Blame view

cpu-all.h 27.6 KB
bellard authored
1
2
/*
 * defines common to all virtual CPUs
3
 *
bellard authored
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
#ifndef CPU_ALL_H
#define CPU_ALL_H
aurel32 authored
23
#if defined(__arm__) || defined(__sparc__) || defined(__mips__) || defined(__hppa__)
bellard authored
24
25
26
#define WORDS_ALIGNED
#endif
27
28
/* some important defines:
 *
bellard authored
29
30
 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
 * memory accesses.
31
 *
bellard authored
32
33
 * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
 * otherwise little endian.
34
 *
bellard authored
35
 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
36
 *
bellard authored
37
38
39
 * TARGET_WORDS_BIGENDIAN : same for target cpu
 */
40
#include "bswap.h"
41
#include "softfloat.h"
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

#if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
#define BSWAP_NEEDED
#endif

#ifdef BSWAP_NEEDED

static inline uint16_t tswap16(uint16_t s)
{
    return bswap16(s);
}

static inline uint32_t tswap32(uint32_t s)
{
    return bswap32(s);
}

static inline uint64_t tswap64(uint64_t s)
{
    return bswap64(s);
}

static inline void tswap16s(uint16_t *s)
{
    *s = bswap16(*s);
}

static inline void tswap32s(uint32_t *s)
{
    *s = bswap32(*s);
}

static inline void tswap64s(uint64_t *s)
{
    *s = bswap64(*s);
}

#else

static inline uint16_t tswap16(uint16_t s)
{
    return s;
}

static inline uint32_t tswap32(uint32_t s)
{
    return s;
}

static inline uint64_t tswap64(uint64_t s)
{
    return s;
}

static inline void tswap16s(uint16_t *s)
{
}

static inline void tswap32s(uint32_t *s)
{
}

static inline void tswap64s(uint64_t *s)
{
}

#endif

#if TARGET_LONG_SIZE == 4
#define tswapl(s) tswap32(s)
#define tswapls(s) tswap32s((uint32_t *)(s))
bellard authored
113
#define bswaptls(s) bswap32s(s)
114
115
116
#else
#define tswapl(s) tswap64(s)
#define tswapls(s) tswap64s((uint64_t *)(s))
bellard authored
117
#define bswaptls(s) bswap64s(s)
118
119
#endif
120
121
122
123
124
typedef union {
    float32 f;
    uint32_t l;
} CPU_FloatU;
bellard authored
125
126
/* NOTE: arm FPA is horrible as double 32 bit words are stored in big
   endian ! */
bellard authored
127
typedef union {
bellard authored
128
    float64 d;
129
130
#if defined(WORDS_BIGENDIAN) \
    || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
bellard authored
131
132
    struct {
        uint32_t upper;
bellard authored
133
        uint32_t lower;
bellard authored
134
135
136
137
    } l;
#else
    struct {
        uint32_t lower;
bellard authored
138
        uint32_t upper;
bellard authored
139
140
141
142
143
    } l;
#endif
    uint64_t ll;
} CPU_DoubleU;
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#ifdef TARGET_SPARC
typedef union {
    float128 q;
#if defined(WORDS_BIGENDIAN) \
    || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
    struct {
        uint32_t upmost;
        uint32_t upper;
        uint32_t lower;
        uint32_t lowest;
    } l;
    struct {
        uint64_t upper;
        uint64_t lower;
    } ll;
#else
    struct {
        uint32_t lowest;
        uint32_t lower;
        uint32_t upper;
        uint32_t upmost;
    } l;
    struct {
        uint64_t lower;
        uint64_t upper;
    } ll;
#endif
} CPU_QuadU;
#endif
bellard authored
174
175
/* CPU memory access without any memory or io remapping */
176
177
178
179
180
181
182
183
184
185
/*
 * the generic syntax for the memory accesses is:
 *
 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
 *
 * store: st{type}{size}{endian}_{access_type}(ptr, val)
 *
 * type is:
 * (empty): integer access
 *   f    : float access
186
 *
187
188
189
190
191
192
193
194
195
196
 * sign is:
 * (empty): for floats or 32 bit size
 *   u    : unsigned
 *   s    : signed
 *
 * size is:
 *   b: 8 bits
 *   w: 16 bits
 *   l: 32 bits
 *   q: 64 bits
197
 *
198
199
200
201
202
203
204
205
206
207
208
 * endian is:
 * (empty): target cpu endianness or 8 bit access
 *   r    : reversed target cpu endianness (not implemented yet)
 *   be   : big endian (not implemented yet)
 *   le   : little endian (not implemented yet)
 *
 * access_type is:
 *   raw    : host memory access
 *   user   : user mode access using soft MMU
 *   kernel : kernel mode access using soft MMU
 */
bellard authored
209
static inline int ldub_p(void *ptr)
bellard authored
210
211
212
213
{
    return *(uint8_t *)ptr;
}
bellard authored
214
static inline int ldsb_p(void *ptr)
bellard authored
215
216
217
218
{
    return *(int8_t *)ptr;
}
bellard authored
219
static inline void stb_p(void *ptr, int v)
bellard authored
220
221
222
223
224
225
226
{
    *(uint8_t *)ptr = v;
}

/* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
   kernel handles unaligned load/stores may give better results, but
   it is a system wide setting : bad */
227
#if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
bellard authored
228
229

/* conservative code for little endian unaligned accesses */
230
static inline int lduw_le_p(void *ptr)
bellard authored
231
232
233
234
235
{
#ifdef __powerpc__
    int val;
    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
    return val;
236
237
238
239
240
241
242
243
244
#elif defined(__sparc__)
#ifndef ASI_PRIMARY_LITTLE
#define ASI_PRIMARY_LITTLE 0x88
#endif

    int val;
    __asm__ __volatile__ ("lduha [%1] %2, %0" : "=r" (val) : "r" (ptr),
                          "i" (ASI_PRIMARY_LITTLE));
    return val;
bellard authored
245
246
247
248
249
250
#else
    uint8_t *p = ptr;
    return p[0] | (p[1] << 8);
#endif
}
251
static inline int ldsw_le_p(void *ptr)
bellard authored
252
253
254
255
256
{
#ifdef __powerpc__
    int val;
    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
    return (int16_t)val;
257
258
259
260
261
#elif defined(__sparc__)
    int val;
    __asm__ __volatile__ ("ldsha [%1] %2, %0" : "=r" (val) : "r" (ptr),
                          "i" (ASI_PRIMARY_LITTLE));
    return val;
bellard authored
262
263
264
265
266
267
#else
    uint8_t *p = ptr;
    return (int16_t)(p[0] | (p[1] << 8));
#endif
}
268
static inline int ldl_le_p(void *ptr)
bellard authored
269
270
271
272
273
{
#ifdef __powerpc__
    int val;
    __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
    return val;
274
275
276
277
278
#elif defined(__sparc__)
    int val;
    __asm__ __volatile__ ("lduwa [%1] %2, %0" : "=r" (val) : "r" (ptr),
                          "i" (ASI_PRIMARY_LITTLE));
    return val;
bellard authored
279
280
281
282
283
284
#else
    uint8_t *p = ptr;
    return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
#endif
}
285
static inline uint64_t ldq_le_p(void *ptr)
bellard authored
286
{
287
288
289
290
291
292
#if defined(__sparc__)
    uint64_t val;
    __asm__ __volatile__ ("ldxa [%1] %2, %0" : "=r" (val) : "r" (ptr),
                          "i" (ASI_PRIMARY_LITTLE));
    return val;
#else
bellard authored
293
294
    uint8_t *p = ptr;
    uint32_t v1, v2;
295
296
    v1 = ldl_le_p(p);
    v2 = ldl_le_p(p + 4);
bellard authored
297
    return v1 | ((uint64_t)v2 << 32);
298
#endif
bellard authored
299
300
}
301
static inline void stw_le_p(void *ptr, int v)
bellard authored
302
303
304
{
#ifdef __powerpc__
    __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
305
306
307
#elif defined(__sparc__)
    __asm__ __volatile__ ("stha %1, [%2] %3" : "=m" (*(uint16_t *)ptr) : "r" (v),
                          "r" (ptr), "i" (ASI_PRIMARY_LITTLE));
bellard authored
308
309
310
311
312
313
314
#else
    uint8_t *p = ptr;
    p[0] = v;
    p[1] = v >> 8;
#endif
}
315
static inline void stl_le_p(void *ptr, int v)
bellard authored
316
317
318
{
#ifdef __powerpc__
    __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
319
320
321
#elif defined(__sparc__)
    __asm__ __volatile__ ("stwa %1, [%2] %3" : "=m" (*(uint32_t *)ptr) : "r" (v),
                          "r" (ptr), "i" (ASI_PRIMARY_LITTLE));
bellard authored
322
323
324
325
326
327
328
329
330
#else
    uint8_t *p = ptr;
    p[0] = v;
    p[1] = v >> 8;
    p[2] = v >> 16;
    p[3] = v >> 24;
#endif
}
331
static inline void stq_le_p(void *ptr, uint64_t v)
bellard authored
332
{
333
334
335
336
337
#if defined(__sparc__)
    __asm__ __volatile__ ("stxa %1, [%2] %3" : "=m" (*(uint64_t *)ptr) : "r" (v),
                          "r" (ptr), "i" (ASI_PRIMARY_LITTLE));
#undef ASI_PRIMARY_LITTLE
#else
bellard authored
338
    uint8_t *p = ptr;
339
340
    stl_le_p(p, (uint32_t)v);
    stl_le_p(p + 4, v >> 32);
341
#endif
bellard authored
342
343
344
345
}

/* float access */
346
static inline float32 ldfl_le_p(void *ptr)
bellard authored
347
348
{
    union {
bellard authored
349
        float32 f;
bellard authored
350
351
        uint32_t i;
    } u;
352
    u.i = ldl_le_p(ptr);
bellard authored
353
354
355
    return u.f;
}
356
static inline void stfl_le_p(void *ptr, float32 v)
bellard authored
357
358
{
    union {
bellard authored
359
        float32 f;
bellard authored
360
361
362
        uint32_t i;
    } u;
    u.f = v;
363
    stl_le_p(ptr, u.i);
bellard authored
364
365
}
366
static inline float64 ldfq_le_p(void *ptr)
bellard authored
367
{
bellard authored
368
    CPU_DoubleU u;
369
370
    u.l.lower = ldl_le_p(ptr);
    u.l.upper = ldl_le_p(ptr + 4);
bellard authored
371
372
373
    return u.d;
}
374
static inline void stfq_le_p(void *ptr, float64 v)
bellard authored
375
{
bellard authored
376
    CPU_DoubleU u;
bellard authored
377
    u.d = v;
378
379
    stl_le_p(ptr, u.l.lower);
    stl_le_p(ptr + 4, u.l.upper);
bellard authored
380
381
}
382
383
384
385
386
387
388
389
390
391
392
#else

static inline int lduw_le_p(void *ptr)
{
    return *(uint16_t *)ptr;
}

static inline int ldsw_le_p(void *ptr)
{
    return *(int16_t *)ptr;
}
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
static inline int ldl_le_p(void *ptr)
{
    return *(uint32_t *)ptr;
}

static inline uint64_t ldq_le_p(void *ptr)
{
    return *(uint64_t *)ptr;
}

static inline void stw_le_p(void *ptr, int v)
{
    *(uint16_t *)ptr = v;
}

static inline void stl_le_p(void *ptr, int v)
{
    *(uint32_t *)ptr = v;
}

static inline void stq_le_p(void *ptr, uint64_t v)
{
    *(uint64_t *)ptr = v;
}

/* float access */

static inline float32 ldfl_le_p(void *ptr)
{
    return *(float32 *)ptr;
}

static inline float64 ldfq_le_p(void *ptr)
{
    return *(float64 *)ptr;
}

static inline void stfl_le_p(void *ptr, float32 v)
{
    *(float32 *)ptr = v;
}

static inline void stfq_le_p(void *ptr, float64 v)
{
    *(float64 *)ptr = v;
}
#endif

#if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)

static inline int lduw_be_p(void *ptr)
445
{
446
447
448
449
450
451
452
453
#if defined(__i386__)
    int val;
    asm volatile ("movzwl %1, %0\n"
                  "xchgb %b0, %h0\n"
                  : "=q" (val)
                  : "m" (*(uint16_t *)ptr));
    return val;
#else
454
    uint8_t *b = (uint8_t *) ptr;
455
456
    return ((b[0] << 8) | b[1]);
#endif
457
458
}
459
static inline int ldsw_be_p(void *ptr)
460
{
461
462
463
464
465
466
467
468
469
470
471
#if defined(__i386__)
    int val;
    asm volatile ("movzwl %1, %0\n"
                  "xchgb %b0, %h0\n"
                  : "=q" (val)
                  : "m" (*(uint16_t *)ptr));
    return (int16_t)val;
#else
    uint8_t *b = (uint8_t *) ptr;
    return (int16_t)((b[0] << 8) | b[1]);
#endif
472
473
}
474
static inline int ldl_be_p(void *ptr)
475
{
bellard authored
476
#if defined(__i386__) || defined(__x86_64__)
477
478
479
480
481
482
483
    int val;
    asm volatile ("movl %1, %0\n"
                  "bswap %0\n"
                  : "=r" (val)
                  : "m" (*(uint32_t *)ptr));
    return val;
#else
484
    uint8_t *b = (uint8_t *) ptr;
485
486
    return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
#endif
487
488
}
489
static inline uint64_t ldq_be_p(void *ptr)
490
491
{
    uint32_t a,b;
492
    a = ldl_be_p(ptr);
493
    b = ldl_be_p((uint8_t *)ptr + 4);
494
495
496
    return (((uint64_t)a<<32)|b);
}
497
static inline void stw_be_p(void *ptr, int v)
498
{
499
500
501
502
503
504
#if defined(__i386__)
    asm volatile ("xchgb %b0, %h0\n"
                  "movw %w0, %1\n"
                  : "=q" (v)
                  : "m" (*(uint16_t *)ptr), "0" (v));
#else
505
506
507
    uint8_t *d = (uint8_t *) ptr;
    d[0] = v >> 8;
    d[1] = v;
508
#endif
509
510
}
511
static inline void stl_be_p(void *ptr, int v)
512
{
bellard authored
513
#if defined(__i386__) || defined(__x86_64__)
514
515
516
517
518
    asm volatile ("bswap %0\n"
                  "movl %0, %1\n"
                  : "=r" (v)
                  : "m" (*(uint32_t *)ptr), "0" (v));
#else
519
520
521
522
523
    uint8_t *d = (uint8_t *) ptr;
    d[0] = v >> 24;
    d[1] = v >> 16;
    d[2] = v >> 8;
    d[3] = v;
524
#endif
525
526
}
527
static inline void stq_be_p(void *ptr, uint64_t v)
528
{
529
    stl_be_p(ptr, v >> 32);
530
    stl_be_p((uint8_t *)ptr + 4, v);
bellard authored
531
532
533
534
}

/* float access */
535
static inline float32 ldfl_be_p(void *ptr)
bellard authored
536
537
{
    union {
bellard authored
538
        float32 f;
bellard authored
539
540
        uint32_t i;
    } u;
541
    u.i = ldl_be_p(ptr);
bellard authored
542
543
544
    return u.f;
}
545
static inline void stfl_be_p(void *ptr, float32 v)
bellard authored
546
547
{
    union {
bellard authored
548
        float32 f;
bellard authored
549
550
551
        uint32_t i;
    } u;
    u.f = v;
552
    stl_be_p(ptr, u.i);
bellard authored
553
554
}
555
static inline float64 ldfq_be_p(void *ptr)
bellard authored
556
557
{
    CPU_DoubleU u;
558
    u.l.upper = ldl_be_p(ptr);
559
    u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
bellard authored
560
561
562
    return u.d;
}
563
static inline void stfq_be_p(void *ptr, float64 v)
bellard authored
564
565
566
{
    CPU_DoubleU u;
    u.d = v;
567
    stl_be_p(ptr, u.l.upper);
568
    stl_be_p((uint8_t *)ptr + 4, u.l.lower);
569
570
}
bellard authored
571
572
#else
573
static inline int lduw_be_p(void *ptr)
bellard authored
574
575
576
577
{
    return *(uint16_t *)ptr;
}
578
static inline int ldsw_be_p(void *ptr)
bellard authored
579
580
581
582
{
    return *(int16_t *)ptr;
}
583
static inline int ldl_be_p(void *ptr)
bellard authored
584
585
586
587
{
    return *(uint32_t *)ptr;
}
588
static inline uint64_t ldq_be_p(void *ptr)
bellard authored
589
590
591
592
{
    return *(uint64_t *)ptr;
}
593
static inline void stw_be_p(void *ptr, int v)
bellard authored
594
595
596
597
{
    *(uint16_t *)ptr = v;
}
598
static inline void stl_be_p(void *ptr, int v)
bellard authored
599
600
601
602
{
    *(uint32_t *)ptr = v;
}
603
static inline void stq_be_p(void *ptr, uint64_t v)
bellard authored
604
605
606
607
608
609
{
    *(uint64_t *)ptr = v;
}

/* float access */
610
static inline float32 ldfl_be_p(void *ptr)
bellard authored
611
{
bellard authored
612
    return *(float32 *)ptr;
bellard authored
613
614
}
615
static inline float64 ldfq_be_p(void *ptr)
bellard authored
616
{
bellard authored
617
    return *(float64 *)ptr;
bellard authored
618
619
}
620
static inline void stfl_be_p(void *ptr, float32 v)
bellard authored
621
{
bellard authored
622
    *(float32 *)ptr = v;
bellard authored
623
624
}
625
static inline void stfq_be_p(void *ptr, float64 v)
bellard authored
626
{
bellard authored
627
    *(float64 *)ptr = v;
bellard authored
628
}
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656

#endif

/* target CPU memory access functions */
#if defined(TARGET_WORDS_BIGENDIAN)
#define lduw_p(p) lduw_be_p(p)
#define ldsw_p(p) ldsw_be_p(p)
#define ldl_p(p) ldl_be_p(p)
#define ldq_p(p) ldq_be_p(p)
#define ldfl_p(p) ldfl_be_p(p)
#define ldfq_p(p) ldfq_be_p(p)
#define stw_p(p, v) stw_be_p(p, v)
#define stl_p(p, v) stl_be_p(p, v)
#define stq_p(p, v) stq_be_p(p, v)
#define stfl_p(p, v) stfl_be_p(p, v)
#define stfq_p(p, v) stfq_be_p(p, v)
#else
#define lduw_p(p) lduw_le_p(p)
#define ldsw_p(p) ldsw_le_p(p)
#define ldl_p(p) ldl_le_p(p)
#define ldq_p(p) ldq_le_p(p)
#define ldfl_p(p) ldfl_le_p(p)
#define ldfq_p(p) ldfq_le_p(p)
#define stw_p(p, v) stw_le_p(p, v)
#define stl_p(p, v) stl_le_p(p, v)
#define stq_p(p, v) stq_le_p(p, v)
#define stfl_p(p, v) stfl_le_p(p, v)
#define stfq_p(p, v) stfq_le_p(p, v)
bellard authored
657
658
#endif
bellard authored
659
660
/* MMU memory access macros */
661
662
663
664
665
666
667
668
669
#if defined(CONFIG_USER_ONLY)
/* On some host systems the guest address space is reserved on the host.
 * This allows the guest address space to be offset to a convenient location.
 */
//#define GUEST_BASE 0x20000000
#define GUEST_BASE 0

/* All direct uses of g2h and h2g need to go away for usermode softmmu.  */
#define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
ths authored
670
#define h2g(x) ((target_ulong)((unsigned long)(x) - GUEST_BASE))
671
672
673
674
675

#define saddr(x) g2h(x)
#define laddr(x) g2h(x)

#else /* !CONFIG_USER_ONLY */
bellard authored
676
677
/* NOTE: we use double casts if pointers and target_ulong have
   different sizes */
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
#define saddr(x) (uint8_t *)(long)(x)
#define laddr(x) (uint8_t *)(long)(x)
#endif

#define ldub_raw(p) ldub_p(laddr((p)))
#define ldsb_raw(p) ldsb_p(laddr((p)))
#define lduw_raw(p) lduw_p(laddr((p)))
#define ldsw_raw(p) ldsw_p(laddr((p)))
#define ldl_raw(p) ldl_p(laddr((p)))
#define ldq_raw(p) ldq_p(laddr((p)))
#define ldfl_raw(p) ldfl_p(laddr((p)))
#define ldfq_raw(p) ldfq_p(laddr((p)))
#define stb_raw(p, v) stb_p(saddr((p)), v)
#define stw_raw(p, v) stw_p(saddr((p)), v)
#define stl_raw(p, v) stl_p(saddr((p)), v)
#define stq_raw(p, v) stq_p(saddr((p)), v)
#define stfl_raw(p, v) stfl_p(saddr((p)), v)
#define stfq_raw(p, v) stfq_p(saddr((p)), v)
bellard authored
696
697
698
#if defined(CONFIG_USER_ONLY)
bellard authored
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720

/* if user mode, no other memory access functions */
#define ldub(p) ldub_raw(p)
#define ldsb(p) ldsb_raw(p)
#define lduw(p) lduw_raw(p)
#define ldsw(p) ldsw_raw(p)
#define ldl(p) ldl_raw(p)
#define ldq(p) ldq_raw(p)
#define ldfl(p) ldfl_raw(p)
#define ldfq(p) ldfq_raw(p)
#define stb(p, v) stb_raw(p, v)
#define stw(p, v) stw_raw(p, v)
#define stl(p, v) stl_raw(p, v)
#define stq(p, v) stq_raw(p, v)
#define stfl(p, v) stfl_raw(p, v)
#define stfq(p, v) stfq_raw(p, v)

#define ldub_code(p) ldub_raw(p)
#define ldsb_code(p) ldsb_raw(p)
#define lduw_code(p) lduw_raw(p)
#define ldsw_code(p) ldsw_raw(p)
#define ldl_code(p) ldl_raw(p)
721
#define ldq_code(p) ldq_raw(p)
bellard authored
722
723
724
725
726
727

#define ldub_kernel(p) ldub_raw(p)
#define ldsb_kernel(p) ldsb_raw(p)
#define lduw_kernel(p) lduw_raw(p)
#define ldsw_kernel(p) ldsw_raw(p)
#define ldl_kernel(p) ldl_raw(p)
728
#define ldq_kernel(p) ldq_raw(p)
bellard authored
729
730
#define ldfl_kernel(p) ldfl_raw(p)
#define ldfq_kernel(p) ldfq_raw(p)
bellard authored
731
732
733
734
#define stb_kernel(p, v) stb_raw(p, v)
#define stw_kernel(p, v) stw_raw(p, v)
#define stl_kernel(p, v) stl_raw(p, v)
#define stq_kernel(p, v) stq_raw(p, v)
bellard authored
735
736
#define stfl_kernel(p, v) stfl_raw(p, v)
#define stfq_kernel(p, vt) stfq_raw(p, v)
bellard authored
737
738
739

#endif /* defined(CONFIG_USER_ONLY) */
bellard authored
740
741
/* page related stuff */
742
#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
bellard authored
743
744
745
#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
746
/* ??? These should be the larger of unsigned long and target_ulong.  */
747
748
749
750
extern unsigned long qemu_real_host_page_size;
extern unsigned long qemu_host_page_bits;
extern unsigned long qemu_host_page_size;
extern unsigned long qemu_host_page_mask;
bellard authored
751
752
#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
bellard authored
753
754
755
756
757
758
759
760
761

/* same as PROT_xxx */
#define PAGE_READ      0x0001
#define PAGE_WRITE     0x0002
#define PAGE_EXEC      0x0004
#define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
#define PAGE_VALID     0x0008
/* original state of the write flag (used when tracking self-modifying
   code */
762
#define PAGE_WRITE_ORG 0x0010
763
#define PAGE_RESERVED  0x0020
bellard authored
764
765

void page_dump(FILE *f);
766
767
int page_get_flags(target_ulong address);
void page_set_flags(target_ulong start, target_ulong end, int flags);
768
int page_check_range(target_ulong start, target_ulong len, int flags);
bellard authored
769
770
void cpu_exec_init_all(unsigned long tb_size);
771
772
CPUState *cpu_copy(CPUState *env);
773
void cpu_dump_state(CPUState *env, FILE *f,
bellard authored
774
775
                    int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
                    int flags);
776
777
778
void cpu_dump_statistics (CPUState *env, FILE *f,
                          int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
                          int flags);
bellard authored
779
780
void cpu_abort(CPUState *env, const char *fmt, ...)
781
782
    __attribute__ ((__format__ (__printf__, 2, 3)))
    __attribute__ ((__noreturn__));
783
extern CPUState *first_cpu;
bellard authored
784
extern CPUState *cpu_single_env;
pbrook authored
785
786
extern int64_t qemu_icount;
extern int use_icount;
bellard authored
787
788
789
790
#define CPU_INTERRUPT_EXIT   0x01 /* wants exit from main loop */
#define CPU_INTERRUPT_HARD   0x02 /* hardware interrupt pending */
#define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
bellard authored
791
#define CPU_INTERRUPT_TIMER  0x08 /* internal timer exception pending */
792
#define CPU_INTERRUPT_FIQ    0x10 /* Fast interrupt pending.  */
793
#define CPU_INTERRUPT_HALT   0x20 /* CPU halt wanted */
bellard authored
794
#define CPU_INTERRUPT_SMI    0x40 /* (x86 only) SMI interrupt pending */
795
#define CPU_INTERRUPT_DEBUG  0x80 /* Debug event occured.  */
ths authored
796
#define CPU_INTERRUPT_VIRQ   0x100 /* virtual interrupt pending.  */
797
#define CPU_INTERRUPT_NMI    0x200 /* NMI pending. */
798
bellard authored
799
void cpu_interrupt(CPUState *s, int mask);
800
void cpu_reset_interrupt(CPUState *env, int mask);
bellard authored
801
pbrook authored
802
int cpu_watchpoint_insert(CPUState *env, target_ulong addr, int type);
803
int cpu_watchpoint_remove(CPUState *env, target_ulong addr);
804
void cpu_watchpoint_remove_all(CPUState *env);
805
806
int cpu_breakpoint_insert(CPUState *env, target_ulong pc);
int cpu_breakpoint_remove(CPUState *env, target_ulong pc);
807
void cpu_breakpoint_remove_all(CPUState *env);
808
809
810
811
812

#define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
#define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
#define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
813
void cpu_single_step(CPUState *env, int enabled);
bellard authored
814
void cpu_reset(CPUState *s);
bellard authored
815
816
817
818
/* Return the physical page corresponding to a virtual one. Use it
   only for debugging because no protection checks are done. Return -1
   if no page found. */
819
target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
820
821
#define CPU_LOG_TB_OUT_ASM (1 << 0)
822
#define CPU_LOG_TB_IN_ASM  (1 << 1)
823
824
825
826
827
#define CPU_LOG_TB_OP      (1 << 2)
#define CPU_LOG_TB_OP_OPT  (1 << 3)
#define CPU_LOG_INT        (1 << 4)
#define CPU_LOG_EXEC       (1 << 5)
#define CPU_LOG_PCALL      (1 << 6)
828
#define CPU_LOG_IOPORT     (1 << 7)
829
#define CPU_LOG_TB_CPU     (1 << 8)
830
831
832
833
834
835
836
837
838
839

/* define log items */
typedef struct CPULogItem {
    int mask;
    const char *name;
    const char *help;
} CPULogItem;

extern CPULogItem cpu_log_items[];
840
841
void cpu_set_log(int log_flags);
void cpu_set_log_filename(const char *filename);
842
int cpu_str_to_log_mask(const char *str);
843
844
845
846
847
848
849
850
851
852
853
854
855
856
/* IO ports API */

/* NOTE: as these functions may be even used when there is an isa
   brige on non x86 targets, we always defined them */
#ifndef NO_CPU_IO_DEFS
void cpu_outb(CPUState *env, int addr, int val);
void cpu_outw(CPUState *env, int addr, int val);
void cpu_outl(CPUState *env, int addr, int val);
int cpu_inb(CPUState *env, int addr);
int cpu_inw(CPUState *env, int addr);
int cpu_inl(CPUState *env, int addr);
#endif
857
858
859
860
861
862
863
/* address in the RAM (different from a physical address) */
#ifdef USE_KQEMU
typedef uint32_t ram_addr_t;
#else
typedef unsigned long ram_addr_t;
#endif
864
865
/* memory API */
866
extern ram_addr_t phys_ram_size;
bellard authored
867
868
extern int phys_ram_fd;
extern uint8_t *phys_ram_base;
869
extern uint8_t *phys_ram_dirty;
870
extern ram_addr_t ram_size;
bellard authored
871
872

/* physical memory access */
pbrook authored
873
874
875
876
877
878

/* MMIO pages are identified by a combination of an IO device index and
   3 flags.  The ROMD code stores the page ram offset in iotlb entry, 
   so only a limited number of ids are avaiable.  */

#define IO_MEM_SHIFT       3
879
#define IO_MEM_NB_ENTRIES  (1 << (TARGET_PAGE_BITS  - IO_MEM_SHIFT))
bellard authored
880
881
882
883

#define IO_MEM_RAM         (0 << IO_MEM_SHIFT) /* hardcoded offset */
#define IO_MEM_ROM         (1 << IO_MEM_SHIFT) /* hardcoded offset */
#define IO_MEM_UNASSIGNED  (2 << IO_MEM_SHIFT)
pbrook authored
884
885
886
#define IO_MEM_NOTDIRTY    (3 << IO_MEM_SHIFT)

/* Acts like a ROM when read and like a device when written.  */
887
#define IO_MEM_ROMD        (1)
888
#define IO_MEM_SUBPAGE     (2)
889
#define IO_MEM_SUBWIDTH    (4)
bellard authored
890
pbrook authored
891
892
893
894
895
896
897
898
899
900
/* Flags stored in the low bits of the TLB virtual address.  These are
   defined so that fast path ram access is all zeros.  */
/* Zero if TLB entry is valid.  */
#define TLB_INVALID_MASK   (1 << 3)
/* Set if TLB entry references a clean RAM page.  The iotlb entry will
   contain the page physical address.  */
#define TLB_NOTDIRTY    (1 << 4)
/* Set if TLB entry is an IO callback.  */
#define TLB_MMIO        (1 << 5)
901
902
typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value);
typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr);
903
904
void cpu_register_physical_memory(target_phys_addr_t start_addr,
905
906
907
908
                                  ram_addr_t size,
                                  ram_addr_t phys_offset);
ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr);
ram_addr_t qemu_ram_alloc(ram_addr_t);
bellard authored
909
void qemu_ram_free(ram_addr_t addr);
910
911
int cpu_register_io_memory(int io_index,
                           CPUReadMemoryFunc **mem_read,
912
913
                           CPUWriteMemoryFunc **mem_write,
                           void *opaque);
914
915
CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index);
CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index);
916
917
void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
918
                            int len, int is_write);
919
static inline void cpu_physical_memory_read(target_phys_addr_t addr,
920
                                            uint8_t *buf, int len)
921
922
923
{
    cpu_physical_memory_rw(addr, buf, len, 0);
}
924
static inline void cpu_physical_memory_write(target_phys_addr_t addr,
925
                                             const uint8_t *buf, int len)
926
927
928
{
    cpu_physical_memory_rw(addr, (uint8_t *)buf, len, 1);
}
929
930
uint32_t ldub_phys(target_phys_addr_t addr);
uint32_t lduw_phys(target_phys_addr_t addr);
931
uint32_t ldl_phys(target_phys_addr_t addr);
932
uint64_t ldq_phys(target_phys_addr_t addr);
933
void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val);
934
void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val);
935
936
void stb_phys(target_phys_addr_t addr, uint32_t val);
void stw_phys(target_phys_addr_t addr, uint32_t val);
937
void stl_phys(target_phys_addr_t addr, uint32_t val);
938
void stq_phys(target_phys_addr_t addr, uint64_t val);
939
940
void cpu_physical_memory_write_rom(target_phys_addr_t addr,
941
                                   const uint8_t *buf, int len);
942
int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
943
                        uint8_t *buf, int len, int is_write);
944
bellard authored
945
946
#define VGA_DIRTY_FLAG  0x01
#define CODE_DIRTY_FLAG 0x02
bellard authored
947
948
/* read dirty bit (return 0 or 1) */
bellard authored
949
static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
950
{
bellard authored
951
952
953
    return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
}
954
static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
bellard authored
955
956
957
                                                int dirty_flags)
{
    return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
958
959
}
bellard authored
960
static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
961
{
bellard authored
962
    phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
963
964
}
bellard authored
965
void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
bellard authored
966
                                     int dirty_flags);
bellard authored
967
void cpu_tlb_update_dirty(CPUState *env);
968
bellard authored
969
970
971
void dump_exec_info(FILE *f,
                    int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
bellard authored
972
973
974
975
976
/*******************************************/
/* host CPU ticks (if available) */

#if defined(__powerpc__)
977
static inline uint32_t get_tbl(void)
bellard authored
978
979
980
981
982
983
{
    uint32_t tbl;
    asm volatile("mftb %0" : "=r" (tbl));
    return tbl;
}
984
static inline uint32_t get_tbu(void)
bellard authored
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
{
	uint32_t tbl;
	asm volatile("mftbu %0" : "=r" (tbl));
	return tbl;
}

static inline int64_t cpu_get_real_ticks(void)
{
    uint32_t l, h, h1;
    /* NOTE: we test if wrapping has occurred */
    do {
        h = get_tbu();
        l = get_tbl();
        h1 = get_tbu();
    } while (h != h1);
    return ((int64_t)h << 32) | l;
}

#elif defined(__i386__)

static inline int64_t cpu_get_real_ticks(void)
bellard authored
1006
1007
1008
1009
1010
1011
{
    int64_t val;
    asm volatile ("rdtsc" : "=A" (val));
    return val;
}
bellard authored
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
#elif defined(__x86_64__)

static inline int64_t cpu_get_real_ticks(void)
{
    uint32_t low,high;
    int64_t val;
    asm volatile("rdtsc" : "=a" (low), "=d" (high));
    val = high;
    val <<= 32;
    val |= low;
    return val;
}
aurel32 authored
1025
1026
1027
1028
1029
1030
1031
1032
1033
#elif defined(__hppa__)

static inline int64_t cpu_get_real_ticks(void)
{
    int val;
    asm volatile ("mfctl %%cr16, %0" : "=r"(val));
    return val;
}
bellard authored
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
#elif defined(__ia64)

static inline int64_t cpu_get_real_ticks(void)
{
	int64_t val;
	asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
	return val;
}

#elif defined(__s390__)

static inline int64_t cpu_get_real_ticks(void)
{
    int64_t val;
    asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
    return val;
}
1052
#elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
bellard authored
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072

static inline int64_t cpu_get_real_ticks (void)
{
#if     defined(_LP64)
        uint64_t        rval;
        asm volatile("rd %%tick,%0" : "=r"(rval));
        return rval;
#else
        union {
                uint64_t i64;
                struct {
                        uint32_t high;
                        uint32_t low;
                }       i32;
        } rval;
        asm volatile("rd %%tick,%1; srlx %1,32,%0"
                : "=r"(rval.i32.high), "=r"(rval.i32.low));
        return rval.i64;
#endif
}
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093

#elif defined(__mips__)

static inline int64_t cpu_get_real_ticks(void)
{
#if __mips_isa_rev >= 2
    uint32_t count;
    static uint32_t cyc_per_count = 0;

    if (!cyc_per_count)
        __asm__ __volatile__("rdhwr %0, $3" : "=r" (cyc_per_count));

    __asm__ __volatile__("rdhwr %1, $2" : "=r" (count));
    return (int64_t)(count * cyc_per_count);
#else
    /* FIXME */
    static int64_t ticks = 0;
    return ticks++;
#endif
}
pbrook authored
1094
1095
#else
/* The host CPU doesn't have an easily accessible cycle counter.
ths authored
1096
1097
   Just return a monotonically increasing value.  This will be
   totally wrong, but hopefully better than nothing.  */
pbrook authored
1098
1099
1100
1101
1102
static inline int64_t cpu_get_real_ticks (void)
{
    static int64_t ticks = 0;
    return ticks++;
}
bellard authored
1103
1104
1105
1106
1107
1108
1109
1110
1111
#endif

/* profiling */
#ifdef CONFIG_PROFILER
static inline int64_t profile_getclock(void)
{
    return cpu_get_real_ticks();
}
bellard authored
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
extern int64_t kqemu_time, kqemu_time_start;
extern int64_t qemu_time, qemu_time_start;
extern int64_t tlb_flush_time;
extern int64_t kqemu_exec_count;
extern int64_t dev_time;
extern int64_t kqemu_ret_int_count;
extern int64_t kqemu_ret_excp_count;
extern int64_t kqemu_ret_intr_count;
#endif
bellard authored
1122
#endif /* CPU_ALL_H */