1
2
/*
* defines common to all virtual CPUs
ths
authored
18 years ago
3
*
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
* Copyright ( c ) 2003 Fabrice Bellard
*
* This library is free software ; you can redistribute it and / or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation ; either
* version 2 of the License , or ( at your option ) any later version .
*
* This library is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the GNU
* Lesser General Public License for more details .
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library ; if not , write to the Free Software
* Foundation , Inc ., 59 Temple Place , Suite 330 , Boston , MA 02111 - 1307 USA
*/
# ifndef CPU_ALL_H
# define CPU_ALL_H
23
# if defined ( __arm__ ) || defined ( __sparc__ ) || defined ( __mips__ ) || defined ( __hppa__ )
24
25
26
# define WORDS_ALIGNED
# endif
ths
authored
18 years ago
27
28
/* some important defines :
*
29
30
* WORDS_ALIGNED : if defined , the host cpu can only make word aligned
* memory accesses .
ths
authored
18 years ago
31
*
32
33
* WORDS_BIGENDIAN : if defined , the host cpu is big endian and
* otherwise little endian .
ths
authored
18 years ago
34
*
35
* ( TARGET_WORDS_ALIGNED : same for target cpu ( not supported yet ))
ths
authored
18 years ago
36
*
37
38
39
* TARGET_WORDS_BIGENDIAN : same for target cpu
*/
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
# include "bswap.h"
# if defined ( WORDS_BIGENDIAN ) != defined ( TARGET_WORDS_BIGENDIAN )
# define BSWAP_NEEDED
# endif
# ifdef BSWAP_NEEDED
static inline uint16_t tswap16 ( uint16_t s )
{
return bswap16 ( s );
}
static inline uint32_t tswap32 ( uint32_t s )
{
return bswap32 ( s );
}
static inline uint64_t tswap64 ( uint64_t s )
{
return bswap64 ( s );
}
static inline void tswap16s ( uint16_t * s )
{
* s = bswap16 ( * s );
}
static inline void tswap32s ( uint32_t * s )
{
* s = bswap32 ( * s );
}
static inline void tswap64s ( uint64_t * s )
{
* s = bswap64 ( * s );
}
# else
static inline uint16_t tswap16 ( uint16_t s )
{
return s ;
}
static inline uint32_t tswap32 ( uint32_t s )
{
return s ;
}
static inline uint64_t tswap64 ( uint64_t s )
{
return s ;
}
static inline void tswap16s ( uint16_t * s )
{
}
static inline void tswap32s ( uint32_t * s )
{
}
static inline void tswap64s ( uint64_t * s )
{
}
# endif
# if TARGET_LONG_SIZE == 4
# define tswapl ( s ) tswap32 ( s )
# define tswapls ( s ) tswap32s (( uint32_t * )( s ))
112
# define bswaptls ( s ) bswap32s ( s )
113
114
115
# else
# define tswapl ( s ) tswap64 ( s )
# define tswapls ( s ) tswap64s (( uint64_t * )( s ))
116
# define bswaptls ( s ) bswap64s ( s )
117
118
# endif
119
120
121
122
123
typedef union {
float32 f ;
uint32_t l ;
} CPU_FloatU ;
124
125
/* NOTE : arm FPA is horrible as double 32 bit words are stored in big
endian ! */
126
typedef union {
127
float64 d ;
128
129
# if defined ( WORDS_BIGENDIAN ) \
|| ( defined ( __arm__ ) && ! defined ( __VFP_FP__ ) && ! defined ( CONFIG_SOFTFLOAT ))
130
131
struct {
uint32_t upper ;
132
uint32_t lower ;
133
134
135
136
} l ;
# else
struct {
uint32_t lower ;
137
uint32_t upper ;
138
139
140
141
142
} l ;
# endif
uint64_t ll ;
} CPU_DoubleU ;
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# ifdef TARGET_SPARC
typedef union {
float128 q ;
# if defined ( WORDS_BIGENDIAN ) \
|| ( defined ( __arm__ ) && ! defined ( __VFP_FP__ ) && ! defined ( CONFIG_SOFTFLOAT ))
struct {
uint32_t upmost ;
uint32_t upper ;
uint32_t lower ;
uint32_t lowest ;
} l ;
struct {
uint64_t upper ;
uint64_t lower ;
} ll ;
# else
struct {
uint32_t lowest ;
uint32_t lower ;
uint32_t upper ;
uint32_t upmost ;
} l ;
struct {
uint64_t lower ;
uint64_t upper ;
} ll ;
# endif
} CPU_QuadU ;
# endif
173
174
/* CPU memory access without any memory or io remapping */
175
176
177
178
179
180
181
182
183
184
/*
* the generic syntax for the memory accesses is :
*
* load : ld { type }{ sign }{ size }{ endian } _ { access_type }( ptr )
*
* store : st { type }{ size }{ endian } _ { access_type }( ptr , val )
*
* type is :
* ( empty ) : integer access
* f : float access
ths
authored
18 years ago
185
*
186
187
188
189
190
191
192
193
194
195
* sign is :
* ( empty ) : for floats or 32 bit size
* u : unsigned
* s : signed
*
* size is :
* b : 8 bits
* w : 16 bits
* l : 32 bits
* q : 64 bits
ths
authored
18 years ago
196
*
197
198
199
200
201
202
203
204
205
206
207
* endian is :
* ( empty ) : target cpu endianness or 8 bit access
* r : reversed target cpu endianness ( not implemented yet )
* be : big endian ( not implemented yet )
* le : little endian ( not implemented yet )
*
* access_type is :
* raw : host memory access
* user : user mode access using soft MMU
* kernel : kernel mode access using soft MMU
*/
208
static inline int ldub_p ( void * ptr )
209
210
211
212
{
return * ( uint8_t * ) ptr ;
}
213
static inline int ldsb_p ( void * ptr )
214
215
216
217
{
return * ( int8_t * ) ptr ;
}
218
static inline void stb_p ( void * ptr , int v )
219
220
221
222
223
224
225
{
* ( uint8_t * ) ptr = v ;
}
/* NOTE : on arm , putting 2 in / proc / sys / debug / alignment so that the
kernel handles unaligned load / stores may give better results , but
it is a system wide setting : bad */
226
# if defined ( WORDS_BIGENDIAN ) || defined ( WORDS_ALIGNED )
227
228
/* conservative code for little endian unaligned accesses */
229
static inline int lduw_le_p ( void * ptr )
230
231
232
233
234
235
236
237
238
239
240
{
# ifdef __powerpc__
int val ;
__asm__ __volatile__ ( "lhbrx %0,0,%1" : "=r" ( val ) : "r" ( ptr ));
return val ;
# else
uint8_t * p = ptr ;
return p [ 0 ] | ( p [ 1 ] << 8 );
# endif
}
241
static inline int ldsw_le_p ( void * ptr )
242
243
244
245
246
247
248
249
250
251
252
{
# ifdef __powerpc__
int val ;
__asm__ __volatile__ ( "lhbrx %0,0,%1" : "=r" ( val ) : "r" ( ptr ));
return ( int16_t ) val ;
# else
uint8_t * p = ptr ;
return ( int16_t )( p [ 0 ] | ( p [ 1 ] << 8 ));
# endif
}
253
static inline int ldl_le_p ( void * ptr )
254
255
256
257
258
259
260
261
262
263
264
{
# ifdef __powerpc__
int val ;
__asm__ __volatile__ ( "lwbrx %0,0,%1" : "=r" ( val ) : "r" ( ptr ));
return val ;
# else
uint8_t * p = ptr ;
return p [ 0 ] | ( p [ 1 ] << 8 ) | ( p [ 2 ] << 16 ) | ( p [ 3 ] << 24 );
# endif
}
265
static inline uint64_t ldq_le_p ( void * ptr )
266
267
268
{
uint8_t * p = ptr ;
uint32_t v1 , v2 ;
269
270
v1 = ldl_le_p ( p );
v2 = ldl_le_p ( p + 4 );
271
272
273
return v1 | (( uint64_t ) v2 << 32 );
}
274
static inline void stw_le_p ( void * ptr , int v )
275
276
277
278
279
280
281
282
283
284
{
# ifdef __powerpc__
__asm__ __volatile__ ( "sthbrx %1,0,%2" : "=m" ( * ( uint16_t * ) ptr ) : "r" ( v ), "r" ( ptr ));
# else
uint8_t * p = ptr ;
p [ 0 ] = v ;
p [ 1 ] = v >> 8 ;
# endif
}
285
static inline void stl_le_p ( void * ptr , int v )
286
287
288
289
290
291
292
293
294
295
296
297
{
# ifdef __powerpc__
__asm__ __volatile__ ( "stwbrx %1,0,%2" : "=m" ( * ( uint32_t * ) ptr ) : "r" ( v ), "r" ( ptr ));
# else
uint8_t * p = ptr ;
p [ 0 ] = v ;
p [ 1 ] = v >> 8 ;
p [ 2 ] = v >> 16 ;
p [ 3 ] = v >> 24 ;
# endif
}
298
static inline void stq_le_p ( void * ptr , uint64_t v )
299
300
{
uint8_t * p = ptr ;
301
302
stl_le_p ( p , ( uint32_t ) v );
stl_le_p ( p + 4 , v >> 32 );
303
304
305
306
}
/* float access */
307
static inline float32 ldfl_le_p ( void * ptr )
308
309
{
union {
310
float32 f ;
311
312
uint32_t i ;
} u ;
313
u . i = ldl_le_p ( ptr );
314
315
316
return u . f ;
}
317
static inline void stfl_le_p ( void * ptr , float32 v )
318
319
{
union {
320
float32 f ;
321
322
323
uint32_t i ;
} u ;
u . f = v ;
324
stl_le_p ( ptr , u . i );
325
326
}
327
static inline float64 ldfq_le_p ( void * ptr )
328
{
329
CPU_DoubleU u ;
330
331
u . l . lower = ldl_le_p ( ptr );
u . l . upper = ldl_le_p ( ptr + 4 );
332
333
334
return u . d ;
}
335
static inline void stfq_le_p ( void * ptr , float64 v )
336
{
337
CPU_DoubleU u ;
338
u . d = v ;
339
340
stl_le_p ( ptr , u . l . lower );
stl_le_p ( ptr + 4 , u . l . upper );
341
342
}
343
344
345
346
347
348
349
350
351
352
353
# else
static inline int lduw_le_p ( void * ptr )
{
return * ( uint16_t * ) ptr ;
}
static inline int ldsw_le_p ( void * ptr )
{
return * ( int16_t * ) ptr ;
}
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
static inline int ldl_le_p ( void * ptr )
{
return * ( uint32_t * ) ptr ;
}
static inline uint64_t ldq_le_p ( void * ptr )
{
return * ( uint64_t * ) ptr ;
}
static inline void stw_le_p ( void * ptr , int v )
{
* ( uint16_t * ) ptr = v ;
}
static inline void stl_le_p ( void * ptr , int v )
{
* ( uint32_t * ) ptr = v ;
}
static inline void stq_le_p ( void * ptr , uint64_t v )
{
* ( uint64_t * ) ptr = v ;
}
/* float access */
static inline float32 ldfl_le_p ( void * ptr )
{
return * ( float32 * ) ptr ;
}
static inline float64 ldfq_le_p ( void * ptr )
{
return * ( float64 * ) ptr ;
}
static inline void stfl_le_p ( void * ptr , float32 v )
{
* ( float32 * ) ptr = v ;
}
static inline void stfq_le_p ( void * ptr , float64 v )
{
* ( float64 * ) ptr = v ;
}
# endif
# if ! defined ( WORDS_BIGENDIAN ) || defined ( WORDS_ALIGNED )
static inline int lduw_be_p ( void * ptr )
406
{
407
408
409
410
411
412
413
414
# if defined ( __i386__ )
int val ;
asm volatile ( "movzwl %1, %0 \n "
"xchgb %b0, %h0 \n "
: "=q" ( val )
: "m" ( * ( uint16_t * ) ptr ));
return val ;
# else
415
uint8_t * b = ( uint8_t * ) ptr ;
416
417
return (( b [ 0 ] << 8 ) | b [ 1 ]);
# endif
418
419
}
420
static inline int ldsw_be_p ( void * ptr )
421
{
422
423
424
425
426
427
428
429
430
431
432
# if defined ( __i386__ )
int val ;
asm volatile ( "movzwl %1, %0 \n "
"xchgb %b0, %h0 \n "
: "=q" ( val )
: "m" ( * ( uint16_t * ) ptr ));
return ( int16_t ) val ;
# else
uint8_t * b = ( uint8_t * ) ptr ;
return ( int16_t )(( b [ 0 ] << 8 ) | b [ 1 ]);
# endif
433
434
}
435
static inline int ldl_be_p ( void * ptr )
436
{
437
# if defined ( __i386__ ) || defined ( __x86_64__ )
438
439
440
441
442
443
444
int val ;
asm volatile ( "movl %1, %0 \n "
"bswap %0 \n "
: "=r" ( val )
: "m" ( * ( uint32_t * ) ptr ));
return val ;
# else
445
uint8_t * b = ( uint8_t * ) ptr ;
446
447
return ( b [ 0 ] << 24 ) | ( b [ 1 ] << 16 ) | ( b [ 2 ] << 8 ) | b [ 3 ];
# endif
448
449
}
450
static inline uint64_t ldq_be_p ( void * ptr )
451
452
{
uint32_t a , b ;
453
454
a = ldl_be_p ( ptr );
b = ldl_be_p ( ptr + 4 );
455
456
457
return ((( uint64_t ) a << 32 ) | b );
}
458
static inline void stw_be_p ( void * ptr , int v )
459
{
460
461
462
463
464
465
# if defined ( __i386__ )
asm volatile ( "xchgb %b0, %h0 \n "
"movw %w0, %1 \n "
: "=q" ( v )
: "m" ( * ( uint16_t * ) ptr ), "0" ( v ));
# else
466
467
468
uint8_t * d = ( uint8_t * ) ptr ;
d [ 0 ] = v >> 8 ;
d [ 1 ] = v ;
469
# endif
470
471
}
472
static inline void stl_be_p ( void * ptr , int v )
473
{
474
# if defined ( __i386__ ) || defined ( __x86_64__ )
475
476
477
478
479
asm volatile ( "bswap %0 \n "
"movl %0, %1 \n "
: "=r" ( v )
: "m" ( * ( uint32_t * ) ptr ), "0" ( v ));
# else
480
481
482
483
484
uint8_t * d = ( uint8_t * ) ptr ;
d [ 0 ] = v >> 24 ;
d [ 1 ] = v >> 16 ;
d [ 2 ] = v >> 8 ;
d [ 3 ] = v ;
485
# endif
486
487
}
488
static inline void stq_be_p ( void * ptr , uint64_t v )
489
{
490
491
stl_be_p ( ptr , v >> 32 );
stl_be_p ( ptr + 4 , v );
492
493
494
495
}
/* float access */
496
static inline float32 ldfl_be_p ( void * ptr )
497
498
{
union {
499
float32 f ;
500
501
uint32_t i ;
} u ;
502
u . i = ldl_be_p ( ptr );
503
504
505
return u . f ;
}
506
static inline void stfl_be_p ( void * ptr , float32 v )
507
508
{
union {
509
float32 f ;
510
511
512
uint32_t i ;
} u ;
u . f = v ;
513
stl_be_p ( ptr , u . i );
514
515
}
516
static inline float64 ldfq_be_p ( void * ptr )
517
518
{
CPU_DoubleU u ;
519
520
u . l . upper = ldl_be_p ( ptr );
u . l . lower = ldl_be_p ( ptr + 4 );
521
522
523
return u . d ;
}
524
static inline void stfq_be_p ( void * ptr , float64 v )
525
526
527
{
CPU_DoubleU u ;
u . d = v ;
528
529
stl_be_p ( ptr , u . l . upper );
stl_be_p ( ptr + 4 , u . l . lower );
530
531
}
532
533
# else
534
static inline int lduw_be_p ( void * ptr )
535
536
537
538
{
return * ( uint16_t * ) ptr ;
}
539
static inline int ldsw_be_p ( void * ptr )
540
541
542
543
{
return * ( int16_t * ) ptr ;
}
544
static inline int ldl_be_p ( void * ptr )
545
546
547
548
{
return * ( uint32_t * ) ptr ;
}
549
static inline uint64_t ldq_be_p ( void * ptr )
550
551
552
553
{
return * ( uint64_t * ) ptr ;
}
554
static inline void stw_be_p ( void * ptr , int v )
555
556
557
558
{
* ( uint16_t * ) ptr = v ;
}
559
static inline void stl_be_p ( void * ptr , int v )
560
561
562
563
{
* ( uint32_t * ) ptr = v ;
}
564
static inline void stq_be_p ( void * ptr , uint64_t v )
565
566
567
568
569
570
{
* ( uint64_t * ) ptr = v ;
}
/* float access */
571
static inline float32 ldfl_be_p ( void * ptr )
572
{
573
return * ( float32 * ) ptr ;
574
575
}
576
static inline float64 ldfq_be_p ( void * ptr )
577
{
578
return * ( float64 * ) ptr ;
579
580
}
581
static inline void stfl_be_p ( void * ptr , float32 v )
582
{
583
* ( float32 * ) ptr = v ;
584
585
}
586
static inline void stfq_be_p ( void * ptr , float64 v )
587
{
588
* ( float64 * ) ptr = v ;
589
}
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
# endif
/* target CPU memory access functions */
# if defined ( TARGET_WORDS_BIGENDIAN )
# define lduw_p ( p ) lduw_be_p ( p )
# define ldsw_p ( p ) ldsw_be_p ( p )
# define ldl_p ( p ) ldl_be_p ( p )
# define ldq_p ( p ) ldq_be_p ( p )
# define ldfl_p ( p ) ldfl_be_p ( p )
# define ldfq_p ( p ) ldfq_be_p ( p )
# define stw_p ( p , v ) stw_be_p ( p , v )
# define stl_p ( p , v ) stl_be_p ( p , v )
# define stq_p ( p , v ) stq_be_p ( p , v )
# define stfl_p ( p , v ) stfl_be_p ( p , v )
# define stfq_p ( p , v ) stfq_be_p ( p , v )
# else
# define lduw_p ( p ) lduw_le_p ( p )
# define ldsw_p ( p ) ldsw_le_p ( p )
# define ldl_p ( p ) ldl_le_p ( p )
# define ldq_p ( p ) ldq_le_p ( p )
# define ldfl_p ( p ) ldfl_le_p ( p )
# define ldfq_p ( p ) ldfq_le_p ( p )
# define stw_p ( p , v ) stw_le_p ( p , v )
# define stl_p ( p , v ) stl_le_p ( p , v )
# define stq_p ( p , v ) stq_le_p ( p , v )
# define stfl_p ( p , v ) stfl_le_p ( p , v )
# define stfq_p ( p , v ) stfq_le_p ( p , v )
618
619
# endif
620
621
/* MMU memory access macros */
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
# if defined ( CONFIG_USER_ONLY )
/* On some host systems the guest address space is reserved on the host .
* This allows the guest address space to be offset to a convenient location .
*/
// # define GUEST_BASE 0x20000000
# define GUEST_BASE 0
/* All direct uses of g2h and h2g need to go away for usermode softmmu. */
# define g2h ( x ) (( void * )(( unsigned long )( x ) + GUEST_BASE ))
# define h2g ( x ) (( target_ulong )( x - GUEST_BASE ))
# define saddr ( x ) g2h ( x )
# define laddr ( x ) g2h ( x )
# else /* !CONFIG_USER_ONLY */
637
638
/* NOTE : we use double casts if pointers and target_ulong have
different sizes */
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
# define saddr ( x ) ( uint8_t * )( long )( x )
# define laddr ( x ) ( uint8_t * )( long )( x )
# endif
# define ldub_raw ( p ) ldub_p ( laddr (( p )))
# define ldsb_raw ( p ) ldsb_p ( laddr (( p )))
# define lduw_raw ( p ) lduw_p ( laddr (( p )))
# define ldsw_raw ( p ) ldsw_p ( laddr (( p )))
# define ldl_raw ( p ) ldl_p ( laddr (( p )))
# define ldq_raw ( p ) ldq_p ( laddr (( p )))
# define ldfl_raw ( p ) ldfl_p ( laddr (( p )))
# define ldfq_raw ( p ) ldfq_p ( laddr (( p )))
# define stb_raw ( p , v ) stb_p ( saddr (( p )), v )
# define stw_raw ( p , v ) stw_p ( saddr (( p )), v )
# define stl_raw ( p , v ) stl_p ( saddr (( p )), v )
# define stq_raw ( p , v ) stq_p ( saddr (( p )), v )
# define stfl_raw ( p , v ) stfl_p ( saddr (( p )), v )
# define stfq_raw ( p , v ) stfq_p ( saddr (( p )), v )
657
658
ths
authored
18 years ago
659
# if defined ( CONFIG_USER_ONLY )
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
/* if user mode, no other memory access functions */
# define ldub ( p ) ldub_raw ( p )
# define ldsb ( p ) ldsb_raw ( p )
# define lduw ( p ) lduw_raw ( p )
# define ldsw ( p ) ldsw_raw ( p )
# define ldl ( p ) ldl_raw ( p )
# define ldq ( p ) ldq_raw ( p )
# define ldfl ( p ) ldfl_raw ( p )
# define ldfq ( p ) ldfq_raw ( p )
# define stb ( p , v ) stb_raw ( p , v )
# define stw ( p , v ) stw_raw ( p , v )
# define stl ( p , v ) stl_raw ( p , v )
# define stq ( p , v ) stq_raw ( p , v )
# define stfl ( p , v ) stfl_raw ( p , v )
# define stfq ( p , v ) stfq_raw ( p , v )
# define ldub_code ( p ) ldub_raw ( p )
# define ldsb_code ( p ) ldsb_raw ( p )
# define lduw_code ( p ) lduw_raw ( p )
# define ldsw_code ( p ) ldsw_raw ( p )
# define ldl_code ( p ) ldl_raw ( p )
682
# define ldq_code ( p ) ldq_raw ( p )
683
684
685
686
687
688
# define ldub_kernel ( p ) ldub_raw ( p )
# define ldsb_kernel ( p ) ldsb_raw ( p )
# define lduw_kernel ( p ) lduw_raw ( p )
# define ldsw_kernel ( p ) ldsw_raw ( p )
# define ldl_kernel ( p ) ldl_raw ( p )
689
# define ldq_kernel ( p ) ldq_raw ( p )
690
691
# define ldfl_kernel ( p ) ldfl_raw ( p )
# define ldfq_kernel ( p ) ldfq_raw ( p )
692
693
694
695
# define stb_kernel ( p , v ) stb_raw ( p , v )
# define stw_kernel ( p , v ) stw_raw ( p , v )
# define stl_kernel ( p , v ) stl_raw ( p , v )
# define stq_kernel ( p , v ) stq_raw ( p , v )
696
697
# define stfl_kernel ( p , v ) stfl_raw ( p , v )
# define stfq_kernel ( p , vt ) stfq_raw ( p , v )
698
699
700
# endif /* defined(CONFIG_USER_ONLY) */
701
702
/* page related stuff */
703
# define TARGET_PAGE_SIZE ( 1 << TARGET_PAGE_BITS )
704
705
706
# define TARGET_PAGE_MASK ~ ( TARGET_PAGE_SIZE - 1 )
# define TARGET_PAGE_ALIGN ( addr ) ((( addr ) + TARGET_PAGE_SIZE - 1 ) & TARGET_PAGE_MASK )
707
/* ??? These should be the larger of unsigned long and target_ulong. */
708
709
710
711
extern unsigned long qemu_real_host_page_size ;
extern unsigned long qemu_host_page_bits ;
extern unsigned long qemu_host_page_size ;
extern unsigned long qemu_host_page_mask ;
712
713
# define HOST_PAGE_ALIGN ( addr ) ((( addr ) + qemu_host_page_size - 1 ) & qemu_host_page_mask )
714
715
716
717
718
719
720
721
722
/* same as PROT_xxx */
# define PAGE_READ 0x0001
# define PAGE_WRITE 0x0002
# define PAGE_EXEC 0x0004
# define PAGE_BITS ( PAGE_READ | PAGE_WRITE | PAGE_EXEC )
# define PAGE_VALID 0x0008
/* original state of the write flag ( used when tracking self - modifying
code */
ths
authored
18 years ago
723
# define PAGE_WRITE_ORG 0x0010
724
# define PAGE_RESERVED 0x0020
725
726
void page_dump ( FILE * f );
727
728
int page_get_flags ( target_ulong address );
void page_set_flags ( target_ulong start , target_ulong end , int flags );
ths
authored
17 years ago
729
int page_check_range ( target_ulong start , target_ulong len , int flags );
730
ths
authored
18 years ago
731
732
CPUState * cpu_copy ( CPUState * env );
ths
authored
18 years ago
733
void cpu_dump_state ( CPUState * env , FILE * f ,
734
735
int ( * cpu_fprintf )( FILE * f , const char * fmt , ...),
int flags );
736
737
738
void cpu_dump_statistics ( CPUState * env , FILE * f ,
int ( * cpu_fprintf )( FILE * f , const char * fmt , ...),
int flags );
739
740
void cpu_abort ( CPUState * env , const char * fmt , ...)
741
742
__attribute__ (( __format__ ( __printf__ , 2 , 3 )))
__attribute__ (( __noreturn__ ));
743
extern CPUState * first_cpu ;
744
extern CPUState * cpu_single_env ;
745
extern int code_copy_enabled ;
746
747
748
749
# define CPU_INTERRUPT_EXIT 0x01 /* wants exit from main loop */
# define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
# define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
750
# define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */
751
# define CPU_INTERRUPT_FIQ 0x10 /* Fast interrupt pending. */
752
# define CPU_INTERRUPT_HALT 0x20 /* CPU halt wanted */
753
# define CPU_INTERRUPT_SMI 0x40 /* (x86 only) SMI interrupt pending */
754
# define CPU_INTERRUPT_DEBUG 0x80 /* Debug event occured. */
ths
authored
17 years ago
755
# define CPU_INTERRUPT_VIRQ 0x100 /* virtual interrupt pending. */
756
# define CPU_INTERRUPT_NMI 0x200 /* NMI pending. */
757
758
void cpu_interrupt ( CPUState * s , int mask );
759
void cpu_reset_interrupt ( CPUState * env , int mask );
760
761
762
int cpu_watchpoint_insert ( CPUState * env , target_ulong addr );
int cpu_watchpoint_remove ( CPUState * env , target_ulong addr );
763
764
int cpu_breakpoint_insert ( CPUState * env , target_ulong pc );
int cpu_breakpoint_remove ( CPUState * env , target_ulong pc );
765
void cpu_single_step ( CPUState * env , int enabled );
766
void cpu_reset ( CPUState * s );
767
768
769
770
/* Return the physical page corresponding to a virtual one . Use it
only for debugging because no protection checks are done . Return - 1
if no page found . */
771
target_phys_addr_t cpu_get_phys_page_debug ( CPUState * env , target_ulong addr );
772
ths
authored
18 years ago
773
# define CPU_LOG_TB_OUT_ASM ( 1 << 0 )
774
# define CPU_LOG_TB_IN_ASM ( 1 << 1 )
775
776
777
778
779
# define CPU_LOG_TB_OP ( 1 << 2 )
# define CPU_LOG_TB_OP_OPT ( 1 << 3 )
# define CPU_LOG_INT ( 1 << 4 )
# define CPU_LOG_EXEC ( 1 << 5 )
# define CPU_LOG_PCALL ( 1 << 6 )
780
# define CPU_LOG_IOPORT ( 1 << 7 )
781
# define CPU_LOG_TB_CPU ( 1 << 8 )
782
783
784
785
786
787
788
789
790
791
/* define log items */
typedef struct CPULogItem {
int mask ;
const char * name ;
const char * help ;
} CPULogItem ;
extern CPULogItem cpu_log_items [];
792
793
void cpu_set_log ( int log_flags );
void cpu_set_log_filename ( const char * filename );
794
int cpu_str_to_log_mask ( const char * str );
795
796
797
798
799
800
801
802
803
804
805
806
807
808
/* IO ports API */
/* NOTE : as these functions may be even used when there is an isa
brige on non x86 targets , we always defined them */
# ifndef NO_CPU_IO_DEFS
void cpu_outb ( CPUState * env , int addr , int val );
void cpu_outw ( CPUState * env , int addr , int val );
void cpu_outl ( CPUState * env , int addr , int val );
int cpu_inb ( CPUState * env , int addr );
int cpu_inw ( CPUState * env , int addr );
int cpu_inl ( CPUState * env , int addr );
# endif
809
810
811
812
813
814
815
/* address in the RAM (different from a physical address) */
# ifdef USE_KQEMU
typedef uint32_t ram_addr_t ;
# else
typedef unsigned long ram_addr_t ;
# endif
816
817
/* memory API */
818
extern ram_addr_t phys_ram_size ;
819
820
extern int phys_ram_fd ;
extern uint8_t * phys_ram_base ;
821
extern uint8_t * phys_ram_dirty ;
822
extern ram_addr_t ram_size ;
823
824
825
826
/* physical memory access */
# define TLB_INVALID_MASK ( 1 << 3 )
# define IO_MEM_SHIFT 4
827
# define IO_MEM_NB_ENTRIES ( 1 << ( TARGET_PAGE_BITS - IO_MEM_SHIFT ))
828
829
830
831
# define IO_MEM_RAM ( 0 << IO_MEM_SHIFT ) /* hardcoded offset */
# define IO_MEM_ROM ( 1 << IO_MEM_SHIFT ) /* hardcoded offset */
# define IO_MEM_UNASSIGNED ( 2 << IO_MEM_SHIFT )
832
# define IO_MEM_NOTDIRTY ( 4 << IO_MEM_SHIFT ) /* used internally, never use directly */
833
834
835
836
/* acts like a ROM when read and like a device when written . As an
exception , the write memory callback gets the ram offset instead of
the physical address */
# define IO_MEM_ROMD ( 1 )
837
# define IO_MEM_SUBPAGE ( 2 )
838
# define IO_MEM_SUBWIDTH ( 4 )
839
840
841
typedef void CPUWriteMemoryFunc ( void * opaque , target_phys_addr_t addr , uint32_t value );
typedef uint32_t CPUReadMemoryFunc ( void * opaque , target_phys_addr_t addr );
842
ths
authored
18 years ago
843
void cpu_register_physical_memory ( target_phys_addr_t start_addr ,
844
845
846
847
ram_addr_t size ,
ram_addr_t phys_offset );
ram_addr_t cpu_get_physical_page_desc ( target_phys_addr_t addr );
ram_addr_t qemu_ram_alloc ( ram_addr_t );
848
void qemu_ram_free ( ram_addr_t addr );
849
850
int cpu_register_io_memory ( int io_index ,
CPUReadMemoryFunc ** mem_read ,
851
852
CPUWriteMemoryFunc ** mem_write ,
void * opaque );
853
854
CPUWriteMemoryFunc ** cpu_get_io_memory_write ( int io_index );
CPUReadMemoryFunc ** cpu_get_io_memory_read ( int io_index );
855
856
void cpu_physical_memory_rw ( target_phys_addr_t addr , uint8_t * buf ,
857
int len , int is_write );
ths
authored
18 years ago
858
static inline void cpu_physical_memory_read ( target_phys_addr_t addr ,
859
uint8_t * buf , int len )
860
861
862
{
cpu_physical_memory_rw ( addr , buf , len , 0 );
}
ths
authored
18 years ago
863
static inline void cpu_physical_memory_write ( target_phys_addr_t addr ,
864
const uint8_t * buf , int len )
865
866
867
{
cpu_physical_memory_rw ( addr , ( uint8_t * ) buf , len , 1 );
}
868
869
uint32_t ldub_phys ( target_phys_addr_t addr );
uint32_t lduw_phys ( target_phys_addr_t addr );
870
uint32_t ldl_phys ( target_phys_addr_t addr );
871
uint64_t ldq_phys ( target_phys_addr_t addr );
872
void stl_phys_notdirty ( target_phys_addr_t addr , uint32_t val );
873
void stq_phys_notdirty ( target_phys_addr_t addr , uint64_t val );
874
875
void stb_phys ( target_phys_addr_t addr , uint32_t val );
void stw_phys ( target_phys_addr_t addr , uint32_t val );
876
void stl_phys ( target_phys_addr_t addr , uint32_t val );
877
void stq_phys ( target_phys_addr_t addr , uint64_t val );
878
ths
authored
18 years ago
879
void cpu_physical_memory_write_rom ( target_phys_addr_t addr ,
880
const uint8_t * buf , int len );
ths
authored
18 years ago
881
int cpu_memory_rw_debug ( CPUState * env , target_ulong addr ,
882
uint8_t * buf , int len , int is_write );
883
884
885
# define VGA_DIRTY_FLAG 0x01
# define CODE_DIRTY_FLAG 0x02
886
887
/* read dirty bit (return 0 or 1) */
888
static inline int cpu_physical_memory_is_dirty ( ram_addr_t addr )
889
{
890
891
892
return phys_ram_dirty [ addr >> TARGET_PAGE_BITS ] == 0xff ;
}
ths
authored
18 years ago
893
static inline int cpu_physical_memory_get_dirty ( ram_addr_t addr ,
894
895
896
int dirty_flags )
{
return phys_ram_dirty [ addr >> TARGET_PAGE_BITS ] & dirty_flags ;
897
898
}
899
static inline void cpu_physical_memory_set_dirty ( ram_addr_t addr )
900
{
901
phys_ram_dirty [ addr >> TARGET_PAGE_BITS ] = 0xff ;
902
903
}
904
void cpu_physical_memory_reset_dirty ( ram_addr_t start , ram_addr_t end ,
905
int dirty_flags );
906
void cpu_tlb_update_dirty ( CPUState * env );
907
908
909
910
void dump_exec_info ( FILE * f ,
int ( * cpu_fprintf )( FILE * f , const char * fmt , ...));
911
912
913
914
915
/*******************************************/
/* host CPU ticks (if available) */
# if defined ( __powerpc__ )
ths
authored
18 years ago
916
static inline uint32_t get_tbl ( void )
917
918
919
920
921
922
{
uint32_t tbl ;
asm volatile ( "mftb %0" : "=r" ( tbl ));
return tbl ;
}
ths
authored
18 years ago
923
static inline uint32_t get_tbu ( void )
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
{
uint32_t tbl ;
asm volatile ( "mftbu %0" : "=r" ( tbl ));
return tbl ;
}
static inline int64_t cpu_get_real_ticks ( void )
{
uint32_t l , h , h1 ;
/* NOTE: we test if wrapping has occurred */
do {
h = get_tbu ();
l = get_tbl ();
h1 = get_tbu ();
} while ( h != h1 );
return (( int64_t ) h << 32 ) | l ;
}
# elif defined ( __i386__ )
static inline int64_t cpu_get_real_ticks ( void )
945
946
947
948
949
950
{
int64_t val ;
asm volatile ( "rdtsc" : "=A" ( val ));
return val ;
}
951
952
953
954
955
956
957
958
959
960
961
962
963
# elif defined ( __x86_64__ )
static inline int64_t cpu_get_real_ticks ( void )
{
uint32_t low , high ;
int64_t val ;
asm volatile ( "rdtsc" : "=a" ( low ), "=d" ( high ));
val = high ;
val <<= 32 ;
val |= low ;
return val ;
}
964
965
966
967
968
969
970
971
972
# elif defined ( __hppa__ )
static inline int64_t cpu_get_real_ticks ( void )
{
int val ;
asm volatile ( "mfctl %%cr16, %0" : "=r" ( val ));
return val ;
}
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
# elif defined ( __ia64 )
static inline int64_t cpu_get_real_ticks ( void )
{
int64_t val ;
asm volatile ( "mov %0 = ar.itc" : "=r" ( val ) :: "memory" );
return val ;
}
# elif defined ( __s390__ )
static inline int64_t cpu_get_real_ticks ( void )
{
int64_t val ;
asm volatile ( "stck 0(%1)" : "=m" ( val ) : "a" ( & val ) : "cc" );
return val ;
}
991
# elif defined ( __sparc_v8plus__ ) || defined ( __sparc_v8plusa__ ) || defined ( __sparc_v9__ )
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
static inline int64_t cpu_get_real_ticks ( void )
{
# if defined ( _LP64 )
uint64_t rval ;
asm volatile ( "rd %%tick,%0" : "=r" ( rval ));
return rval ;
# else
union {
uint64_t i64 ;
struct {
uint32_t high ;
uint32_t low ;
} i32 ;
} rval ;
asm volatile ( "rd %%tick,%1; srlx %1,32,%0"
: "=r" ( rval . i32 . high ), "=r" ( rval . i32 . low ));
return rval . i64 ;
# endif
}
ths
authored
18 years ago
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
# elif defined ( __mips__ )
static inline int64_t cpu_get_real_ticks ( void )
{
# if __mips_isa_rev >= 2
uint32_t count ;
static uint32_t cyc_per_count = 0 ;
if ( ! cyc_per_count )
__asm__ __volatile__ ( "rdhwr %0, $3" : "=r" ( cyc_per_count ));
__asm__ __volatile__ ( "rdhwr %1, $2" : "=r" ( count ));
return ( int64_t )( count * cyc_per_count );
# else
/* FIXME */
static int64_t ticks = 0 ;
return ticks ++ ;
# endif
}
1033
1034
# else
/* The host CPU doesn ' t have an easily accessible cycle counter .
ths
authored
18 years ago
1035
1036
Just return a monotonically increasing value . This will be
totally wrong , but hopefully better than nothing . */
1037
1038
1039
1040
1041
static inline int64_t cpu_get_real_ticks ( void )
{
static int64_t ticks = 0 ;
return ticks ++ ;
}
1042
1043
1044
1045
1046
1047
1048
1049
1050
# endif
/* profiling */
# ifdef CONFIG_PROFILER
static inline int64_t profile_getclock ( void )
{
return cpu_get_real_ticks ();
}
1051
1052
1053
1054
1055
1056
1057
1058
1059
extern int64_t kqemu_time , kqemu_time_start ;
extern int64_t qemu_time , qemu_time_start ;
extern int64_t tlb_flush_time ;
extern int64_t kqemu_exec_count ;
extern int64_t dev_time ;
extern int64_t kqemu_ret_int_count ;
extern int64_t kqemu_ret_excp_count ;
extern int64_t kqemu_ret_intr_count ;
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
extern int64_t dyngen_tb_count1 ;
extern int64_t dyngen_tb_count ;
extern int64_t dyngen_op_count ;
extern int64_t dyngen_old_op_count ;
extern int64_t dyngen_tcg_del_op_count ;
extern int dyngen_op_count_max ;
extern int64_t dyngen_code_in_len ;
extern int64_t dyngen_code_out_len ;
extern int64_t dyngen_interm_time ;
extern int64_t dyngen_code_time ;
extern int64_t dyngen_restore_count ;
extern int64_t dyngen_restore_time ;
1072
1073
# endif
1074
# endif /* CPU_ALL_H */