1
2
/*
* defines common to all virtual CPUs
ths
authored
18 years ago
3
*
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
* Copyright ( c ) 2003 Fabrice Bellard
*
* This library is free software ; you can redistribute it and / or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation ; either
* version 2 of the License , or ( at your option ) any later version .
*
* This library is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the GNU
* Lesser General Public License for more details .
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library ; if not , write to the Free Software
* Foundation , Inc ., 59 Temple Place , Suite 330 , Boston , MA 02111 - 1307 USA
*/
# ifndef CPU_ALL_H
# define CPU_ALL_H
23
# if defined ( __arm__ ) || defined ( __sparc__ ) || defined ( __mips__ ) || defined ( __hppa__ )
24
25
26
# define WORDS_ALIGNED
# endif
ths
authored
18 years ago
27
28
/* some important defines :
*
29
30
* WORDS_ALIGNED : if defined , the host cpu can only make word aligned
* memory accesses .
ths
authored
18 years ago
31
*
32
33
* WORDS_BIGENDIAN : if defined , the host cpu is big endian and
* otherwise little endian .
ths
authored
18 years ago
34
*
35
* ( TARGET_WORDS_ALIGNED : same for target cpu ( not supported yet ))
ths
authored
18 years ago
36
*
37
38
39
* TARGET_WORDS_BIGENDIAN : same for target cpu
*/
40
# include "bswap.h"
41
# include "softfloat.h"
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
# if defined ( WORDS_BIGENDIAN ) != defined ( TARGET_WORDS_BIGENDIAN )
# define BSWAP_NEEDED
# endif
# ifdef BSWAP_NEEDED
static inline uint16_t tswap16 ( uint16_t s )
{
return bswap16 ( s );
}
static inline uint32_t tswap32 ( uint32_t s )
{
return bswap32 ( s );
}
static inline uint64_t tswap64 ( uint64_t s )
{
return bswap64 ( s );
}
static inline void tswap16s ( uint16_t * s )
{
* s = bswap16 ( * s );
}
static inline void tswap32s ( uint32_t * s )
{
* s = bswap32 ( * s );
}
static inline void tswap64s ( uint64_t * s )
{
* s = bswap64 ( * s );
}
# else
static inline uint16_t tswap16 ( uint16_t s )
{
return s ;
}
static inline uint32_t tswap32 ( uint32_t s )
{
return s ;
}
static inline uint64_t tswap64 ( uint64_t s )
{
return s ;
}
static inline void tswap16s ( uint16_t * s )
{
}
static inline void tswap32s ( uint32_t * s )
{
}
static inline void tswap64s ( uint64_t * s )
{
}
# endif
# if TARGET_LONG_SIZE == 4
# define tswapl ( s ) tswap32 ( s )
# define tswapls ( s ) tswap32s (( uint32_t * )( s ))
113
# define bswaptls ( s ) bswap32s ( s )
114
115
116
# else
# define tswapl ( s ) tswap64 ( s )
# define tswapls ( s ) tswap64s (( uint64_t * )( s ))
117
# define bswaptls ( s ) bswap64s ( s )
118
119
# endif
120
121
122
123
124
typedef union {
float32 f ;
uint32_t l ;
} CPU_FloatU ;
125
126
/* NOTE : arm FPA is horrible as double 32 bit words are stored in big
endian ! */
127
typedef union {
128
float64 d ;
129
130
# if defined ( WORDS_BIGENDIAN ) \
|| ( defined ( __arm__ ) && ! defined ( __VFP_FP__ ) && ! defined ( CONFIG_SOFTFLOAT ))
131
132
struct {
uint32_t upper ;
133
uint32_t lower ;
134
135
136
137
} l ;
# else
struct {
uint32_t lower ;
138
uint32_t upper ;
139
140
141
142
143
} l ;
# endif
uint64_t ll ;
} CPU_DoubleU ;
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# ifdef TARGET_SPARC
typedef union {
float128 q ;
# if defined ( WORDS_BIGENDIAN ) \
|| ( defined ( __arm__ ) && ! defined ( __VFP_FP__ ) && ! defined ( CONFIG_SOFTFLOAT ))
struct {
uint32_t upmost ;
uint32_t upper ;
uint32_t lower ;
uint32_t lowest ;
} l ;
struct {
uint64_t upper ;
uint64_t lower ;
} ll ;
# else
struct {
uint32_t lowest ;
uint32_t lower ;
uint32_t upper ;
uint32_t upmost ;
} l ;
struct {
uint64_t lower ;
uint64_t upper ;
} ll ;
# endif
} CPU_QuadU ;
# endif
174
175
/* CPU memory access without any memory or io remapping */
176
177
178
179
180
181
182
183
184
185
/*
* the generic syntax for the memory accesses is :
*
* load : ld { type }{ sign }{ size }{ endian } _ { access_type }( ptr )
*
* store : st { type }{ size }{ endian } _ { access_type }( ptr , val )
*
* type is :
* ( empty ) : integer access
* f : float access
ths
authored
18 years ago
186
*
187
188
189
190
191
192
193
194
195
196
* sign is :
* ( empty ) : for floats or 32 bit size
* u : unsigned
* s : signed
*
* size is :
* b : 8 bits
* w : 16 bits
* l : 32 bits
* q : 64 bits
ths
authored
18 years ago
197
*
198
199
200
201
202
203
204
205
206
207
208
* endian is :
* ( empty ) : target cpu endianness or 8 bit access
* r : reversed target cpu endianness ( not implemented yet )
* be : big endian ( not implemented yet )
* le : little endian ( not implemented yet )
*
* access_type is :
* raw : host memory access
* user : user mode access using soft MMU
* kernel : kernel mode access using soft MMU
*/
209
static inline int ldub_p ( void * ptr )
210
211
212
213
{
return * ( uint8_t * ) ptr ;
}
214
static inline int ldsb_p ( void * ptr )
215
216
217
218
{
return * ( int8_t * ) ptr ;
}
219
static inline void stb_p ( void * ptr , int v )
220
221
222
223
224
225
226
{
* ( uint8_t * ) ptr = v ;
}
/* NOTE : on arm , putting 2 in / proc / sys / debug / alignment so that the
kernel handles unaligned load / stores may give better results , but
it is a system wide setting : bad */
227
# if defined ( WORDS_BIGENDIAN ) || defined ( WORDS_ALIGNED )
228
229
/* conservative code for little endian unaligned accesses */
230
static inline int lduw_le_p ( void * ptr )
231
232
233
234
235
236
237
238
239
240
241
{
# ifdef __powerpc__
int val ;
__asm__ __volatile__ ( "lhbrx %0,0,%1" : "=r" ( val ) : "r" ( ptr ));
return val ;
# else
uint8_t * p = ptr ;
return p [ 0 ] | ( p [ 1 ] << 8 );
# endif
}
242
static inline int ldsw_le_p ( void * ptr )
243
244
245
246
247
248
249
250
251
252
253
{
# ifdef __powerpc__
int val ;
__asm__ __volatile__ ( "lhbrx %0,0,%1" : "=r" ( val ) : "r" ( ptr ));
return ( int16_t ) val ;
# else
uint8_t * p = ptr ;
return ( int16_t )( p [ 0 ] | ( p [ 1 ] << 8 ));
# endif
}
254
static inline int ldl_le_p ( void * ptr )
255
256
257
258
259
260
261
262
263
264
265
{
# ifdef __powerpc__
int val ;
__asm__ __volatile__ ( "lwbrx %0,0,%1" : "=r" ( val ) : "r" ( ptr ));
return val ;
# else
uint8_t * p = ptr ;
return p [ 0 ] | ( p [ 1 ] << 8 ) | ( p [ 2 ] << 16 ) | ( p [ 3 ] << 24 );
# endif
}
266
static inline uint64_t ldq_le_p ( void * ptr )
267
268
269
{
uint8_t * p = ptr ;
uint32_t v1 , v2 ;
270
271
v1 = ldl_le_p ( p );
v2 = ldl_le_p ( p + 4 );
272
273
274
return v1 | (( uint64_t ) v2 << 32 );
}
275
static inline void stw_le_p ( void * ptr , int v )
276
277
278
279
280
281
282
283
284
285
{
# ifdef __powerpc__
__asm__ __volatile__ ( "sthbrx %1,0,%2" : "=m" ( * ( uint16_t * ) ptr ) : "r" ( v ), "r" ( ptr ));
# else
uint8_t * p = ptr ;
p [ 0 ] = v ;
p [ 1 ] = v >> 8 ;
# endif
}
286
static inline void stl_le_p ( void * ptr , int v )
287
288
289
290
291
292
293
294
295
296
297
298
{
# ifdef __powerpc__
__asm__ __volatile__ ( "stwbrx %1,0,%2" : "=m" ( * ( uint32_t * ) ptr ) : "r" ( v ), "r" ( ptr ));
# else
uint8_t * p = ptr ;
p [ 0 ] = v ;
p [ 1 ] = v >> 8 ;
p [ 2 ] = v >> 16 ;
p [ 3 ] = v >> 24 ;
# endif
}
299
static inline void stq_le_p ( void * ptr , uint64_t v )
300
301
{
uint8_t * p = ptr ;
302
303
stl_le_p ( p , ( uint32_t ) v );
stl_le_p ( p + 4 , v >> 32 );
304
305
306
307
}
/* float access */
308
static inline float32 ldfl_le_p ( void * ptr )
309
310
{
union {
311
float32 f ;
312
313
uint32_t i ;
} u ;
314
u . i = ldl_le_p ( ptr );
315
316
317
return u . f ;
}
318
static inline void stfl_le_p ( void * ptr , float32 v )
319
320
{
union {
321
float32 f ;
322
323
324
uint32_t i ;
} u ;
u . f = v ;
325
stl_le_p ( ptr , u . i );
326
327
}
328
static inline float64 ldfq_le_p ( void * ptr )
329
{
330
CPU_DoubleU u ;
331
332
u . l . lower = ldl_le_p ( ptr );
u . l . upper = ldl_le_p ( ptr + 4 );
333
334
335
return u . d ;
}
336
static inline void stfq_le_p ( void * ptr , float64 v )
337
{
338
CPU_DoubleU u ;
339
u . d = v ;
340
341
stl_le_p ( ptr , u . l . lower );
stl_le_p ( ptr + 4 , u . l . upper );
342
343
}
344
345
346
347
348
349
350
351
352
353
354
# else
static inline int lduw_le_p ( void * ptr )
{
return * ( uint16_t * ) ptr ;
}
static inline int ldsw_le_p ( void * ptr )
{
return * ( int16_t * ) ptr ;
}
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
static inline int ldl_le_p ( void * ptr )
{
return * ( uint32_t * ) ptr ;
}
static inline uint64_t ldq_le_p ( void * ptr )
{
return * ( uint64_t * ) ptr ;
}
static inline void stw_le_p ( void * ptr , int v )
{
* ( uint16_t * ) ptr = v ;
}
static inline void stl_le_p ( void * ptr , int v )
{
* ( uint32_t * ) ptr = v ;
}
static inline void stq_le_p ( void * ptr , uint64_t v )
{
* ( uint64_t * ) ptr = v ;
}
/* float access */
static inline float32 ldfl_le_p ( void * ptr )
{
return * ( float32 * ) ptr ;
}
static inline float64 ldfq_le_p ( void * ptr )
{
return * ( float64 * ) ptr ;
}
static inline void stfl_le_p ( void * ptr , float32 v )
{
* ( float32 * ) ptr = v ;
}
static inline void stfq_le_p ( void * ptr , float64 v )
{
* ( float64 * ) ptr = v ;
}
# endif
# if ! defined ( WORDS_BIGENDIAN ) || defined ( WORDS_ALIGNED )
static inline int lduw_be_p ( void * ptr )
407
{
408
409
410
411
412
413
414
415
# if defined ( __i386__ )
int val ;
asm volatile ( "movzwl %1, %0 \n "
"xchgb %b0, %h0 \n "
: "=q" ( val )
: "m" ( * ( uint16_t * ) ptr ));
return val ;
# else
416
uint8_t * b = ( uint8_t * ) ptr ;
417
418
return (( b [ 0 ] << 8 ) | b [ 1 ]);
# endif
419
420
}
421
static inline int ldsw_be_p ( void * ptr )
422
{
423
424
425
426
427
428
429
430
431
432
433
# if defined ( __i386__ )
int val ;
asm volatile ( "movzwl %1, %0 \n "
"xchgb %b0, %h0 \n "
: "=q" ( val )
: "m" ( * ( uint16_t * ) ptr ));
return ( int16_t ) val ;
# else
uint8_t * b = ( uint8_t * ) ptr ;
return ( int16_t )(( b [ 0 ] << 8 ) | b [ 1 ]);
# endif
434
435
}
436
static inline int ldl_be_p ( void * ptr )
437
{
438
# if defined ( __i386__ ) || defined ( __x86_64__ )
439
440
441
442
443
444
445
int val ;
asm volatile ( "movl %1, %0 \n "
"bswap %0 \n "
: "=r" ( val )
: "m" ( * ( uint32_t * ) ptr ));
return val ;
# else
446
uint8_t * b = ( uint8_t * ) ptr ;
447
448
return ( b [ 0 ] << 24 ) | ( b [ 1 ] << 16 ) | ( b [ 2 ] << 8 ) | b [ 3 ];
# endif
449
450
}
451
static inline uint64_t ldq_be_p ( void * ptr )
452
453
{
uint32_t a , b ;
454
a = ldl_be_p ( ptr );
455
b = ldl_be_p (( uint8_t * ) ptr + 4 );
456
457
458
return ((( uint64_t ) a << 32 ) | b );
}
459
static inline void stw_be_p ( void * ptr , int v )
460
{
461
462
463
464
465
466
# if defined ( __i386__ )
asm volatile ( "xchgb %b0, %h0 \n "
"movw %w0, %1 \n "
: "=q" ( v )
: "m" ( * ( uint16_t * ) ptr ), "0" ( v ));
# else
467
468
469
uint8_t * d = ( uint8_t * ) ptr ;
d [ 0 ] = v >> 8 ;
d [ 1 ] = v ;
470
# endif
471
472
}
473
static inline void stl_be_p ( void * ptr , int v )
474
{
475
# if defined ( __i386__ ) || defined ( __x86_64__ )
476
477
478
479
480
asm volatile ( "bswap %0 \n "
"movl %0, %1 \n "
: "=r" ( v )
: "m" ( * ( uint32_t * ) ptr ), "0" ( v ));
# else
481
482
483
484
485
uint8_t * d = ( uint8_t * ) ptr ;
d [ 0 ] = v >> 24 ;
d [ 1 ] = v >> 16 ;
d [ 2 ] = v >> 8 ;
d [ 3 ] = v ;
486
# endif
487
488
}
489
static inline void stq_be_p ( void * ptr , uint64_t v )
490
{
491
stl_be_p ( ptr , v >> 32 );
492
stl_be_p (( uint8_t * ) ptr + 4 , v );
493
494
495
496
}
/* float access */
497
static inline float32 ldfl_be_p ( void * ptr )
498
499
{
union {
500
float32 f ;
501
502
uint32_t i ;
} u ;
503
u . i = ldl_be_p ( ptr );
504
505
506
return u . f ;
}
507
static inline void stfl_be_p ( void * ptr , float32 v )
508
509
{
union {
510
float32 f ;
511
512
513
uint32_t i ;
} u ;
u . f = v ;
514
stl_be_p ( ptr , u . i );
515
516
}
517
static inline float64 ldfq_be_p ( void * ptr )
518
519
{
CPU_DoubleU u ;
520
u . l . upper = ldl_be_p ( ptr );
521
u . l . lower = ldl_be_p (( uint8_t * ) ptr + 4 );
522
523
524
return u . d ;
}
525
static inline void stfq_be_p ( void * ptr , float64 v )
526
527
528
{
CPU_DoubleU u ;
u . d = v ;
529
stl_be_p ( ptr , u . l . upper );
530
stl_be_p (( uint8_t * ) ptr + 4 , u . l . lower );
531
532
}
533
534
# else
535
static inline int lduw_be_p ( void * ptr )
536
537
538
539
{
return * ( uint16_t * ) ptr ;
}
540
static inline int ldsw_be_p ( void * ptr )
541
542
543
544
{
return * ( int16_t * ) ptr ;
}
545
static inline int ldl_be_p ( void * ptr )
546
547
548
549
{
return * ( uint32_t * ) ptr ;
}
550
static inline uint64_t ldq_be_p ( void * ptr )
551
552
553
554
{
return * ( uint64_t * ) ptr ;
}
555
static inline void stw_be_p ( void * ptr , int v )
556
557
558
559
{
* ( uint16_t * ) ptr = v ;
}
560
static inline void stl_be_p ( void * ptr , int v )
561
562
563
564
{
* ( uint32_t * ) ptr = v ;
}
565
static inline void stq_be_p ( void * ptr , uint64_t v )
566
567
568
569
570
571
{
* ( uint64_t * ) ptr = v ;
}
/* float access */
572
static inline float32 ldfl_be_p ( void * ptr )
573
{
574
return * ( float32 * ) ptr ;
575
576
}
577
static inline float64 ldfq_be_p ( void * ptr )
578
{
579
return * ( float64 * ) ptr ;
580
581
}
582
static inline void stfl_be_p ( void * ptr , float32 v )
583
{
584
* ( float32 * ) ptr = v ;
585
586
}
587
static inline void stfq_be_p ( void * ptr , float64 v )
588
{
589
* ( float64 * ) ptr = v ;
590
}
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
# endif
/* target CPU memory access functions */
# if defined ( TARGET_WORDS_BIGENDIAN )
# define lduw_p ( p ) lduw_be_p ( p )
# define ldsw_p ( p ) ldsw_be_p ( p )
# define ldl_p ( p ) ldl_be_p ( p )
# define ldq_p ( p ) ldq_be_p ( p )
# define ldfl_p ( p ) ldfl_be_p ( p )
# define ldfq_p ( p ) ldfq_be_p ( p )
# define stw_p ( p , v ) stw_be_p ( p , v )
# define stl_p ( p , v ) stl_be_p ( p , v )
# define stq_p ( p , v ) stq_be_p ( p , v )
# define stfl_p ( p , v ) stfl_be_p ( p , v )
# define stfq_p ( p , v ) stfq_be_p ( p , v )
# else
# define lduw_p ( p ) lduw_le_p ( p )
# define ldsw_p ( p ) ldsw_le_p ( p )
# define ldl_p ( p ) ldl_le_p ( p )
# define ldq_p ( p ) ldq_le_p ( p )
# define ldfl_p ( p ) ldfl_le_p ( p )
# define ldfq_p ( p ) ldfq_le_p ( p )
# define stw_p ( p , v ) stw_le_p ( p , v )
# define stl_p ( p , v ) stl_le_p ( p , v )
# define stq_p ( p , v ) stq_le_p ( p , v )
# define stfl_p ( p , v ) stfl_le_p ( p , v )
# define stfq_p ( p , v ) stfq_le_p ( p , v )
619
620
# endif
621
622
/* MMU memory access macros */
623
624
625
626
627
628
629
630
631
# if defined ( CONFIG_USER_ONLY )
/* On some host systems the guest address space is reserved on the host .
* This allows the guest address space to be offset to a convenient location .
*/
// # define GUEST_BASE 0x20000000
# define GUEST_BASE 0
/* All direct uses of g2h and h2g need to go away for usermode softmmu. */
# define g2h ( x ) (( void * )(( unsigned long )( x ) + GUEST_BASE ))
ths
authored
17 years ago
632
# define h2g ( x ) (( target_ulong )(( unsigned long )( x ) - GUEST_BASE ))
633
634
635
636
637
# define saddr ( x ) g2h ( x )
# define laddr ( x ) g2h ( x )
# else /* !CONFIG_USER_ONLY */
638
639
/* NOTE : we use double casts if pointers and target_ulong have
different sizes */
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
# define saddr ( x ) ( uint8_t * )( long )( x )
# define laddr ( x ) ( uint8_t * )( long )( x )
# endif
# define ldub_raw ( p ) ldub_p ( laddr (( p )))
# define ldsb_raw ( p ) ldsb_p ( laddr (( p )))
# define lduw_raw ( p ) lduw_p ( laddr (( p )))
# define ldsw_raw ( p ) ldsw_p ( laddr (( p )))
# define ldl_raw ( p ) ldl_p ( laddr (( p )))
# define ldq_raw ( p ) ldq_p ( laddr (( p )))
# define ldfl_raw ( p ) ldfl_p ( laddr (( p )))
# define ldfq_raw ( p ) ldfq_p ( laddr (( p )))
# define stb_raw ( p , v ) stb_p ( saddr (( p )), v )
# define stw_raw ( p , v ) stw_p ( saddr (( p )), v )
# define stl_raw ( p , v ) stl_p ( saddr (( p )), v )
# define stq_raw ( p , v ) stq_p ( saddr (( p )), v )
# define stfl_raw ( p , v ) stfl_p ( saddr (( p )), v )
# define stfq_raw ( p , v ) stfq_p ( saddr (( p )), v )
658
659
ths
authored
18 years ago
660
# if defined ( CONFIG_USER_ONLY )
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
/* if user mode, no other memory access functions */
# define ldub ( p ) ldub_raw ( p )
# define ldsb ( p ) ldsb_raw ( p )
# define lduw ( p ) lduw_raw ( p )
# define ldsw ( p ) ldsw_raw ( p )
# define ldl ( p ) ldl_raw ( p )
# define ldq ( p ) ldq_raw ( p )
# define ldfl ( p ) ldfl_raw ( p )
# define ldfq ( p ) ldfq_raw ( p )
# define stb ( p , v ) stb_raw ( p , v )
# define stw ( p , v ) stw_raw ( p , v )
# define stl ( p , v ) stl_raw ( p , v )
# define stq ( p , v ) stq_raw ( p , v )
# define stfl ( p , v ) stfl_raw ( p , v )
# define stfq ( p , v ) stfq_raw ( p , v )
# define ldub_code ( p ) ldub_raw ( p )
# define ldsb_code ( p ) ldsb_raw ( p )
# define lduw_code ( p ) lduw_raw ( p )
# define ldsw_code ( p ) ldsw_raw ( p )
# define ldl_code ( p ) ldl_raw ( p )
683
# define ldq_code ( p ) ldq_raw ( p )
684
685
686
687
688
689
# define ldub_kernel ( p ) ldub_raw ( p )
# define ldsb_kernel ( p ) ldsb_raw ( p )
# define lduw_kernel ( p ) lduw_raw ( p )
# define ldsw_kernel ( p ) ldsw_raw ( p )
# define ldl_kernel ( p ) ldl_raw ( p )
690
# define ldq_kernel ( p ) ldq_raw ( p )
691
692
# define ldfl_kernel ( p ) ldfl_raw ( p )
# define ldfq_kernel ( p ) ldfq_raw ( p )
693
694
695
696
# define stb_kernel ( p , v ) stb_raw ( p , v )
# define stw_kernel ( p , v ) stw_raw ( p , v )
# define stl_kernel ( p , v ) stl_raw ( p , v )
# define stq_kernel ( p , v ) stq_raw ( p , v )
697
698
# define stfl_kernel ( p , v ) stfl_raw ( p , v )
# define stfq_kernel ( p , vt ) stfq_raw ( p , v )
699
700
701
# endif /* defined(CONFIG_USER_ONLY) */
702
703
/* page related stuff */
704
# define TARGET_PAGE_SIZE ( 1 << TARGET_PAGE_BITS )
705
706
707
# define TARGET_PAGE_MASK ~ ( TARGET_PAGE_SIZE - 1 )
# define TARGET_PAGE_ALIGN ( addr ) ((( addr ) + TARGET_PAGE_SIZE - 1 ) & TARGET_PAGE_MASK )
708
/* ??? These should be the larger of unsigned long and target_ulong. */
709
710
711
712
extern unsigned long qemu_real_host_page_size ;
extern unsigned long qemu_host_page_bits ;
extern unsigned long qemu_host_page_size ;
extern unsigned long qemu_host_page_mask ;
713
714
# define HOST_PAGE_ALIGN ( addr ) ((( addr ) + qemu_host_page_size - 1 ) & qemu_host_page_mask )
715
716
717
718
719
720
721
722
723
/* same as PROT_xxx */
# define PAGE_READ 0x0001
# define PAGE_WRITE 0x0002
# define PAGE_EXEC 0x0004
# define PAGE_BITS ( PAGE_READ | PAGE_WRITE | PAGE_EXEC )
# define PAGE_VALID 0x0008
/* original state of the write flag ( used when tracking self - modifying
code */
ths
authored
18 years ago
724
# define PAGE_WRITE_ORG 0x0010
725
# define PAGE_RESERVED 0x0020
726
727
void page_dump ( FILE * f );
728
729
int page_get_flags ( target_ulong address );
void page_set_flags ( target_ulong start , target_ulong end , int flags );
ths
authored
17 years ago
730
int page_check_range ( target_ulong start , target_ulong len , int flags );
731
732
void cpu_exec_init_all ( unsigned long tb_size );
ths
authored
18 years ago
733
734
CPUState * cpu_copy ( CPUState * env );
ths
authored
18 years ago
735
void cpu_dump_state ( CPUState * env , FILE * f ,
736
737
int ( * cpu_fprintf )( FILE * f , const char * fmt , ...),
int flags );
738
739
740
void cpu_dump_statistics ( CPUState * env , FILE * f ,
int ( * cpu_fprintf )( FILE * f , const char * fmt , ...),
int flags );
741
742
void cpu_abort ( CPUState * env , const char * fmt , ...)
743
744
__attribute__ (( __format__ ( __printf__ , 2 , 3 )))
__attribute__ (( __noreturn__ ));
745
extern CPUState * first_cpu ;
746
extern CPUState * cpu_single_env ;
747
748
extern int64_t qemu_icount ;
extern int use_icount ;
749
750
751
752
# define CPU_INTERRUPT_EXIT 0x01 /* wants exit from main loop */
# define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
# define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
753
# define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */
754
# define CPU_INTERRUPT_FIQ 0x10 /* Fast interrupt pending. */
755
# define CPU_INTERRUPT_HALT 0x20 /* CPU halt wanted */
756
# define CPU_INTERRUPT_SMI 0x40 /* (x86 only) SMI interrupt pending */
757
# define CPU_INTERRUPT_DEBUG 0x80 /* Debug event occured. */
ths
authored
17 years ago
758
# define CPU_INTERRUPT_VIRQ 0x100 /* virtual interrupt pending. */
759
# define CPU_INTERRUPT_NMI 0x200 /* NMI pending. */
760
761
void cpu_interrupt ( CPUState * s , int mask );
762
void cpu_reset_interrupt ( CPUState * env , int mask );
763
764
int cpu_watchpoint_insert ( CPUState * env , target_ulong addr , int type );
765
int cpu_watchpoint_remove ( CPUState * env , target_ulong addr );
766
void cpu_watchpoint_remove_all ( CPUState * env );
767
768
int cpu_breakpoint_insert ( CPUState * env , target_ulong pc );
int cpu_breakpoint_remove ( CPUState * env , target_ulong pc );
769
void cpu_breakpoint_remove_all ( CPUState * env );
770
771
772
773
774
# define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
# define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
# define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
775
void cpu_single_step ( CPUState * env , int enabled );
776
void cpu_reset ( CPUState * s );
777
778
779
780
/* Return the physical page corresponding to a virtual one . Use it
only for debugging because no protection checks are done . Return - 1
if no page found . */
781
target_phys_addr_t cpu_get_phys_page_debug ( CPUState * env , target_ulong addr );
782
ths
authored
18 years ago
783
# define CPU_LOG_TB_OUT_ASM ( 1 << 0 )
784
# define CPU_LOG_TB_IN_ASM ( 1 << 1 )
785
786
787
788
789
# define CPU_LOG_TB_OP ( 1 << 2 )
# define CPU_LOG_TB_OP_OPT ( 1 << 3 )
# define CPU_LOG_INT ( 1 << 4 )
# define CPU_LOG_EXEC ( 1 << 5 )
# define CPU_LOG_PCALL ( 1 << 6 )
790
# define CPU_LOG_IOPORT ( 1 << 7 )
791
# define CPU_LOG_TB_CPU ( 1 << 8 )
792
793
794
795
796
797
798
799
/* define log items */
typedef struct CPULogItem {
int mask ;
const char * name ;
const char * help ;
} CPULogItem ;
800
extern const CPULogItem cpu_log_items [];
801
802
803
void cpu_set_log ( int log_flags );
void cpu_set_log_filename ( const char * filename );
804
int cpu_str_to_log_mask ( const char * str );
805
806
807
808
809
810
811
812
813
814
815
816
817
818
/* IO ports API */
/* NOTE : as these functions may be even used when there is an isa
brige on non x86 targets , we always defined them */
# ifndef NO_CPU_IO_DEFS
void cpu_outb ( CPUState * env , int addr , int val );
void cpu_outw ( CPUState * env , int addr , int val );
void cpu_outl ( CPUState * env , int addr , int val );
int cpu_inb ( CPUState * env , int addr );
int cpu_inw ( CPUState * env , int addr );
int cpu_inl ( CPUState * env , int addr );
# endif
819
820
821
822
823
824
825
/* address in the RAM (different from a physical address) */
# ifdef USE_KQEMU
typedef uint32_t ram_addr_t ;
# else
typedef unsigned long ram_addr_t ;
# endif
826
827
/* memory API */
828
extern ram_addr_t phys_ram_size ;
829
830
extern int phys_ram_fd ;
extern uint8_t * phys_ram_base ;
831
extern uint8_t * phys_ram_dirty ;
832
extern ram_addr_t ram_size ;
833
834
/* physical memory access */
835
836
837
838
839
840
/* MMIO pages are identified by a combination of an IO device index and
3 flags . The ROMD code stores the page ram offset in iotlb entry ,
so only a limited number of ids are avaiable . */
# define IO_MEM_SHIFT 3
841
# define IO_MEM_NB_ENTRIES ( 1 << ( TARGET_PAGE_BITS - IO_MEM_SHIFT ))
842
843
844
845
# define IO_MEM_RAM ( 0 << IO_MEM_SHIFT ) /* hardcoded offset */
# define IO_MEM_ROM ( 1 << IO_MEM_SHIFT ) /* hardcoded offset */
# define IO_MEM_UNASSIGNED ( 2 << IO_MEM_SHIFT )
846
847
848
# define IO_MEM_NOTDIRTY ( 3 << IO_MEM_SHIFT )
/* Acts like a ROM when read and like a device when written. */
849
# define IO_MEM_ROMD ( 1 )
850
# define IO_MEM_SUBPAGE ( 2 )
851
# define IO_MEM_SUBWIDTH ( 4 )
852
853
854
855
856
857
858
859
860
861
862
/* Flags stored in the low bits of the TLB virtual address . These are
defined so that fast path ram access is all zeros . */
/* Zero if TLB entry is valid. */
# define TLB_INVALID_MASK ( 1 << 3 )
/* Set if TLB entry references a clean RAM page . The iotlb entry will
contain the page physical address . */
# define TLB_NOTDIRTY ( 1 << 4 )
/* Set if TLB entry is an IO callback. */
# define TLB_MMIO ( 1 << 5 )
863
864
typedef void CPUWriteMemoryFunc ( void * opaque , target_phys_addr_t addr , uint32_t value );
typedef uint32_t CPUReadMemoryFunc ( void * opaque , target_phys_addr_t addr );
865
ths
authored
18 years ago
866
void cpu_register_physical_memory ( target_phys_addr_t start_addr ,
867
868
869
870
ram_addr_t size ,
ram_addr_t phys_offset );
ram_addr_t cpu_get_physical_page_desc ( target_phys_addr_t addr );
ram_addr_t qemu_ram_alloc ( ram_addr_t );
871
void qemu_ram_free ( ram_addr_t addr );
872
873
int cpu_register_io_memory ( int io_index ,
CPUReadMemoryFunc ** mem_read ,
874
875
CPUWriteMemoryFunc ** mem_write ,
void * opaque );
876
877
CPUWriteMemoryFunc ** cpu_get_io_memory_write ( int io_index );
CPUReadMemoryFunc ** cpu_get_io_memory_read ( int io_index );
878
879
void cpu_physical_memory_rw ( target_phys_addr_t addr , uint8_t * buf ,
880
int len , int is_write );
ths
authored
18 years ago
881
static inline void cpu_physical_memory_read ( target_phys_addr_t addr ,
882
uint8_t * buf , int len )
883
884
885
{
cpu_physical_memory_rw ( addr , buf , len , 0 );
}
ths
authored
18 years ago
886
static inline void cpu_physical_memory_write ( target_phys_addr_t addr ,
887
const uint8_t * buf , int len )
888
889
890
{
cpu_physical_memory_rw ( addr , ( uint8_t * ) buf , len , 1 );
}
891
892
uint32_t ldub_phys ( target_phys_addr_t addr );
uint32_t lduw_phys ( target_phys_addr_t addr );
893
uint32_t ldl_phys ( target_phys_addr_t addr );
894
uint64_t ldq_phys ( target_phys_addr_t addr );
895
void stl_phys_notdirty ( target_phys_addr_t addr , uint32_t val );
896
void stq_phys_notdirty ( target_phys_addr_t addr , uint64_t val );
897
898
void stb_phys ( target_phys_addr_t addr , uint32_t val );
void stw_phys ( target_phys_addr_t addr , uint32_t val );
899
void stl_phys ( target_phys_addr_t addr , uint32_t val );
900
void stq_phys ( target_phys_addr_t addr , uint64_t val );
901
ths
authored
18 years ago
902
void cpu_physical_memory_write_rom ( target_phys_addr_t addr ,
903
const uint8_t * buf , int len );
ths
authored
18 years ago
904
int cpu_memory_rw_debug ( CPUState * env , target_ulong addr ,
905
uint8_t * buf , int len , int is_write );
906
907
908
909
910
# define VGA_DIRTY_FLAG 0x01
# define CODE_DIRTY_FLAG 0x02
# define KQEMU_DIRTY_FLAG 0x04
# define MIGRATION_DIRTY_FLAG 0x08
911
912
/* read dirty bit (return 0 or 1) */
913
static inline int cpu_physical_memory_is_dirty ( ram_addr_t addr )
914
{
915
916
917
return phys_ram_dirty [ addr >> TARGET_PAGE_BITS ] == 0xff ;
}
ths
authored
18 years ago
918
static inline int cpu_physical_memory_get_dirty ( ram_addr_t addr ,
919
920
921
int dirty_flags )
{
return phys_ram_dirty [ addr >> TARGET_PAGE_BITS ] & dirty_flags ;
922
923
}
924
static inline void cpu_physical_memory_set_dirty ( ram_addr_t addr )
925
{
926
phys_ram_dirty [ addr >> TARGET_PAGE_BITS ] = 0xff ;
927
928
}
929
void cpu_physical_memory_reset_dirty ( ram_addr_t start , ram_addr_t end ,
930
int dirty_flags );
931
void cpu_tlb_update_dirty ( CPUState * env );
932
933
934
935
936
int cpu_physical_memory_set_dirty_tracking ( int enable );
int cpu_physical_memory_get_dirty_tracking ( void );
937
938
939
void dump_exec_info ( FILE * f ,
int ( * cpu_fprintf )( FILE * f , const char * fmt , ...));
940
941
942
943
944
/*******************************************/
/* host CPU ticks (if available) */
# if defined ( __powerpc__ )
ths
authored
18 years ago
945
static inline uint32_t get_tbl ( void )
946
947
948
949
950
951
{
uint32_t tbl ;
asm volatile ( "mftb %0" : "=r" ( tbl ));
return tbl ;
}
ths
authored
18 years ago
952
static inline uint32_t get_tbu ( void )
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
{
uint32_t tbl ;
asm volatile ( "mftbu %0" : "=r" ( tbl ));
return tbl ;
}
static inline int64_t cpu_get_real_ticks ( void )
{
uint32_t l , h , h1 ;
/* NOTE: we test if wrapping has occurred */
do {
h = get_tbu ();
l = get_tbl ();
h1 = get_tbu ();
} while ( h != h1 );
return (( int64_t ) h << 32 ) | l ;
}
# elif defined ( __i386__ )
static inline int64_t cpu_get_real_ticks ( void )
974
975
976
977
978
979
{
int64_t val ;
asm volatile ( "rdtsc" : "=A" ( val ));
return val ;
}
980
981
982
983
984
985
986
987
988
989
990
991
992
# elif defined ( __x86_64__ )
static inline int64_t cpu_get_real_ticks ( void )
{
uint32_t low , high ;
int64_t val ;
asm volatile ( "rdtsc" : "=a" ( low ), "=d" ( high ));
val = high ;
val <<= 32 ;
val |= low ;
return val ;
}
993
994
995
996
997
998
999
1000
1001
# elif defined ( __hppa__ )
static inline int64_t cpu_get_real_ticks ( void )
{
int val ;
asm volatile ( "mfctl %%cr16, %0" : "=r" ( val ));
return val ;
}
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
# elif defined ( __ia64 )
static inline int64_t cpu_get_real_ticks ( void )
{
int64_t val ;
asm volatile ( "mov %0 = ar.itc" : "=r" ( val ) :: "memory" );
return val ;
}
# elif defined ( __s390__ )
static inline int64_t cpu_get_real_ticks ( void )
{
int64_t val ;
asm volatile ( "stck 0(%1)" : "=m" ( val ) : "a" ( & val ) : "cc" );
return val ;
}
1020
# elif defined ( __sparc_v8plus__ ) || defined ( __sparc_v8plusa__ ) || defined ( __sparc_v9__ )
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
static inline int64_t cpu_get_real_ticks ( void )
{
# if defined ( _LP64 )
uint64_t rval ;
asm volatile ( "rd %%tick,%0" : "=r" ( rval ));
return rval ;
# else
union {
uint64_t i64 ;
struct {
uint32_t high ;
uint32_t low ;
} i32 ;
} rval ;
asm volatile ( "rd %%tick,%1; srlx %1,32,%0"
: "=r" ( rval . i32 . high ), "=r" ( rval . i32 . low ));
return rval . i64 ;
# endif
}
ths
authored
18 years ago
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
# elif defined ( __mips__ )
static inline int64_t cpu_get_real_ticks ( void )
{
# if __mips_isa_rev >= 2
uint32_t count ;
static uint32_t cyc_per_count = 0 ;
if ( ! cyc_per_count )
__asm__ __volatile__ ( "rdhwr %0, $3" : "=r" ( cyc_per_count ));
__asm__ __volatile__ ( "rdhwr %1, $2" : "=r" ( count ));
return ( int64_t )( count * cyc_per_count );
# else
/* FIXME */
static int64_t ticks = 0 ;
return ticks ++ ;
# endif
}
1062
1063
# else
/* The host CPU doesn ' t have an easily accessible cycle counter .
ths
authored
18 years ago
1064
1065
Just return a monotonically increasing value . This will be
totally wrong , but hopefully better than nothing . */
1066
1067
1068
1069
1070
static inline int64_t cpu_get_real_ticks ( void )
{
static int64_t ticks = 0 ;
return ticks ++ ;
}
1071
1072
1073
1074
1075
1076
1077
1078
1079
# endif
/* profiling */
# ifdef CONFIG_PROFILER
static inline int64_t profile_getclock ( void )
{
return cpu_get_real_ticks ();
}
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
extern int64_t kqemu_time , kqemu_time_start ;
extern int64_t qemu_time , qemu_time_start ;
extern int64_t tlb_flush_time ;
extern int64_t kqemu_exec_count ;
extern int64_t dev_time ;
extern int64_t kqemu_ret_int_count ;
extern int64_t kqemu_ret_excp_count ;
extern int64_t kqemu_ret_intr_count ;
# endif
1090
# endif /* CPU_ALL_H */