Blame view

hw/esp.c 15.7 KB
bellard authored
1
/*
2
 * QEMU ESP/NCR53C9x emulation
3
 *
4
 * Copyright (c) 2005-2006 Fabrice Bellard
5
 *
bellard authored
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include "vl.h"

/* debug ESP card */
bellard authored
27
//#define DEBUG_ESP
bellard authored
28
29
30
31
32
33
34
35
36
/*
 * On Sparc32, this is the ESP (NCR53C90) part of chip STP2000 (Master I/O), also
 * produced as NCR89C100. See
 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt
 * and
 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR53C9X.txt
 */
bellard authored
37
38
39
40
41
42
43
#ifdef DEBUG_ESP
#define DPRINTF(fmt, args...) \
do { printf("ESP: " fmt , ##args); } while (0)
#else
#define DPRINTF(fmt, args...)
#endif
44
45
46
#define ESP_MASK 0x3f
#define ESP_REGS 16
#define ESP_SIZE (ESP_REGS * 4)
47
#define TI_BUFSZ 32
48
49
/* The HBA is ID 7, so for simplicitly limit to 7 devices.  */
#define ESP_MAX_DEVS      7
50
51
typedef struct ESPState ESPState;
bellard authored
52
53
struct ESPState {
54
    qemu_irq irq;
bellard authored
55
    BlockDriverState **bd;
56
57
    uint8_t rregs[ESP_REGS];
    uint8_t wregs[ESP_REGS];
58
    int32_t ti_size;
59
60
    uint32_t ti_rptr, ti_wptr;
    uint8_t ti_buf[TI_BUFSZ];
pbrook authored
61
    int sense;
62
    int dma;
63
64
    SCSIDevice *scsi_dev[MAX_DISKS];
    SCSIDevice *current_dev;
pbrook authored
65
66
67
    uint8_t cmdbuf[TI_BUFSZ];
    int cmdlen;
    int do_cmd;
68
pbrook authored
69
    /* The amount of data left in the current DMA transfer.  */
70
    uint32_t dma_left;
pbrook authored
71
72
73
    /* The size of the current DMA transfer.  Zero if no transfer is in
       progress.  */
    uint32_t dma_counter;
pbrook authored
74
    uint8_t *async_buf;
75
    uint32_t async_len;
76
    void *dma_opaque;
77
};
bellard authored
78
bellard authored
79
80
81
82
83
84
85
86
#define STAT_DO 0x00
#define STAT_DI 0x01
#define STAT_CD 0x02
#define STAT_ST 0x03
#define STAT_MI 0x06
#define STAT_MO 0x07

#define STAT_TC 0x10
87
88
#define STAT_PE 0x20
#define STAT_GE 0x40
bellard authored
89
90
91
92
93
#define STAT_IN 0x80

#define INTR_FC 0x08
#define INTR_BS 0x10
#define INTR_DC 0x20
bellard authored
94
#define INTR_RST 0x80
bellard authored
95
96
97
98

#define SEQ_0 0x0
#define SEQ_CD 0x4
pbrook authored
99
static int get_cmd(ESPState *s, uint8_t *buf)
bellard authored
100
{
pbrook authored
101
    uint32_t dmalen;
bellard authored
102
103
    int target;
pbrook authored
104
    dmalen = s->rregs[0] | (s->rregs[1] << 8);
105
    target = s->wregs[4] & 7;
pbrook authored
106
    DPRINTF("get_cmd: len %d target %d\n", dmalen, target);
107
    if (s->dma) {
108
        espdma_memory_read(s->dma_opaque, buf, dmalen);
109
    } else {
blueswir1 authored
110
111
112
        buf[0] = 0;
        memcpy(&buf[1], s->ti_buf, dmalen);
        dmalen++;
113
    }
114
bellard authored
115
    s->ti_size = 0;
116
117
    s->ti_rptr = 0;
    s->ti_wptr = 0;
bellard authored
118
pbrook authored
119
120
121
122
123
124
    if (s->current_dev) {
        /* Started a new command before the old one finished.  Cancel it.  */
        scsi_cancel_io(s->current_dev, 0);
        s->async_len = 0;
    }
125
    if (target >= MAX_DISKS || !s->scsi_dev[target]) {
126
        // No such drive
blueswir1 authored
127
128
129
130
131
        s->rregs[4] = STAT_IN;
        s->rregs[5] = INTR_DC;
        s->rregs[6] = SEQ_0;
        qemu_irq_raise(s->irq);
        return 0;
bellard authored
132
    }
133
    s->current_dev = s->scsi_dev[target];
pbrook authored
134
135
136
137
138
139
140
141
142
143
    return dmalen;
}

static void do_cmd(ESPState *s, uint8_t *buf)
{
    int32_t datalen;
    int lun;

    DPRINTF("do_cmd: busid 0x%x\n", buf[0]);
    lun = buf[0] & 7;
pbrook authored
144
    datalen = scsi_send_command(s->current_dev, 0, &buf[1], lun);
145
146
    s->ti_size = datalen;
    if (datalen != 0) {
147
        s->rregs[4] = STAT_IN | STAT_TC;
pbrook authored
148
        s->dma_left = 0;
pbrook authored
149
        s->dma_counter = 0;
150
151
        if (datalen > 0) {
            s->rregs[4] |= STAT_DI;
pbrook authored
152
            scsi_read_data(s->current_dev, 0);
153
154
        } else {
            s->rregs[4] |= STAT_DO;
pbrook authored
155
            scsi_write_data(s->current_dev, 0);
156
        }
bellard authored
157
158
159
    }
    s->rregs[5] = INTR_BS | INTR_FC;
    s->rregs[6] = SEQ_CD;
160
    qemu_irq_raise(s->irq);
bellard authored
161
162
}
pbrook authored
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
static void handle_satn(ESPState *s)
{
    uint8_t buf[32];
    int len;

    len = get_cmd(s, buf);
    if (len)
        do_cmd(s, buf);
}

static void handle_satn_stop(ESPState *s)
{
    s->cmdlen = get_cmd(s, s->cmdbuf);
    if (s->cmdlen) {
        DPRINTF("Set ATN & Stop: cmdlen %d\n", s->cmdlen);
        s->do_cmd = 1;
        s->rregs[4] = STAT_IN | STAT_TC | STAT_CD;
        s->rregs[5] = INTR_BS | INTR_FC;
        s->rregs[6] = SEQ_CD;
182
        qemu_irq_raise(s->irq);
pbrook authored
183
184
185
    }
}
pbrook authored
186
static void write_response(ESPState *s)
bellard authored
187
{
pbrook authored
188
189
190
    DPRINTF("Transfer status (sense=%d)\n", s->sense);
    s->ti_buf[0] = s->sense;
    s->ti_buf[1] = 0;
191
    if (s->dma) {
192
        espdma_memory_write(s->dma_opaque, s->ti_buf, 2);
blueswir1 authored
193
194
195
        s->rregs[4] = STAT_IN | STAT_TC | STAT_ST;
        s->rregs[5] = INTR_BS | INTR_FC;
        s->rregs[6] = SEQ_CD;
196
    } else {
blueswir1 authored
197
198
199
200
        s->ti_size = 2;
        s->ti_rptr = 0;
        s->ti_wptr = 0;
        s->rregs[7] = 2;
201
    }
202
    qemu_irq_raise(s->irq);
bellard authored
203
}
204
pbrook authored
205
206
207
208
209
210
static void esp_dma_done(ESPState *s)
{
    s->rregs[4] |= STAT_IN | STAT_TC;
    s->rregs[5] = INTR_BS;
    s->rregs[6] = 0;
    s->rregs[7] = 0;
pbrook authored
211
212
    s->rregs[0] = 0;
    s->rregs[1] = 0;
213
    qemu_irq_raise(s->irq);
pbrook authored
214
215
}
216
217
static void esp_do_dma(ESPState *s)
{
218
    uint32_t len;
219
    int to_device;
pbrook authored
220
221
    to_device = (s->ti_size < 0);
pbrook authored
222
    len = s->dma_left;
223
224
    if (s->do_cmd) {
        DPRINTF("command len %d + %d\n", s->cmdlen, len);
225
        espdma_memory_read(s->dma_opaque, &s->cmdbuf[s->cmdlen], len);
226
227
228
229
230
        s->ti_size = 0;
        s->cmdlen = 0;
        s->do_cmd = 0;
        do_cmd(s, s->cmdbuf);
        return;
pbrook authored
231
232
233
234
235
236
237
238
239
    }
    if (s->async_len == 0) {
        /* Defer until data is available.  */
        return;
    }
    if (len > s->async_len) {
        len = s->async_len;
    }
    if (to_device) {
240
        espdma_memory_read(s->dma_opaque, s->async_buf, len);
241
    } else {
242
        espdma_memory_write(s->dma_opaque, s->async_buf, len);
pbrook authored
243
244
245
246
    }
    s->dma_left -= len;
    s->async_buf += len;
    s->async_len -= len;
pbrook authored
247
248
249
250
    if (to_device)
        s->ti_size += len;
    else
        s->ti_size -= len;
pbrook authored
251
    if (s->async_len == 0) {
252
        if (to_device) {
253
            // ti_size is negative
pbrook authored
254
            scsi_write_data(s->current_dev, 0);
255
        } else {
pbrook authored
256
            scsi_read_data(s->current_dev, 0);
pbrook authored
257
258
259
260
261
262
            /* If there is still data to be read from the device then
               complete the DMA operation immeriately.  Otherwise defer
               until the scsi layer has completed.  */
            if (s->dma_left == 0 && s->ti_size > 0) {
                esp_dma_done(s);
            }
263
        }
pbrook authored
264
265
    } else {
        /* Partially filled a scsi buffer. Complete immediately.  */
pbrook authored
266
267
        esp_dma_done(s);
    }
268
269
}
pbrook authored
270
271
static void esp_command_complete(void *opaque, int reason, uint32_t tag,
                                 uint32_t arg)
272
273
274
{
    ESPState *s = (ESPState *)opaque;
275
276
277
278
279
    if (reason == SCSI_REASON_DONE) {
        DPRINTF("SCSI Command complete\n");
        if (s->ti_size != 0)
            DPRINTF("SCSI command completed unexpectedly\n");
        s->ti_size = 0;
pbrook authored
280
281
282
        s->dma_left = 0;
        s->async_len = 0;
        if (arg)
283
            DPRINTF("Command failed\n");
pbrook authored
284
285
286
287
        s->sense = arg;
        s->rregs[4] = STAT_ST;
        esp_dma_done(s);
        s->current_dev = NULL;
288
289
    } else {
        DPRINTF("transfer %d/%d\n", s->dma_left, s->ti_size);
pbrook authored
290
291
        s->async_len = arg;
        s->async_buf = scsi_get_buf(s->current_dev, 0);
pbrook authored
292
        if (s->dma_left) {
pbrook authored
293
            esp_do_dma(s);
pbrook authored
294
295
296
297
298
        } else if (s->dma_counter != 0 && s->ti_size <= 0) {
            /* If this was the last part of a DMA transfer then the
               completion interrupt is deferred to here.  */
            esp_dma_done(s);
        }
299
    }
300
301
}
bellard authored
302
303
static void handle_ti(ESPState *s)
{
304
    uint32_t dmalen, minlen;
bellard authored
305
pbrook authored
306
    dmalen = s->rregs[0] | (s->rregs[1] << 8);
pbrook authored
307
308
309
    if (dmalen==0) {
      dmalen=0x10000;
    }
pbrook authored
310
    s->dma_counter = dmalen;
pbrook authored
311
pbrook authored
312
313
    if (s->do_cmd)
        minlen = (dmalen < 32) ? dmalen : 32;
314
315
    else if (s->ti_size < 0)
        minlen = (dmalen < -s->ti_size) ? dmalen : -s->ti_size;
pbrook authored
316
317
    else
        minlen = (dmalen < s->ti_size) ? dmalen : s->ti_size;
pbrook authored
318
    DPRINTF("Transfer Information len %d\n", minlen);
319
    if (s->dma) {
320
321
322
        s->dma_left = minlen;
        s->rregs[4] &= ~STAT_TC;
        esp_do_dma(s);
pbrook authored
323
324
325
326
327
328
329
330
    } else if (s->do_cmd) {
        DPRINTF("command len %d\n", s->cmdlen);
        s->ti_size = 0;
        s->cmdlen = 0;
        s->do_cmd = 0;
        do_cmd(s, s->cmdbuf);
        return;
    }
bellard authored
331
332
}
333
static void esp_reset(void *opaque)
bellard authored
334
335
{
    ESPState *s = opaque;
336
337
338
    memset(s->rregs, 0, ESP_REGS);
    memset(s->wregs, 0, ESP_REGS);
bellard authored
339
    s->rregs[0x0e] = 0x4; // Indicate fas100a
340
341
342
343
    s->ti_size = 0;
    s->ti_rptr = 0;
    s->ti_wptr = 0;
    s->dma = 0;
pbrook authored
344
    s->do_cmd = 0;
bellard authored
345
346
}
347
348
349
350
351
352
static void parent_esp_reset(void *opaque, int irq, int level)
{
    if (level)
        esp_reset(opaque);
}
bellard authored
353
354
355
356
357
static uint32_t esp_mem_readb(void *opaque, target_phys_addr_t addr)
{
    ESPState *s = opaque;
    uint32_t saddr;
358
    saddr = (addr & ESP_MASK) >> 2;
bellard authored
359
    DPRINTF("read reg[%d]: 0x%2.2x\n", saddr, s->rregs[saddr]);
bellard authored
360
    switch (saddr) {
361
    case 2:
blueswir1 authored
362
363
364
        // FIFO
        if (s->ti_size > 0) {
            s->ti_size--;
365
366
            if ((s->rregs[4] & 6) == 0) {
                /* Data in/out.  */
pbrook authored
367
368
                fprintf(stderr, "esp: PIO data read not implemented\n");
                s->rregs[2] = 0;
369
370
371
            } else {
                s->rregs[2] = s->ti_buf[s->ti_rptr++];
            }
372
            qemu_irq_raise(s->irq);
blueswir1 authored
373
374
        }
        if (s->ti_size == 0) {
375
376
377
            s->ti_rptr = 0;
            s->ti_wptr = 0;
        }
blueswir1 authored
378
        break;
bellard authored
379
380
    case 5:
        // interrupt
381
382
        // Clear interrupt/error status bits
        s->rregs[4] &= ~(STAT_IN | STAT_GE | STAT_PE);
blueswir1 authored
383
        qemu_irq_lower(s->irq);
bellard authored
384
        break;
bellard authored
385
    default:
blueswir1 authored
386
        break;
bellard authored
387
    }
bellard authored
388
    return s->rregs[saddr];
bellard authored
389
390
391
392
393
394
395
}

static void esp_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
{
    ESPState *s = opaque;
    uint32_t saddr;
396
    saddr = (addr & ESP_MASK) >> 2;
bellard authored
397
    DPRINTF("write reg[%d]: 0x%2.2x -> 0x%2.2x\n", saddr, s->wregs[saddr], val);
bellard authored
398
    switch (saddr) {
399
400
    case 0:
    case 1:
401
        s->rregs[4] &= ~STAT_TC;
402
403
        break;
    case 2:
blueswir1 authored
404
        // FIFO
pbrook authored
405
406
407
        if (s->do_cmd) {
            s->cmdbuf[s->cmdlen++] = val & 0xff;
        } else if ((s->rregs[4] & 6) == 0) {
408
409
410
            uint8_t buf;
            buf = val & 0xff;
            s->ti_size--;
pbrook authored
411
            fprintf(stderr, "esp: PIO data write not implemented\n");
412
413
414
415
        } else {
            s->ti_size++;
            s->ti_buf[s->ti_wptr++] = val & 0xff;
        }
blueswir1 authored
416
        break;
bellard authored
417
    case 3:
418
        s->rregs[saddr] = val;
blueswir1 authored
419
420
421
        // Command
        if (val & 0x80) {
            s->dma = 1;
pbrook authored
422
423
424
            /* Reload DMA counter.  */
            s->rregs[0] = s->wregs[0];
            s->rregs[1] = s->wregs[1];
blueswir1 authored
425
426
427
428
429
430
431
432
433
        } else {
            s->dma = 0;
        }
        switch(val & 0x7f) {
        case 0:
            DPRINTF("NOP (%2.2x)\n", val);
            break;
        case 1:
            DPRINTF("Flush FIFO (%2.2x)\n", val);
bellard authored
434
            //s->ti_size = 0;
blueswir1 authored
435
436
437
438
439
440
441
442
443
444
            s->rregs[5] = INTR_FC;
            s->rregs[6] = 0;
            break;
        case 2:
            DPRINTF("Chip reset (%2.2x)\n", val);
            esp_reset(s);
            break;
        case 3:
            DPRINTF("Bus reset (%2.2x)\n", val);
            s->rregs[5] = INTR_RST;
bellard authored
445
            if (!(s->wregs[8] & 0x40)) {
446
                qemu_irq_raise(s->irq);
bellard authored
447
            }
blueswir1 authored
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
            break;
        case 0x10:
            handle_ti(s);
            break;
        case 0x11:
            DPRINTF("Initiator Command Complete Sequence (%2.2x)\n", val);
            write_response(s);
            break;
        case 0x12:
            DPRINTF("Message Accepted (%2.2x)\n", val);
            write_response(s);
            s->rregs[5] = INTR_DC;
            s->rregs[6] = 0;
            break;
        case 0x1a:
            DPRINTF("Set ATN (%2.2x)\n", val);
            break;
        case 0x42:
            DPRINTF("Set ATN (%2.2x)\n", val);
            handle_satn(s);
            break;
        case 0x43:
            DPRINTF("Set ATN & stop (%2.2x)\n", val);
            handle_satn_stop(s);
            break;
473
474
475
        case 0x44:
            DPRINTF("Enable selection (%2.2x)\n", val);
            break;
blueswir1 authored
476
477
478
479
480
        default:
            DPRINTF("Unhandled ESP command (%2.2x)\n", val);
            break;
        }
        break;
bellard authored
481
    case 4 ... 7:
blueswir1 authored
482
        break;
483
484
485
486
487
    case 8:
        s->rregs[saddr] = val;
        break;
    case 9 ... 10:
        break;
bellard authored
488
489
490
491
    case 11:
        s->rregs[saddr] = val & 0x15;
        break;
    case 12 ... 15:
492
493
        s->rregs[saddr] = val;
        break;
bellard authored
494
    default:
blueswir1 authored
495
        break;
bellard authored
496
    }
bellard authored
497
    s->wregs[saddr] = val;
bellard authored
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
}

static CPUReadMemoryFunc *esp_mem_read[3] = {
    esp_mem_readb,
    esp_mem_readb,
    esp_mem_readb,
};

static CPUWriteMemoryFunc *esp_mem_write[3] = {
    esp_mem_writeb,
    esp_mem_writeb,
    esp_mem_writeb,
};

static void esp_save(QEMUFile *f, void *opaque)
{
    ESPState *s = opaque;
bellard authored
515
516
517
    qemu_put_buffer(f, s->rregs, ESP_REGS);
    qemu_put_buffer(f, s->wregs, ESP_REGS);
518
519
520
521
    qemu_put_be32s(f, &s->ti_size);
    qemu_put_be32s(f, &s->ti_rptr);
    qemu_put_be32s(f, &s->ti_wptr);
    qemu_put_buffer(f, s->ti_buf, TI_BUFSZ);
522
    qemu_put_be32s(f, &s->sense);
523
    qemu_put_be32s(f, &s->dma);
524
525
526
527
528
    qemu_put_buffer(f, s->cmdbuf, TI_BUFSZ);
    qemu_put_be32s(f, &s->cmdlen);
    qemu_put_be32s(f, &s->do_cmd);
    qemu_put_be32s(f, &s->dma_left);
    // There should be no transfers in progress, so dma_counter is not saved
bellard authored
529
530
531
532
533
}

static int esp_load(QEMUFile *f, void *opaque, int version_id)
{
    ESPState *s = opaque;
534
535
536
    if (version_id != 3)
        return -EINVAL; // Cannot emulate 2
bellard authored
537
538
539
    qemu_get_buffer(f, s->rregs, ESP_REGS);
    qemu_get_buffer(f, s->wregs, ESP_REGS);
540
541
542
543
    qemu_get_be32s(f, &s->ti_size);
    qemu_get_be32s(f, &s->ti_rptr);
    qemu_get_be32s(f, &s->ti_wptr);
    qemu_get_buffer(f, s->ti_buf, TI_BUFSZ);
544
    qemu_get_be32s(f, &s->sense);
545
    qemu_get_be32s(f, &s->dma);
546
547
548
549
    qemu_get_buffer(f, s->cmdbuf, TI_BUFSZ);
    qemu_get_be32s(f, &s->cmdlen);
    qemu_get_be32s(f, &s->do_cmd);
    qemu_get_be32s(f, &s->dma_left);
bellard authored
550
bellard authored
551
552
553
    return 0;
}
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
void esp_scsi_attach(void *opaque, BlockDriverState *bd, int id)
{
    ESPState *s = (ESPState *)opaque;

    if (id < 0) {
        for (id = 0; id < ESP_MAX_DEVS; id++) {
            if (s->scsi_dev[id] == NULL)
                break;
        }
    }
    if (id >= ESP_MAX_DEVS) {
        DPRINTF("Bad Device ID %d\n", id);
        return;
    }
    if (s->scsi_dev[id]) {
        DPRINTF("Destroying device %d\n", id);
        scsi_disk_destroy(s->scsi_dev[id]);
    }
    DPRINTF("Attaching block device %d\n", id);
    /* Command queueing is not implemented.  */
    s->scsi_dev[id] = scsi_disk_init(bd, 0, esp_command_complete, s);
}
577
void *esp_init(BlockDriverState **bd, target_phys_addr_t espaddr,
578
               void *dma_opaque, qemu_irq irq, qemu_irq *reset)
bellard authored
579
580
{
    ESPState *s;
581
    int esp_io_memory;
bellard authored
582
583
584

    s = qemu_mallocz(sizeof(ESPState));
    if (!s)
585
        return NULL;
bellard authored
586
587

    s->bd = bd;
588
    s->irq = irq;
589
    s->dma_opaque = dma_opaque;
bellard authored
590
591

    esp_io_memory = cpu_register_io_memory(0, esp_mem_read, esp_mem_write, s);
592
    cpu_register_physical_memory(espaddr, ESP_SIZE, esp_io_memory);
bellard authored
593
594
595

    esp_reset(s);
596
    register_savevm("esp", espaddr, 3, esp_save, esp_load, s);
bellard authored
597
598
    qemu_register_reset(esp_reset, s);
599
600
    *reset = *qemu_allocate_irqs(parent_esp_reset, s, 1);
601
602
    return s;
}