Blame view

cpu-all.h 26.1 KB
bellard authored
1
2
/*
 * defines common to all virtual CPUs
3
 *
bellard authored
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
#ifndef CPU_ALL_H
#define CPU_ALL_H
aurel32 authored
23
#if defined(__arm__) || defined(__sparc__) || defined(__mips__) || defined(__hppa__)
bellard authored
24
25
26
#define WORDS_ALIGNED
#endif
27
28
/* some important defines:
 *
bellard authored
29
30
 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
 * memory accesses.
31
 *
bellard authored
32
33
 * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
 * otherwise little endian.
34
 *
bellard authored
35
 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
36
 *
bellard authored
37
38
39
 * TARGET_WORDS_BIGENDIAN : same for target cpu
 */
40
#include "bswap.h"
41
#include "softfloat.h"
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

#if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
#define BSWAP_NEEDED
#endif

#ifdef BSWAP_NEEDED

static inline uint16_t tswap16(uint16_t s)
{
    return bswap16(s);
}

static inline uint32_t tswap32(uint32_t s)
{
    return bswap32(s);
}

static inline uint64_t tswap64(uint64_t s)
{
    return bswap64(s);
}

static inline void tswap16s(uint16_t *s)
{
    *s = bswap16(*s);
}

static inline void tswap32s(uint32_t *s)
{
    *s = bswap32(*s);
}

static inline void tswap64s(uint64_t *s)
{
    *s = bswap64(*s);
}

#else

static inline uint16_t tswap16(uint16_t s)
{
    return s;
}

static inline uint32_t tswap32(uint32_t s)
{
    return s;
}

static inline uint64_t tswap64(uint64_t s)
{
    return s;
}

static inline void tswap16s(uint16_t *s)
{
}

static inline void tswap32s(uint32_t *s)
{
}

static inline void tswap64s(uint64_t *s)
{
}

#endif

#if TARGET_LONG_SIZE == 4
#define tswapl(s) tswap32(s)
#define tswapls(s) tswap32s((uint32_t *)(s))
bellard authored
113
#define bswaptls(s) bswap32s(s)
114
115
116
#else
#define tswapl(s) tswap64(s)
#define tswapls(s) tswap64s((uint64_t *)(s))
bellard authored
117
#define bswaptls(s) bswap64s(s)
118
119
#endif
120
121
122
123
124
typedef union {
    float32 f;
    uint32_t l;
} CPU_FloatU;
bellard authored
125
126
/* NOTE: arm FPA is horrible as double 32 bit words are stored in big
   endian ! */
bellard authored
127
typedef union {
bellard authored
128
    float64 d;
129
130
#if defined(WORDS_BIGENDIAN) \
    || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
bellard authored
131
132
    struct {
        uint32_t upper;
bellard authored
133
        uint32_t lower;
bellard authored
134
135
136
137
    } l;
#else
    struct {
        uint32_t lower;
bellard authored
138
        uint32_t upper;
bellard authored
139
140
141
142
143
    } l;
#endif
    uint64_t ll;
} CPU_DoubleU;
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#ifdef TARGET_SPARC
typedef union {
    float128 q;
#if defined(WORDS_BIGENDIAN) \
    || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
    struct {
        uint32_t upmost;
        uint32_t upper;
        uint32_t lower;
        uint32_t lowest;
    } l;
    struct {
        uint64_t upper;
        uint64_t lower;
    } ll;
#else
    struct {
        uint32_t lowest;
        uint32_t lower;
        uint32_t upper;
        uint32_t upmost;
    } l;
    struct {
        uint64_t lower;
        uint64_t upper;
    } ll;
#endif
} CPU_QuadU;
#endif
bellard authored
174
175
/* CPU memory access without any memory or io remapping */
176
177
178
179
180
181
182
183
184
185
/*
 * the generic syntax for the memory accesses is:
 *
 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
 *
 * store: st{type}{size}{endian}_{access_type}(ptr, val)
 *
 * type is:
 * (empty): integer access
 *   f    : float access
186
 *
187
188
189
190
191
192
193
194
195
196
 * sign is:
 * (empty): for floats or 32 bit size
 *   u    : unsigned
 *   s    : signed
 *
 * size is:
 *   b: 8 bits
 *   w: 16 bits
 *   l: 32 bits
 *   q: 64 bits
197
 *
198
199
200
201
202
203
204
205
206
207
208
 * endian is:
 * (empty): target cpu endianness or 8 bit access
 *   r    : reversed target cpu endianness (not implemented yet)
 *   be   : big endian (not implemented yet)
 *   le   : little endian (not implemented yet)
 *
 * access_type is:
 *   raw    : host memory access
 *   user   : user mode access using soft MMU
 *   kernel : kernel mode access using soft MMU
 */
bellard authored
209
static inline int ldub_p(void *ptr)
bellard authored
210
211
212
213
{
    return *(uint8_t *)ptr;
}
bellard authored
214
static inline int ldsb_p(void *ptr)
bellard authored
215
216
217
218
{
    return *(int8_t *)ptr;
}
bellard authored
219
static inline void stb_p(void *ptr, int v)
bellard authored
220
221
222
223
224
225
226
{
    *(uint8_t *)ptr = v;
}

/* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
   kernel handles unaligned load/stores may give better results, but
   it is a system wide setting : bad */
227
#if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
bellard authored
228
229

/* conservative code for little endian unaligned accesses */
230
static inline int lduw_le_p(void *ptr)
bellard authored
231
232
233
234
235
236
237
238
239
240
241
{
#ifdef __powerpc__
    int val;
    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
    return val;
#else
    uint8_t *p = ptr;
    return p[0] | (p[1] << 8);
#endif
}
242
static inline int ldsw_le_p(void *ptr)
bellard authored
243
244
245
246
247
248
249
250
251
252
253
{
#ifdef __powerpc__
    int val;
    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
    return (int16_t)val;
#else
    uint8_t *p = ptr;
    return (int16_t)(p[0] | (p[1] << 8));
#endif
}
254
static inline int ldl_le_p(void *ptr)
bellard authored
255
256
257
258
259
260
261
262
263
264
265
{
#ifdef __powerpc__
    int val;
    __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
    return val;
#else
    uint8_t *p = ptr;
    return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
#endif
}
266
static inline uint64_t ldq_le_p(void *ptr)
bellard authored
267
268
269
{
    uint8_t *p = ptr;
    uint32_t v1, v2;
270
271
    v1 = ldl_le_p(p);
    v2 = ldl_le_p(p + 4);
bellard authored
272
273
274
    return v1 | ((uint64_t)v2 << 32);
}
275
static inline void stw_le_p(void *ptr, int v)
bellard authored
276
277
278
279
280
281
282
283
284
285
{
#ifdef __powerpc__
    __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
#else
    uint8_t *p = ptr;
    p[0] = v;
    p[1] = v >> 8;
#endif
}
286
static inline void stl_le_p(void *ptr, int v)
bellard authored
287
288
289
290
291
292
293
294
295
296
297
298
{
#ifdef __powerpc__
    __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
#else
    uint8_t *p = ptr;
    p[0] = v;
    p[1] = v >> 8;
    p[2] = v >> 16;
    p[3] = v >> 24;
#endif
}
299
static inline void stq_le_p(void *ptr, uint64_t v)
bellard authored
300
301
{
    uint8_t *p = ptr;
302
303
    stl_le_p(p, (uint32_t)v);
    stl_le_p(p + 4, v >> 32);
bellard authored
304
305
306
307
}

/* float access */
308
static inline float32 ldfl_le_p(void *ptr)
bellard authored
309
310
{
    union {
bellard authored
311
        float32 f;
bellard authored
312
313
        uint32_t i;
    } u;
314
    u.i = ldl_le_p(ptr);
bellard authored
315
316
317
    return u.f;
}
318
static inline void stfl_le_p(void *ptr, float32 v)
bellard authored
319
320
{
    union {
bellard authored
321
        float32 f;
bellard authored
322
323
324
        uint32_t i;
    } u;
    u.f = v;
325
    stl_le_p(ptr, u.i);
bellard authored
326
327
}
328
static inline float64 ldfq_le_p(void *ptr)
bellard authored
329
{
bellard authored
330
    CPU_DoubleU u;
331
332
    u.l.lower = ldl_le_p(ptr);
    u.l.upper = ldl_le_p(ptr + 4);
bellard authored
333
334
335
    return u.d;
}
336
static inline void stfq_le_p(void *ptr, float64 v)
bellard authored
337
{
bellard authored
338
    CPU_DoubleU u;
bellard authored
339
    u.d = v;
340
341
    stl_le_p(ptr, u.l.lower);
    stl_le_p(ptr + 4, u.l.upper);
bellard authored
342
343
}
344
345
346
347
348
349
350
351
352
353
354
#else

static inline int lduw_le_p(void *ptr)
{
    return *(uint16_t *)ptr;
}

static inline int ldsw_le_p(void *ptr)
{
    return *(int16_t *)ptr;
}
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
static inline int ldl_le_p(void *ptr)
{
    return *(uint32_t *)ptr;
}

static inline uint64_t ldq_le_p(void *ptr)
{
    return *(uint64_t *)ptr;
}

static inline void stw_le_p(void *ptr, int v)
{
    *(uint16_t *)ptr = v;
}

static inline void stl_le_p(void *ptr, int v)
{
    *(uint32_t *)ptr = v;
}

static inline void stq_le_p(void *ptr, uint64_t v)
{
    *(uint64_t *)ptr = v;
}

/* float access */

static inline float32 ldfl_le_p(void *ptr)
{
    return *(float32 *)ptr;
}

static inline float64 ldfq_le_p(void *ptr)
{
    return *(float64 *)ptr;
}

static inline void stfl_le_p(void *ptr, float32 v)
{
    *(float32 *)ptr = v;
}

static inline void stfq_le_p(void *ptr, float64 v)
{
    *(float64 *)ptr = v;
}
#endif

#if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)

static inline int lduw_be_p(void *ptr)
407
{
408
409
410
411
412
413
414
415
#if defined(__i386__)
    int val;
    asm volatile ("movzwl %1, %0\n"
                  "xchgb %b0, %h0\n"
                  : "=q" (val)
                  : "m" (*(uint16_t *)ptr));
    return val;
#else
416
    uint8_t *b = (uint8_t *) ptr;
417
418
    return ((b[0] << 8) | b[1]);
#endif
419
420
}
421
static inline int ldsw_be_p(void *ptr)
422
{
423
424
425
426
427
428
429
430
431
432
433
#if defined(__i386__)
    int val;
    asm volatile ("movzwl %1, %0\n"
                  "xchgb %b0, %h0\n"
                  : "=q" (val)
                  : "m" (*(uint16_t *)ptr));
    return (int16_t)val;
#else
    uint8_t *b = (uint8_t *) ptr;
    return (int16_t)((b[0] << 8) | b[1]);
#endif
434
435
}
436
static inline int ldl_be_p(void *ptr)
437
{
bellard authored
438
#if defined(__i386__) || defined(__x86_64__)
439
440
441
442
443
444
445
    int val;
    asm volatile ("movl %1, %0\n"
                  "bswap %0\n"
                  : "=r" (val)
                  : "m" (*(uint32_t *)ptr));
    return val;
#else
446
    uint8_t *b = (uint8_t *) ptr;
447
448
    return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
#endif
449
450
}
451
static inline uint64_t ldq_be_p(void *ptr)
452
453
{
    uint32_t a,b;
454
    a = ldl_be_p(ptr);
455
    b = ldl_be_p((uint8_t *)ptr + 4);
456
457
458
    return (((uint64_t)a<<32)|b);
}
459
static inline void stw_be_p(void *ptr, int v)
460
{
461
462
463
464
465
466
#if defined(__i386__)
    asm volatile ("xchgb %b0, %h0\n"
                  "movw %w0, %1\n"
                  : "=q" (v)
                  : "m" (*(uint16_t *)ptr), "0" (v));
#else
467
468
469
    uint8_t *d = (uint8_t *) ptr;
    d[0] = v >> 8;
    d[1] = v;
470
#endif
471
472
}
473
static inline void stl_be_p(void *ptr, int v)
474
{
bellard authored
475
#if defined(__i386__) || defined(__x86_64__)
476
477
478
479
480
    asm volatile ("bswap %0\n"
                  "movl %0, %1\n"
                  : "=r" (v)
                  : "m" (*(uint32_t *)ptr), "0" (v));
#else
481
482
483
484
485
    uint8_t *d = (uint8_t *) ptr;
    d[0] = v >> 24;
    d[1] = v >> 16;
    d[2] = v >> 8;
    d[3] = v;
486
#endif
487
488
}
489
static inline void stq_be_p(void *ptr, uint64_t v)
490
{
491
    stl_be_p(ptr, v >> 32);
492
    stl_be_p((uint8_t *)ptr + 4, v);
bellard authored
493
494
495
496
}

/* float access */
497
static inline float32 ldfl_be_p(void *ptr)
bellard authored
498
499
{
    union {
bellard authored
500
        float32 f;
bellard authored
501
502
        uint32_t i;
    } u;
503
    u.i = ldl_be_p(ptr);
bellard authored
504
505
506
    return u.f;
}
507
static inline void stfl_be_p(void *ptr, float32 v)
bellard authored
508
509
{
    union {
bellard authored
510
        float32 f;
bellard authored
511
512
513
        uint32_t i;
    } u;
    u.f = v;
514
    stl_be_p(ptr, u.i);
bellard authored
515
516
}
517
static inline float64 ldfq_be_p(void *ptr)
bellard authored
518
519
{
    CPU_DoubleU u;
520
    u.l.upper = ldl_be_p(ptr);
521
    u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
bellard authored
522
523
524
    return u.d;
}
525
static inline void stfq_be_p(void *ptr, float64 v)
bellard authored
526
527
528
{
    CPU_DoubleU u;
    u.d = v;
529
    stl_be_p(ptr, u.l.upper);
530
    stl_be_p((uint8_t *)ptr + 4, u.l.lower);
531
532
}
bellard authored
533
534
#else
535
static inline int lduw_be_p(void *ptr)
bellard authored
536
537
538
539
{
    return *(uint16_t *)ptr;
}
540
static inline int ldsw_be_p(void *ptr)
bellard authored
541
542
543
544
{
    return *(int16_t *)ptr;
}
545
static inline int ldl_be_p(void *ptr)
bellard authored
546
547
548
549
{
    return *(uint32_t *)ptr;
}
550
static inline uint64_t ldq_be_p(void *ptr)
bellard authored
551
552
553
554
{
    return *(uint64_t *)ptr;
}
555
static inline void stw_be_p(void *ptr, int v)
bellard authored
556
557
558
559
{
    *(uint16_t *)ptr = v;
}
560
static inline void stl_be_p(void *ptr, int v)
bellard authored
561
562
563
564
{
    *(uint32_t *)ptr = v;
}
565
static inline void stq_be_p(void *ptr, uint64_t v)
bellard authored
566
567
568
569
570
571
{
    *(uint64_t *)ptr = v;
}

/* float access */
572
static inline float32 ldfl_be_p(void *ptr)
bellard authored
573
{
bellard authored
574
    return *(float32 *)ptr;
bellard authored
575
576
}
577
static inline float64 ldfq_be_p(void *ptr)
bellard authored
578
{
bellard authored
579
    return *(float64 *)ptr;
bellard authored
580
581
}
582
static inline void stfl_be_p(void *ptr, float32 v)
bellard authored
583
{
bellard authored
584
    *(float32 *)ptr = v;
bellard authored
585
586
}
587
static inline void stfq_be_p(void *ptr, float64 v)
bellard authored
588
{
bellard authored
589
    *(float64 *)ptr = v;
bellard authored
590
}
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618

#endif

/* target CPU memory access functions */
#if defined(TARGET_WORDS_BIGENDIAN)
#define lduw_p(p) lduw_be_p(p)
#define ldsw_p(p) ldsw_be_p(p)
#define ldl_p(p) ldl_be_p(p)
#define ldq_p(p) ldq_be_p(p)
#define ldfl_p(p) ldfl_be_p(p)
#define ldfq_p(p) ldfq_be_p(p)
#define stw_p(p, v) stw_be_p(p, v)
#define stl_p(p, v) stl_be_p(p, v)
#define stq_p(p, v) stq_be_p(p, v)
#define stfl_p(p, v) stfl_be_p(p, v)
#define stfq_p(p, v) stfq_be_p(p, v)
#else
#define lduw_p(p) lduw_le_p(p)
#define ldsw_p(p) ldsw_le_p(p)
#define ldl_p(p) ldl_le_p(p)
#define ldq_p(p) ldq_le_p(p)
#define ldfl_p(p) ldfl_le_p(p)
#define ldfq_p(p) ldfq_le_p(p)
#define stw_p(p, v) stw_le_p(p, v)
#define stl_p(p, v) stl_le_p(p, v)
#define stq_p(p, v) stq_le_p(p, v)
#define stfl_p(p, v) stfl_le_p(p, v)
#define stfq_p(p, v) stfq_le_p(p, v)
bellard authored
619
620
#endif
bellard authored
621
622
/* MMU memory access macros */
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
#if defined(CONFIG_USER_ONLY)
/* On some host systems the guest address space is reserved on the host.
 * This allows the guest address space to be offset to a convenient location.
 */
//#define GUEST_BASE 0x20000000
#define GUEST_BASE 0

/* All direct uses of g2h and h2g need to go away for usermode softmmu.  */
#define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
#define h2g(x) ((target_ulong)(x - GUEST_BASE))

#define saddr(x) g2h(x)
#define laddr(x) g2h(x)

#else /* !CONFIG_USER_ONLY */
bellard authored
638
639
/* NOTE: we use double casts if pointers and target_ulong have
   different sizes */
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
#define saddr(x) (uint8_t *)(long)(x)
#define laddr(x) (uint8_t *)(long)(x)
#endif

#define ldub_raw(p) ldub_p(laddr((p)))
#define ldsb_raw(p) ldsb_p(laddr((p)))
#define lduw_raw(p) lduw_p(laddr((p)))
#define ldsw_raw(p) ldsw_p(laddr((p)))
#define ldl_raw(p) ldl_p(laddr((p)))
#define ldq_raw(p) ldq_p(laddr((p)))
#define ldfl_raw(p) ldfl_p(laddr((p)))
#define ldfq_raw(p) ldfq_p(laddr((p)))
#define stb_raw(p, v) stb_p(saddr((p)), v)
#define stw_raw(p, v) stw_p(saddr((p)), v)
#define stl_raw(p, v) stl_p(saddr((p)), v)
#define stq_raw(p, v) stq_p(saddr((p)), v)
#define stfl_raw(p, v) stfl_p(saddr((p)), v)
#define stfq_raw(p, v) stfq_p(saddr((p)), v)
bellard authored
658
659
660
#if defined(CONFIG_USER_ONLY)
bellard authored
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682

/* if user mode, no other memory access functions */
#define ldub(p) ldub_raw(p)
#define ldsb(p) ldsb_raw(p)
#define lduw(p) lduw_raw(p)
#define ldsw(p) ldsw_raw(p)
#define ldl(p) ldl_raw(p)
#define ldq(p) ldq_raw(p)
#define ldfl(p) ldfl_raw(p)
#define ldfq(p) ldfq_raw(p)
#define stb(p, v) stb_raw(p, v)
#define stw(p, v) stw_raw(p, v)
#define stl(p, v) stl_raw(p, v)
#define stq(p, v) stq_raw(p, v)
#define stfl(p, v) stfl_raw(p, v)
#define stfq(p, v) stfq_raw(p, v)

#define ldub_code(p) ldub_raw(p)
#define ldsb_code(p) ldsb_raw(p)
#define lduw_code(p) lduw_raw(p)
#define ldsw_code(p) ldsw_raw(p)
#define ldl_code(p) ldl_raw(p)
683
#define ldq_code(p) ldq_raw(p)
bellard authored
684
685
686
687
688
689

#define ldub_kernel(p) ldub_raw(p)
#define ldsb_kernel(p) ldsb_raw(p)
#define lduw_kernel(p) lduw_raw(p)
#define ldsw_kernel(p) ldsw_raw(p)
#define ldl_kernel(p) ldl_raw(p)
690
#define ldq_kernel(p) ldq_raw(p)
bellard authored
691
692
#define ldfl_kernel(p) ldfl_raw(p)
#define ldfq_kernel(p) ldfq_raw(p)
bellard authored
693
694
695
696
#define stb_kernel(p, v) stb_raw(p, v)
#define stw_kernel(p, v) stw_raw(p, v)
#define stl_kernel(p, v) stl_raw(p, v)
#define stq_kernel(p, v) stq_raw(p, v)
bellard authored
697
698
#define stfl_kernel(p, v) stfl_raw(p, v)
#define stfq_kernel(p, vt) stfq_raw(p, v)
bellard authored
699
700
701

#endif /* defined(CONFIG_USER_ONLY) */
bellard authored
702
703
/* page related stuff */
704
#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
bellard authored
705
706
707
#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
708
/* ??? These should be the larger of unsigned long and target_ulong.  */
709
710
711
712
extern unsigned long qemu_real_host_page_size;
extern unsigned long qemu_host_page_bits;
extern unsigned long qemu_host_page_size;
extern unsigned long qemu_host_page_mask;
bellard authored
713
714
#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
bellard authored
715
716
717
718
719
720
721
722
723

/* same as PROT_xxx */
#define PAGE_READ      0x0001
#define PAGE_WRITE     0x0002
#define PAGE_EXEC      0x0004
#define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
#define PAGE_VALID     0x0008
/* original state of the write flag (used when tracking self-modifying
   code */
724
#define PAGE_WRITE_ORG 0x0010
725
#define PAGE_RESERVED  0x0020
bellard authored
726
727

void page_dump(FILE *f);
728
729
int page_get_flags(target_ulong address);
void page_set_flags(target_ulong start, target_ulong end, int flags);
730
int page_check_range(target_ulong start, target_ulong len, int flags);
bellard authored
731
732
733
CPUState *cpu_copy(CPUState *env);
734
void cpu_dump_state(CPUState *env, FILE *f,
bellard authored
735
736
                    int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
                    int flags);
737
738
739
void cpu_dump_statistics (CPUState *env, FILE *f,
                          int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
                          int flags);
bellard authored
740
741
void cpu_abort(CPUState *env, const char *fmt, ...)
742
743
    __attribute__ ((__format__ (__printf__, 2, 3)))
    __attribute__ ((__noreturn__));
744
extern CPUState *first_cpu;
bellard authored
745
extern CPUState *cpu_single_env;
bellard authored
746
747
748
749
#define CPU_INTERRUPT_EXIT   0x01 /* wants exit from main loop */
#define CPU_INTERRUPT_HARD   0x02 /* hardware interrupt pending */
#define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
bellard authored
750
#define CPU_INTERRUPT_TIMER  0x08 /* internal timer exception pending */
751
#define CPU_INTERRUPT_FIQ    0x10 /* Fast interrupt pending.  */
752
#define CPU_INTERRUPT_HALT   0x20 /* CPU halt wanted */
bellard authored
753
#define CPU_INTERRUPT_SMI    0x40 /* (x86 only) SMI interrupt pending */
754
#define CPU_INTERRUPT_DEBUG  0x80 /* Debug event occured.  */
ths authored
755
#define CPU_INTERRUPT_VIRQ   0x100 /* virtual interrupt pending.  */
756
#define CPU_INTERRUPT_NMI    0x200 /* NMI pending. */
757
bellard authored
758
void cpu_interrupt(CPUState *s, int mask);
759
void cpu_reset_interrupt(CPUState *env, int mask);
bellard authored
760
761
762
int cpu_watchpoint_insert(CPUState *env, target_ulong addr);
int cpu_watchpoint_remove(CPUState *env, target_ulong addr);
763
764
int cpu_breakpoint_insert(CPUState *env, target_ulong pc);
int cpu_breakpoint_remove(CPUState *env, target_ulong pc);
765
766
767
768
769

#define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
#define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
#define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
770
void cpu_single_step(CPUState *env, int enabled);
bellard authored
771
void cpu_reset(CPUState *s);
bellard authored
772
773
774
775
/* Return the physical page corresponding to a virtual one. Use it
   only for debugging because no protection checks are done. Return -1
   if no page found. */
776
target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
777
778
#define CPU_LOG_TB_OUT_ASM (1 << 0)
779
#define CPU_LOG_TB_IN_ASM  (1 << 1)
780
781
782
783
784
#define CPU_LOG_TB_OP      (1 << 2)
#define CPU_LOG_TB_OP_OPT  (1 << 3)
#define CPU_LOG_INT        (1 << 4)
#define CPU_LOG_EXEC       (1 << 5)
#define CPU_LOG_PCALL      (1 << 6)
785
#define CPU_LOG_IOPORT     (1 << 7)
786
#define CPU_LOG_TB_CPU     (1 << 8)
787
788
789
790
791
792
793
794
795
796

/* define log items */
typedef struct CPULogItem {
    int mask;
    const char *name;
    const char *help;
} CPULogItem;

extern CPULogItem cpu_log_items[];
797
798
void cpu_set_log(int log_flags);
void cpu_set_log_filename(const char *filename);
799
int cpu_str_to_log_mask(const char *str);
800
801
802
803
804
805
806
807
808
809
810
811
812
813
/* IO ports API */

/* NOTE: as these functions may be even used when there is an isa
   brige on non x86 targets, we always defined them */
#ifndef NO_CPU_IO_DEFS
void cpu_outb(CPUState *env, int addr, int val);
void cpu_outw(CPUState *env, int addr, int val);
void cpu_outl(CPUState *env, int addr, int val);
int cpu_inb(CPUState *env, int addr);
int cpu_inw(CPUState *env, int addr);
int cpu_inl(CPUState *env, int addr);
#endif
814
815
816
817
818
819
820
/* address in the RAM (different from a physical address) */
#ifdef USE_KQEMU
typedef uint32_t ram_addr_t;
#else
typedef unsigned long ram_addr_t;
#endif
821
822
/* memory API */
823
extern ram_addr_t phys_ram_size;
bellard authored
824
825
extern int phys_ram_fd;
extern uint8_t *phys_ram_base;
826
extern uint8_t *phys_ram_dirty;
827
extern ram_addr_t ram_size;
bellard authored
828
829
830
831

/* physical memory access */
#define TLB_INVALID_MASK   (1 << 3)
#define IO_MEM_SHIFT       4
832
#define IO_MEM_NB_ENTRIES  (1 << (TARGET_PAGE_BITS  - IO_MEM_SHIFT))
bellard authored
833
834
835
836

#define IO_MEM_RAM         (0 << IO_MEM_SHIFT) /* hardcoded offset */
#define IO_MEM_ROM         (1 << IO_MEM_SHIFT) /* hardcoded offset */
#define IO_MEM_UNASSIGNED  (2 << IO_MEM_SHIFT)
837
#define IO_MEM_NOTDIRTY    (4 << IO_MEM_SHIFT) /* used internally, never use directly */
838
839
840
841
/* acts like a ROM when read and like a device when written. As an
   exception, the write memory callback gets the ram offset instead of
   the physical address */
#define IO_MEM_ROMD        (1)
842
#define IO_MEM_SUBPAGE     (2)
843
#define IO_MEM_SUBWIDTH    (4)
bellard authored
844
845
846
typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value);
typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr);
847
848
void cpu_register_physical_memory(target_phys_addr_t start_addr,
849
850
851
852
                                  ram_addr_t size,
                                  ram_addr_t phys_offset);
ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr);
ram_addr_t qemu_ram_alloc(ram_addr_t);
bellard authored
853
void qemu_ram_free(ram_addr_t addr);
854
855
int cpu_register_io_memory(int io_index,
                           CPUReadMemoryFunc **mem_read,
856
857
                           CPUWriteMemoryFunc **mem_write,
                           void *opaque);
858
859
CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index);
CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index);
860
861
void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
862
                            int len, int is_write);
863
static inline void cpu_physical_memory_read(target_phys_addr_t addr,
864
                                            uint8_t *buf, int len)
865
866
867
{
    cpu_physical_memory_rw(addr, buf, len, 0);
}
868
static inline void cpu_physical_memory_write(target_phys_addr_t addr,
869
                                             const uint8_t *buf, int len)
870
871
872
{
    cpu_physical_memory_rw(addr, (uint8_t *)buf, len, 1);
}
873
874
uint32_t ldub_phys(target_phys_addr_t addr);
uint32_t lduw_phys(target_phys_addr_t addr);
875
uint32_t ldl_phys(target_phys_addr_t addr);
876
uint64_t ldq_phys(target_phys_addr_t addr);
877
void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val);
878
void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val);
879
880
void stb_phys(target_phys_addr_t addr, uint32_t val);
void stw_phys(target_phys_addr_t addr, uint32_t val);
881
void stl_phys(target_phys_addr_t addr, uint32_t val);
882
void stq_phys(target_phys_addr_t addr, uint64_t val);
883
884
void cpu_physical_memory_write_rom(target_phys_addr_t addr,
885
                                   const uint8_t *buf, int len);
886
int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
887
                        uint8_t *buf, int len, int is_write);
888
bellard authored
889
890
#define VGA_DIRTY_FLAG  0x01
#define CODE_DIRTY_FLAG 0x02
bellard authored
891
892
/* read dirty bit (return 0 or 1) */
bellard authored
893
static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
894
{
bellard authored
895
896
897
    return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
}
898
static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
bellard authored
899
900
901
                                                int dirty_flags)
{
    return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
902
903
}
bellard authored
904
static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
905
{
bellard authored
906
    phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
907
908
}
bellard authored
909
void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
bellard authored
910
                                     int dirty_flags);
bellard authored
911
void cpu_tlb_update_dirty(CPUState *env);
912
bellard authored
913
914
915
void dump_exec_info(FILE *f,
                    int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
bellard authored
916
917
918
919
920
/*******************************************/
/* host CPU ticks (if available) */

#if defined(__powerpc__)
921
static inline uint32_t get_tbl(void)
bellard authored
922
923
924
925
926
927
{
    uint32_t tbl;
    asm volatile("mftb %0" : "=r" (tbl));
    return tbl;
}
928
static inline uint32_t get_tbu(void)
bellard authored
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
{
	uint32_t tbl;
	asm volatile("mftbu %0" : "=r" (tbl));
	return tbl;
}

static inline int64_t cpu_get_real_ticks(void)
{
    uint32_t l, h, h1;
    /* NOTE: we test if wrapping has occurred */
    do {
        h = get_tbu();
        l = get_tbl();
        h1 = get_tbu();
    } while (h != h1);
    return ((int64_t)h << 32) | l;
}

#elif defined(__i386__)

static inline int64_t cpu_get_real_ticks(void)
bellard authored
950
951
952
953
954
955
{
    int64_t val;
    asm volatile ("rdtsc" : "=A" (val));
    return val;
}
bellard authored
956
957
958
959
960
961
962
963
964
965
966
967
968
#elif defined(__x86_64__)

static inline int64_t cpu_get_real_ticks(void)
{
    uint32_t low,high;
    int64_t val;
    asm volatile("rdtsc" : "=a" (low), "=d" (high));
    val = high;
    val <<= 32;
    val |= low;
    return val;
}
aurel32 authored
969
970
971
972
973
974
975
976
977
#elif defined(__hppa__)

static inline int64_t cpu_get_real_ticks(void)
{
    int val;
    asm volatile ("mfctl %%cr16, %0" : "=r"(val));
    return val;
}
bellard authored
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
#elif defined(__ia64)

static inline int64_t cpu_get_real_ticks(void)
{
	int64_t val;
	asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
	return val;
}

#elif defined(__s390__)

static inline int64_t cpu_get_real_ticks(void)
{
    int64_t val;
    asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
    return val;
}
996
#elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
bellard authored
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016

static inline int64_t cpu_get_real_ticks (void)
{
#if     defined(_LP64)
        uint64_t        rval;
        asm volatile("rd %%tick,%0" : "=r"(rval));
        return rval;
#else
        union {
                uint64_t i64;
                struct {
                        uint32_t high;
                        uint32_t low;
                }       i32;
        } rval;
        asm volatile("rd %%tick,%1; srlx %1,32,%0"
                : "=r"(rval.i32.high), "=r"(rval.i32.low));
        return rval.i64;
#endif
}
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037

#elif defined(__mips__)

static inline int64_t cpu_get_real_ticks(void)
{
#if __mips_isa_rev >= 2
    uint32_t count;
    static uint32_t cyc_per_count = 0;

    if (!cyc_per_count)
        __asm__ __volatile__("rdhwr %0, $3" : "=r" (cyc_per_count));

    __asm__ __volatile__("rdhwr %1, $2" : "=r" (count));
    return (int64_t)(count * cyc_per_count);
#else
    /* FIXME */
    static int64_t ticks = 0;
    return ticks++;
#endif
}
pbrook authored
1038
1039
#else
/* The host CPU doesn't have an easily accessible cycle counter.
ths authored
1040
1041
   Just return a monotonically increasing value.  This will be
   totally wrong, but hopefully better than nothing.  */
pbrook authored
1042
1043
1044
1045
1046
static inline int64_t cpu_get_real_ticks (void)
{
    static int64_t ticks = 0;
    return ticks++;
}
bellard authored
1047
1048
1049
1050
1051
1052
1053
1054
1055
#endif

/* profiling */
#ifdef CONFIG_PROFILER
static inline int64_t profile_getclock(void)
{
    return cpu_get_real_ticks();
}
bellard authored
1056
1057
1058
1059
1060
1061
1062
1063
1064
extern int64_t kqemu_time, kqemu_time_start;
extern int64_t qemu_time, qemu_time_start;
extern int64_t tlb_flush_time;
extern int64_t kqemu_exec_count;
extern int64_t dev_time;
extern int64_t kqemu_ret_int_count;
extern int64_t kqemu_ret_excp_count;
extern int64_t kqemu_ret_intr_count;
bellard authored
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
extern int64_t dyngen_tb_count1;
extern int64_t dyngen_tb_count;
extern int64_t dyngen_op_count;
extern int64_t dyngen_old_op_count;
extern int64_t dyngen_tcg_del_op_count;
extern int dyngen_op_count_max;
extern int64_t dyngen_code_in_len;
extern int64_t dyngen_code_out_len;
extern int64_t dyngen_interm_time;
extern int64_t dyngen_code_time;
extern int64_t dyngen_restore_count;
extern int64_t dyngen_restore_time;
bellard authored
1077
1078
#endif
bellard authored
1079
#endif /* CPU_ALL_H */