_hack:
                win2k_install_hack = 1;
                break;
5354
5355
5356
            case QEMU_OPTION_rtc_td_hack:
                rtc_td_hack = 1;
                break;
5357
5358
5359
5360
5361
5362
            case QEMU_OPTION_acpitable:
                if(acpi_table_add(optarg) < 0) {
                    fprintf(stderr, "Wrong acpi table provided\n");
                    exit(1);
                }
                break;
5363
5364
5365
5366
5367
5368
            case QEMU_OPTION_smbios:
                if(smbios_entry_add(optarg) < 0) {
                    fprintf(stderr, "Wrong smbios provided\n");
                    exit(1);
                }
                break;
5369
#endif
5370
#ifdef CONFIG_KQEMU
bellard authored
5371
5372
5373
            case QEMU_OPTION_no_kqemu:
                kqemu_allowed = 0;
                break;
5374
5375
5376
            case QEMU_OPTION_kernel_kqemu:
                kqemu_allowed = 2;
                break;
bellard authored
5377
#endif
aliguori authored
5378
5379
5380
#ifdef CONFIG_KVM
            case QEMU_OPTION_enable_kvm:
                kvm_allowed = 1;
5381
#ifdef CONFIG_KQEMU
aliguori authored
5382
5383
5384
5385
                kqemu_allowed = 0;
#endif
                break;
#endif
bellard authored
5386
5387
5388
            case QEMU_OPTION_usb:
                usb_enabled = 1;
                break;
bellard authored
5389
5390
            case QEMU_OPTION_usbdevice:
                usb_enabled = 1;
pbrook authored
5391
                if (usb_devices_index >= MAX_USB_CMDLINE) {
bellard authored
5392
5393
5394
                    fprintf(stderr, "Too many USB devices\n");
                    exit(1);
                }
5395
                usb_devices[usb_devices_index] = optarg;
bellard authored
5396
5397
                usb_devices_index++;
                break;
bellard authored
5398
5399
            case QEMU_OPTION_smp:
                smp_cpus = atoi(optarg);
5400
                if (smp_cpus < 1) {
bellard authored
5401
5402
5403
5404
                    fprintf(stderr, "Invalid number of CPUs\n");
                    exit(1);
                }
                break;
bellard authored
5405
	    case QEMU_OPTION_vnc:
5406
		vnc_display = optarg;
bellard authored
5407
		break;
5408
#ifdef TARGET_I386
bellard authored
5409
5410
5411
            case QEMU_OPTION_no_acpi:
                acpi_enabled = 0;
                break;
5412
5413
5414
            case QEMU_OPTION_no_hpet:
                no_hpet = 1;
                break;
5415
#endif
bellard authored
5416
5417
5418
            case QEMU_OPTION_no_reboot:
                no_reboot = 1;
                break;
aurel32 authored
5419
5420
5421
            case QEMU_OPTION_no_shutdown:
                no_shutdown = 1;
                break;
5422
5423
5424
            case QEMU_OPTION_show_cursor:
                cursor_hide = 0;
                break;
5425
5426
5427
5428
5429
5430
5431
            case QEMU_OPTION_uuid:
                if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
                    fprintf(stderr, "Fail to parse UUID string."
                            " Wrong format.\n");
                    exit(1);
                }
                break;
5432
#ifndef _WIN32
5433
5434
5435
	    case QEMU_OPTION_daemonize:
		daemonize = 1;
		break;
5436
#endif
5437
5438
5439
5440
5441
5442
5443
5444
	    case QEMU_OPTION_option_rom:
		if (nb_option_roms >= MAX_OPTION_ROMS) {
		    fprintf(stderr, "Too many option ROMs\n");
		    exit(1);
		}
		option_rom[nb_option_roms] = optarg;
		nb_option_roms++;
		break;
5445
#if defined(TARGET_ARM) || defined(TARGET_M68K)
5446
5447
5448
            case QEMU_OPTION_semihosting:
                semihosting_enabled = 1;
                break;
5449
#endif
5450
5451
5452
            case QEMU_OPTION_name:
                qemu_name = optarg;
                break;
5453
#if defined(TARGET_SPARC) || defined(TARGET_PPC)
5454
5455
5456
5457
5458
5459
5460
5461
5462
            case QEMU_OPTION_prom_env:
                if (nb_prom_envs >= MAX_PROM_ENVS) {
                    fprintf(stderr, "Too many prom variables\n");
                    exit(1);
                }
                prom_envs[nb_prom_envs] = optarg;
                nb_prom_envs++;
                break;
#endif
5463
5464
5465
#ifdef TARGET_ARM
            case QEMU_OPTION_old_param:
                old_param = 1;
5466
                break;
5467
#endif
5468
5469
5470
            case QEMU_OPTION_clock:
                configure_alarms(optarg);
                break;
bellard authored
5471
5472
5473
            case QEMU_OPTION_startdate:
                {
                    struct tm tm;
5474
                    time_t rtc_start_date;
bellard authored
5475
                    if (!strcmp(optarg, "now")) {
5476
                        rtc_date_offset = -1;
bellard authored
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
                    } else {
                        if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
                               &tm.tm_year,
                               &tm.tm_mon,
                               &tm.tm_mday,
                               &tm.tm_hour,
                               &tm.tm_min,
                               &tm.tm_sec) == 6) {
                            /* OK */
                        } else if (sscanf(optarg, "%d-%d-%d",
                                          &tm.tm_year,
                                          &tm.tm_mon,
                                          &tm.tm_mday) == 3) {
                            tm.tm_hour = 0;
                            tm.tm_min = 0;
                            tm.tm_sec = 0;
                        } else {
                            goto date_fail;
                        }
                        tm.tm_year -= 1900;
                        tm.tm_mon--;
bellard authored
5498
                        rtc_start_date = mktimegm(&tm);
bellard authored
5499
5500
5501
5502
5503
5504
                        if (rtc_start_date == -1) {
                        date_fail:
                            fprintf(stderr, "Invalid date format. Valid format are:\n"
                                    "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
                            exit(1);
                        }
5505
                        rtc_date_offset = time(NULL) - rtc_start_date;
bellard authored
5506
5507
5508
                    }
                }
                break;
5509
5510
5511
5512
5513
            case QEMU_OPTION_tb_size:
                tb_size = strtol(optarg, NULL, 0);
                if (tb_size < 0)
                    tb_size = 0;
                break;
pbrook authored
5514
5515
5516
5517
5518
5519
5520
5521
            case QEMU_OPTION_icount:
                use_icount = 1;
                if (strcmp(optarg, "auto") == 0) {
                    icount_time_shift = -1;
                } else {
                    icount_time_shift = strtol(optarg, NULL, 0);
                }
                break;
5522
5523
5524
            case QEMU_OPTION_incoming:
                incoming = optarg;
                break;
5525
#ifndef _WIN32
5526
5527
5528
5529
5530
5531
            case QEMU_OPTION_chroot:
                chroot_dir = optarg;
                break;
            case QEMU_OPTION_runas:
                run_as = optarg;
                break;
5532
#endif
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
#ifdef CONFIG_XEN
            case QEMU_OPTION_xen_domid:
                xen_domid = atoi(optarg);
                break;
            case QEMU_OPTION_xen_create:
                xen_mode = XEN_CREATE;
                break;
            case QEMU_OPTION_xen_attach:
                xen_mode = XEN_ATTACH;
                break;
#endif
5544
            }
5545
5546
        }
    }
5547
5548
#if defined(CONFIG_KVM) && defined(CONFIG_KQEMU)
aliguori authored
5549
5550
5551
5552
5553
5554
5555
    if (kvm_allowed && kqemu_allowed) {
        fprintf(stderr,
                "You can not enable both KVM and kqemu at the same time\n");
        exit(1);
    }
#endif
balrog authored
5556
    machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5557
5558
5559
5560
5561
5562
5563
    if (smp_cpus > machine->max_cpus) {
        fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
                "supported by machine `%s' (%d)\n", smp_cpus,  machine->name,
                machine->max_cpus);
        exit(1);
    }
5564
5565
5566
5567
5568
5569
5570
5571
5572
    if (nographic) {
       if (serial_device_index == 0)
           serial_devices[0] = "stdio";
       if (parallel_device_index == 0)
           parallel_devices[0] = "null";
       if (strncmp(monitor_device, "vc", 2) == 0)
           monitor_device = "stdio";
    }
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
#ifndef _WIN32
    if (daemonize) {
	pid_t pid;

	if (pipe(fds) == -1)
	    exit(1);

	pid = fork();
	if (pid > 0) {
	    uint8_t status;
	    ssize_t len;

	    close(fds[1]);

	again:
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
            len = read(fds[0], &status, 1);
            if (len == -1 && (errno == EINTR))
                goto again;

            if (len != 1)
                exit(1);
            else if (status == 1) {
                fprintf(stderr, "Could not acquire pidfile\n");
                exit(1);
            } else
                exit(0);
5599
	} else if (pid < 0)
5600
            exit(1);
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616

	setsid();

	pid = fork();
	if (pid > 0)
	    exit(0);
	else if (pid < 0)
	    exit(1);

	umask(027);

        signal(SIGTSTP, SIG_IGN);
        signal(SIGTTOU, SIG_IGN);
        signal(SIGTTIN, SIG_IGN);
    }
5617
    if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5618
5619
5620
5621
5622
5623
5624
        if (daemonize) {
            uint8_t status = 1;
            write(fds[1], &status, 1);
        } else
            fprintf(stderr, "Could not acquire pid file\n");
        exit(1);
    }
5625
#endif
5626
5627
#ifdef CONFIG_KQEMU
5628
5629
5630
    if (smp_cpus > 1)
        kqemu_allowed = 0;
#endif
5631
5632
5633
5634
    if (qemu_init_main_loop()) {
        fprintf(stderr, "qemu_init_main_loop failed\n");
        exit(1);
    }
5635
    linux_boot = (kernel_filename != NULL);
balrog authored
5636
    net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
    if (!linux_boot && *kernel_cmdline != '\0') {
        fprintf(stderr, "-append only allowed with -kernel option\n");
        exit(1);
    }

    if (!linux_boot && initrd_filename != NULL) {
        fprintf(stderr, "-initrd only allowed with -kernel option\n");
        exit(1);
    }
5648
    /* boot to floppy or the default cd if no hard disk defined yet */
5649
    if (!boot_devices[0]) {
5650
        boot_devices = "cad";
5651
    }
bellard authored
5652
    setvbuf(stdout, NULL, _IOLBF, 0);
5653
5654
    init_timers();
5655
5656
5657
5658
    if (init_timer_alarm() < 0) {
        fprintf(stderr, "could not initialize alarm timer\n");
        exit(1);
    }
pbrook authored
5659
5660
5661
5662
5663
5664
5665
    if (use_icount && icount_time_shift < 0) {
        use_icount = 2;
        /* 125MIPS seems a reasonable initial guess at the guest speed.
           It will be corrected fairly quickly anyway.  */
        icount_time_shift = 3;
        init_icount_adjust();
    }
5666
bellard authored
5667
5668
5669
5670
#ifdef _WIN32
    socket_init();
#endif
bellard authored
5671
5672
5673
    /* init network clients */
    if (nb_net_clients == 0) {
        /* if no clients, we use a default config */
5674
5675
5676
5677
        net_clients[nb_net_clients++] = "nic";
#ifdef CONFIG_SLIRP
        net_clients[nb_net_clients++] = "user";
#endif
5678
5679
    }
bellard authored
5680
    for(i = 0;i < nb_net_clients; i++) {
5681
        if (net_client_parse(net_clients[i]) < 0)
bellard authored
5682
            exit(1);
bellard authored
5683
    }
5684
    net_client_check();
bellard authored
5685
5686
#ifdef TARGET_I386
5687
    /* XXX: this should be moved in the PC machine instantiation code */
5688
5689
5690
    if (net_boot != 0) {
        int netroms = 0;
	for (i = 0; i < nb_nics && i < 4; i++) {
5691
5692
	    const char *model = nd_table[i].model;
	    char buf[1024];
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
            if (net_boot & (1 << i)) {
                if (model == NULL)
                    model = "ne2k_pci";
                snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
                if (get_image_size(buf) > 0) {
                    if (nb_option_roms >= MAX_OPTION_ROMS) {
                        fprintf(stderr, "Too many option ROMs\n");
                        exit(1);
                    }
                    option_rom[nb_option_roms] = strdup(buf);
                    nb_option_roms++;
                    netroms++;
                }
            }
5707
	}
5708
	if (netroms == 0) {
5709
5710
5711
5712
5713
5714
	    fprintf(stderr, "No valid PXE rom found for network device\n");
	    exit(1);
	}
    }
#endif
5715
5716
5717
5718
5719
    /* init the bluetooth world */
    for (i = 0; i < nb_bt_opts; i++)
        if (bt_parse(bt_opts[i]))
            exit(1);
5720
    /* init the memory */
5721
5722
    if (ram_size == 0)
        ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5723
5724
#ifdef CONFIG_KQEMU
5725
5726
5727
5728
5729
5730
5731
5732
5733
    /* FIXME: This is a nasty hack because kqemu can't cope with dynamic
       guest ram allocation.  It needs to go away.  */
    if (kqemu_allowed) {
        kqemu_phys_ram_size = ram_size + VGA_RAM_SIZE + 4 * 1024 * 1024;
        kqemu_phys_ram_base = qemu_vmalloc(kqemu_phys_ram_size);
        if (!kqemu_phys_ram_base) {
            fprintf(stderr, "Could not allocate physical memory\n");
            exit(1);
        }
5734
    }
5735
#endif
5736
5737
5738
5739
    /* init the dynamic translator */
    cpu_exec_init_all(tb_size * 1024 * 1024);
bellard authored
5740
    bdrv_init();
5741
    dma_helper_init();
5742
5743
    /* we always create the cdrom drive, even if no disk is there */
5744
5745
    if (nb_drives_opt < MAX_DRIVES)
5746
        drive_add(NULL, CDROM_ALIAS);
5747
5748
    /* we always create at least one floppy */
5749
5750
    if (nb_drives_opt < MAX_DRIVES)
5751
        drive_add(NULL, FD_ALIAS, 0);
5752
5753
5754
5755
    /* we always create one sd slot, even if no card is in it */

    if (nb_drives_opt < MAX_DRIVES)
5756
        drive_add(NULL, SD_ALIAS);
5757
5758
5759
5760
    /* open the virtual block devices */

    for(i = 0; i < nb_drives_opt; i++)
5761
        if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5762
	    exit(1);
5763
5764
    register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5765
    register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
#ifndef _WIN32
    /* must be after terminal init, SDL library changes signal handlers */
    termsig_setup();
#endif

    /* Maintain compatibility with multiple stdio monitors */
    if (!strcmp(monitor_device,"stdio")) {
        for (i = 0; i < MAX_SERIAL_PORTS; i++) {
            const char *devname = serial_devices[i];
            if (devname && !strcmp(devname,"mon:stdio")) {
                monitor_device = NULL;
                break;
            } else if (devname && !strcmp(devname,"stdio")) {
                monitor_device = NULL;
                serial_devices[i] = "mon:stdio";
                break;
            }
        }
    }
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
    if (nb_numa_nodes > 0) {
        int i;

        if (nb_numa_nodes > smp_cpus) {
            nb_numa_nodes = smp_cpus;
        }

        /* If no memory size if given for any node, assume the default case
         * and distribute the available memory equally across all nodes
         */
        for (i = 0; i < nb_numa_nodes; i++) {
            if (node_mem[i] != 0)
                break;
        }
        if (i == nb_numa_nodes) {
            uint64_t usedmem = 0;

            /* On Linux, the each node's border has to be 8MB aligned,
             * the final node gets the rest.
             */
            for (i = 0; i < nb_numa_nodes - 1; i++) {
                node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
                usedmem += node_mem[i];
            }
            node_mem[i] = ram_size - usedmem;
        }

        for (i = 0; i < nb_numa_nodes; i++) {
            if (node_cpumask[i] != 0)
                break;
        }
        /* assigning the VCPUs round-robin is easier to implement, guest OSes
         * must cope with this anyway, because there are BIOSes out there in
         * real machines which also use this scheme.
         */
        if (i == nb_numa_nodes) {
            for (i = 0; i < smp_cpus; i++) {
                node_cpumask[i % nb_numa_nodes] |= 1 << i;
            }
        }
    }
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
    if (kvm_enabled()) {
        int ret;

        ret = kvm_init(smp_cpus);
        if (ret < 0) {
            fprintf(stderr, "failed to initialize KVM\n");
            exit(1);
        }
    }
5839
    if (monitor_device) {
5840
        monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
5841
5842
5843
5844
5845
5846
        if (!monitor_hd) {
            fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
            exit(1);
        }
    }
5847
5848
5849
5850
5851
    for(i = 0; i < MAX_SERIAL_PORTS; i++) {
        const char *devname = serial_devices[i];
        if (devname && strcmp(devname, "none")) {
            char label[32];
            snprintf(label, sizeof(label), "serial%d", i);
5852
            serial_hds[i] = qemu_chr_open(label, devname, NULL);
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
            if (!serial_hds[i]) {
                fprintf(stderr, "qemu: could not open serial device '%s'\n",
                        devname);
                exit(1);
            }
        }
    }

    for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
        const char *devname = parallel_devices[i];
        if (devname && strcmp(devname, "none")) {
            char label[32];
            snprintf(label, sizeof(label), "parallel%d", i);
5866
            parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
            if (!parallel_hds[i]) {
                fprintf(stderr, "qemu: could not open parallel device '%s'\n",
                        devname);
                exit(1);
            }
        }
    }

    for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
        const char *devname = virtio_consoles[i];
        if (devname && strcmp(devname, "none")) {
            char label[32];
            snprintf(label, sizeof(label), "virtcon%d", i);
5880
            virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5881
5882
5883
5884
5885
5886
5887
5888
            if (!virtcon_hds[i]) {
                fprintf(stderr, "qemu: could not open virtio console '%s'\n",
                        devname);
                exit(1);
            }
        }
    }
5889
5890
5891
    machine->init(ram_size, vga_ram_size, boot_devices,
                  kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5892
5893
5894
5895
5896
5897
5898
5899
5900

    for (env = first_cpu; env != NULL; env = env->next_cpu) {
        for (i = 0; i < nb_numa_nodes; i++) {
            if (node_cpumask[i] & (1 << env->cpu_index)) {
                env->numa_node = i;
            }
        }
    }
5901
5902
    current_machine = machine;
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
    /* Set KVM's vcpu state to qemu's initial CPUState. */
    if (kvm_enabled()) {
        int ret;

        ret = kvm_sync_vcpus();
        if (ret < 0) {
            fprintf(stderr, "failed to initialize vcpus\n");
            exit(1);
        }
    }

    /* init USB devices */
    if (usb_enabled) {
        for(i = 0; i < usb_devices_index; i++) {
5917
            if (usb_device_add(usb_devices[i], 0) < 0) {
5918
5919
5920
5921
5922
5923
                fprintf(stderr, "Warning: could not add USB device %s\n",
                        usb_devices[i]);
            }
        }
    }
5924
5925
    if (!display_state)
        dumb_display_init();
5926
5927
    /* just use the first displaystate for the moment */
    ds = display_state;
5928
    /* terminal init */
5929
    if (nographic) {
balrog authored
5930
5931
5932
5933
        if (curses) {
            fprintf(stderr, "fatal: -nographic can't be used with -curses\n");
            exit(1);
        }
5934
    } else { 
balrog authored
5935
#if defined(CONFIG_CURSES)
5936
5937
5938
5939
            if (curses) {
                /* At the moment curses cannot be used with other displays */
                curses_display_init(ds, full_screen);
            } else
balrog authored
5940
#endif
5941
5942
5943
5944
5945
5946
            {
                if (vnc_display != NULL) {
                    vnc_display_init(ds);
                    if (vnc_display_open(ds, vnc_display) < 0)
                        exit(1);
                }
5947
#if defined(CONFIG_SDL)
5948
                if (sdl || !vnc_display)
5949
                    sdl_display_init(ds, full_screen, no_frame);
5950
#elif defined(CONFIG_COCOA)
5951
                if (sdl || !vnc_display)
5952
                    cocoa_display_init(ds, full_screen);
5953
#endif
5954
            }
5955
    }
5956
    dpy_resize(ds);
5957
5958
5959
5960
5961
5962
    dcl = ds->listeners;
    while (dcl != NULL) {
        if (dcl->dpy_refresh != NULL) {
            ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
            qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
5963
        }
5964
        dcl = dcl->next;
5965
    }
5966
blueswir1 authored
5967
5968
5969
5970
5971
    if (nographic || (vnc_display && !sdl)) {
        nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
        qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
    }
5972
    text_consoles_set_display(display_state);
5973
    qemu_chr_initial_reset();
5974
5975
    if (monitor_device && monitor_hd)
5976
        monitor_init(monitor_hd, MONITOR_USE_READLINE | MONITOR_IS_DEFAULT);
bellard authored
5977
5978
    for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5979
        const char *devname = serial_devices[i];
5980
        if (devname && strcmp(devname, "none")) {
5981
5982
            char label[32];
            snprintf(label, sizeof(label), "serial%d", i);
5983
            if (strstart(devname, "vc", 0))
bellard authored
5984
                qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
5985
        }
bellard authored
5986
5987
    }
5988
    for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5989
        const char *devname = parallel_devices[i];
5990
        if (devname && strcmp(devname, "none")) {
5991
5992
            char label[32];
            snprintf(label, sizeof(label), "parallel%d", i);
5993
            if (strstart(devname, "vc", 0))
bellard authored
5994
                qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
5995
5996
5997
        }
    }
5998
5999
    for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
        const char *devname = virtio_consoles[i];
6000
        if (virtcon_hds[i] && devname) {
6001
6002
6003
6004
6005
6006
6007
            char label[32];
            snprintf(label, sizeof(label), "virtcon%d", i);
            if (strstart(devname, "vc", 0))
                qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
        }
    }
6008
#ifdef CONFIG_GDBSTUB
6009
6010
6011
6012
    if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
        fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
                gdbstub_dev);
        exit(1);
6013
    }
6014
#endif
6015
6016
    if (loadvm)
6017
        do_loadvm(cur_mon, loadvm);
6018
6019
6020
6021
6022
6023
    if (incoming) {
        autostart = 0; /* fixme how to deal with -daemonize */
        qemu_start_incoming_migration(incoming);
    }
6024
6025
    if (autostart)
        vm_start();
6026
6027
#ifndef _WIN32
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
    if (daemonize) {
	uint8_t status = 0;
	ssize_t len;

    again1:
	len = write(fds[1], &status, 1);
	if (len == -1 && (errno == EINTR))
	    goto again1;

	if (len != 1)
	    exit(1);
aliguori authored
6040
	chdir("/");
6041
	TFR(fd = open("/dev/null", O_RDWR));
6042
6043
	if (fd == -1)
	    exit(1);
6044
    }
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
    if (run_as) {
        pwd = getpwnam(run_as);
        if (!pwd) {
            fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
            exit(1);
        }
    }

    if (chroot_dir) {
        if (chroot(chroot_dir) < 0) {
            fprintf(stderr, "chroot failed\n");
            exit(1);
        }
        chdir("/");
    }

    if (run_as) {
        if (setgid(pwd->pw_gid) < 0) {
            fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
            exit(1);
        }
        if (setuid(pwd->pw_uid) < 0) {
            fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
            exit(1);
        }
        if (setuid(0) != -1) {
            fprintf(stderr, "Dropping privileges failed\n");
            exit(1);
        }
    }

    if (daemonize) {
        dup2(fd, 0);
        dup2(fd, 1);
        dup2(fd, 2);
6081
6082
        close(fd);
6083
    }
6084
#endif
6085
6086
    main_loop();
bellard authored
6087
    quit_timers();
6088
    net_cleanup();
6089
6090
6091
    return 0;
}