Blame view

exec.c 69.6 KB
bellard authored
1
/*
bellard authored
2
 *  virtual page mapping and translated block handling
bellard authored
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
 * 
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
20
#include "config.h"
bellard authored
21
22
23
#ifdef _WIN32
#include <windows.h>
#else
bellard authored
24
#include <sys/types.h>
bellard authored
25
26
#include <sys/mman.h>
#endif
bellard authored
27
28
29
30
31
32
33
34
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <inttypes.h>
bellard authored
35
36
#include "cpu.h"
#include "exec-all.h"
37
38
39
#if defined(CONFIG_USER_ONLY)
#include <qemu.h>
#endif
bellard authored
40
bellard authored
41
//#define DEBUG_TB_INVALIDATE
bellard authored
42
//#define DEBUG_FLUSH
43
//#define DEBUG_TLB
bellard authored
44
45
46

/* make various TB consistency checks */
//#define DEBUG_TB_CHECK 
bellard authored
47
//#define DEBUG_TLB_CHECK 
bellard authored
48
49
50
51
52
53
#if !defined(CONFIG_USER_ONLY)
/* TB consistency checks only implemented for usermode emulation.  */
#undef DEBUG_TB_CHECK
#endif
bellard authored
54
55
56
/* threshold to flush the translated code buffer */
#define CODE_GEN_BUFFER_MAX_SIZE (CODE_GEN_BUFFER_SIZE - CODE_GEN_MAX_SIZE)
57
58
59
60
#define SMC_BITMAP_USE_THRESHOLD 10

#define MMAP_AREA_START        0x00000000
#define MMAP_AREA_END          0xa8000000
bellard authored
61
62
63
64
65
66
67
68
69
70
#if defined(TARGET_SPARC64)
#define TARGET_PHYS_ADDR_SPACE_BITS 41
#elif defined(TARGET_PPC64)
#define TARGET_PHYS_ADDR_SPACE_BITS 42
#else
/* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
#define TARGET_PHYS_ADDR_SPACE_BITS 32
#endif
bellard authored
71
TranslationBlock tbs[CODE_GEN_MAX_BLOCKS];
72
TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bellard authored
73
int nb_tbs;
bellard authored
74
75
/* any access to the tbs or the page table must use this lock */
spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
bellard authored
76
77
uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE] __attribute__((aligned (32)));
bellard authored
78
79
uint8_t *code_gen_ptr;
80
81
82
int phys_ram_size;
int phys_ram_fd;
uint8_t *phys_ram_base;
83
uint8_t *phys_ram_dirty;
84
bellard authored
85
86
87
88
89
CPUState *first_cpu;
/* current CPU in the current thread. It is only valid inside
   cpu_exec() */
CPUState *cpu_single_env; 
bellard authored
90
typedef struct PageDesc {
91
    /* list of TBs intersecting this ram page */
bellard authored
92
    TranslationBlock *first_tb;
93
94
95
96
97
98
99
    /* in order to optimize self modifying code, we count the number
       of lookups we do to a given page to use a bitmap */
    unsigned int code_write_count;
    uint8_t *code_bitmap;
#if defined(CONFIG_USER_ONLY)
    unsigned long flags;
#endif
bellard authored
100
101
} PageDesc;
102
103
typedef struct PhysPageDesc {
    /* offset in host memory of the page + io_index in the low 12 bits */
104
    uint32_t phys_offset;
105
106
} PhysPageDesc;
bellard authored
107
108
109
110
111
112
#define L2_BITS 10
#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)

#define L1_SIZE (1 << L1_BITS)
#define L2_SIZE (1 << L2_BITS)
113
static void io_mem_init(void);
bellard authored
114
115
116
117
118
unsigned long qemu_real_host_page_size;
unsigned long qemu_host_page_bits;
unsigned long qemu_host_page_size;
unsigned long qemu_host_page_mask;
bellard authored
119
120
/* XXX: for system emulation, it could just be an array */
bellard authored
121
static PageDesc *l1_map[L1_SIZE];
bellard authored
122
PhysPageDesc **l1_phys_map;
bellard authored
123
124
125
126
/* io memory support */
CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
127
void *io_mem_opaque[IO_MEM_NB_ENTRIES];
128
129
static int io_mem_nb;
130
131
132
133
134
/* log support */
char *logfilename = "/tmp/qemu.log";
FILE *logfile;
int loglevel;
bellard authored
135
136
137
138
139
/* statistics */
static int tlb_flush_count;
static int tb_flush_count;
static int tb_phys_invalidate_count;
bellard authored
140
static void page_init(void)
bellard authored
141
{
142
    /* NOTE: we can always suppose that qemu_host_page_size >=
bellard authored
143
       TARGET_PAGE_SIZE */
144
#ifdef _WIN32
bellard authored
145
146
147
148
149
150
151
152
153
154
    {
        SYSTEM_INFO system_info;
        DWORD old_protect;

        GetSystemInfo(&system_info);
        qemu_real_host_page_size = system_info.dwPageSize;

        VirtualProtect(code_gen_buffer, sizeof(code_gen_buffer),
                       PAGE_EXECUTE_READWRITE, &old_protect);
    }
155
#else
156
    qemu_real_host_page_size = getpagesize();
bellard authored
157
158
159
160
161
162
163
164
165
166
167
168
169
    {
        unsigned long start, end;

        start = (unsigned long)code_gen_buffer;
        start &= ~(qemu_real_host_page_size - 1);

        end = (unsigned long)code_gen_buffer + sizeof(code_gen_buffer);
        end += qemu_real_host_page_size - 1;
        end &= ~(qemu_real_host_page_size - 1);

        mprotect((void *)start, end - start, 
                 PROT_READ | PROT_WRITE | PROT_EXEC);
    }
170
#endif
bellard authored
171
172
173
174
175
176
177
178
179
    if (qemu_host_page_size == 0)
        qemu_host_page_size = qemu_real_host_page_size;
    if (qemu_host_page_size < TARGET_PAGE_SIZE)
        qemu_host_page_size = TARGET_PAGE_SIZE;
    qemu_host_page_bits = 0;
    while ((1 << qemu_host_page_bits) < qemu_host_page_size)
        qemu_host_page_bits++;
    qemu_host_page_mask = ~(qemu_host_page_size - 1);
180
181
    l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
    memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
bellard authored
182
183
}
bellard authored
184
static inline PageDesc *page_find_alloc(unsigned int index)
bellard authored
185
186
187
188
189
190
191
{
    PageDesc **lp, *p;

    lp = &l1_map[index >> L2_BITS];
    p = *lp;
    if (!p) {
        /* allocate if not found */
192
        p = qemu_malloc(sizeof(PageDesc) * L2_SIZE);
bellard authored
193
        memset(p, 0, sizeof(PageDesc) * L2_SIZE);
bellard authored
194
195
196
197
198
        *lp = p;
    }
    return p + (index & (L2_SIZE - 1));
}
bellard authored
199
static inline PageDesc *page_find(unsigned int index)
bellard authored
200
201
202
203
204
205
{
    PageDesc *p;

    p = l1_map[index >> L2_BITS];
    if (!p)
        return 0;
bellard authored
206
207
208
    return p + (index & (L2_SIZE - 1));
}
209
static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
210
{
211
    void **lp, **p;
212
    PhysPageDesc *pd;
213
214
215
216
217
218
219
220
    p = (void **)l1_phys_map;
#if TARGET_PHYS_ADDR_SPACE_BITS > 32

#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
#endif
    lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
221
222
223
    p = *lp;
    if (!p) {
        /* allocate if not found */
224
225
226
227
228
229
230
231
        if (!alloc)
            return NULL;
        p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
        memset(p, 0, sizeof(void *) * L1_SIZE);
        *lp = p;
    }
#endif
    lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
232
233
234
    pd = *lp;
    if (!pd) {
        int i;
235
236
237
        /* allocate if not found */
        if (!alloc)
            return NULL;
238
239
240
241
        pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
        *lp = pd;
        for (i = 0; i < L2_SIZE; i++)
          pd[i].phys_offset = IO_MEM_UNASSIGNED;
242
    }
243
    return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
244
245
}
246
static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
247
{
248
    return phys_page_find_alloc(index, 0);
249
250
}
251
#if !defined(CONFIG_USER_ONLY)
bellard authored
252
static void tlb_protect_code(ram_addr_t ram_addr);
253
254
static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr, 
                                    target_ulong vaddr);
255
#endif
bellard authored
256
bellard authored
257
void cpu_exec_init(CPUState *env)
bellard authored
258
{
bellard authored
259
260
261
    CPUState **penv;
    int cpu_index;
bellard authored
262
263
    if (!code_gen_ptr) {
        code_gen_ptr = code_gen_buffer;
bellard authored
264
        page_init();
265
        io_mem_init();
bellard authored
266
    }
bellard authored
267
268
269
270
271
272
273
274
275
    env->next_cpu = NULL;
    penv = &first_cpu;
    cpu_index = 0;
    while (*penv != NULL) {
        penv = (CPUState **)&(*penv)->next_cpu;
        cpu_index++;
    }
    env->cpu_index = cpu_index;
    *penv = env;
bellard authored
276
277
}
278
279
280
static inline void invalidate_page_bitmap(PageDesc *p)
{
    if (p->code_bitmap) {
281
        qemu_free(p->code_bitmap);
282
283
284
285
286
        p->code_bitmap = NULL;
    }
    p->code_write_count = 0;
}
bellard authored
287
288
289
290
291
292
293
294
295
/* set to NULL all the 'first_tb' fields in all PageDescs */
static void page_flush_tb(void)
{
    int i, j;
    PageDesc *p;

    for(i = 0; i < L1_SIZE; i++) {
        p = l1_map[i];
        if (p) {
296
297
298
299
300
            for(j = 0; j < L2_SIZE; j++) {
                p->first_tb = NULL;
                invalidate_page_bitmap(p);
                p++;
            }
bellard authored
301
302
303
304
305
        }
    }
}

/* flush all the translation blocks */
306
/* XXX: tb_flush is currently not thread safe */
bellard authored
307
void tb_flush(CPUState *env1)
bellard authored
308
{
bellard authored
309
    CPUState *env;
310
#if defined(DEBUG_FLUSH)
bellard authored
311
312
313
    printf("qemu: flush code_size=%d nb_tbs=%d avg_tb_size=%d\n", 
           code_gen_ptr - code_gen_buffer, 
           nb_tbs, 
314
           nb_tbs > 0 ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0);
bellard authored
315
316
#endif
    nb_tbs = 0;
bellard authored
317
318
319
320

    for(env = first_cpu; env != NULL; env = env->next_cpu) {
        memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
    }
321
bellard authored
322
    memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
bellard authored
323
    page_flush_tb();
324
bellard authored
325
    code_gen_ptr = code_gen_buffer;
326
327
    /* XXX: flush processor icache at this point if cache flush is
       expensive */
bellard authored
328
    tb_flush_count++;
bellard authored
329
330
331
332
333
334
335
336
337
}

#ifdef DEBUG_TB_CHECK

static void tb_invalidate_check(unsigned long address)
{
    TranslationBlock *tb;
    int i;
    address &= TARGET_PAGE_MASK;
338
339
    for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
        for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
bellard authored
340
341
342
            if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
                  address >= tb->pc + tb->size)) {
                printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
343
                       address, (long)tb->pc, tb->size);
bellard authored
344
345
346
347
348
349
350
351
352
353
354
            }
        }
    }
}

/* verify that all the pages have correct rights for code */
static void tb_page_check(void)
{
    TranslationBlock *tb;
    int i, flags1, flags2;
355
356
    for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
        for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
bellard authored
357
358
359
360
            flags1 = page_get_flags(tb->pc);
            flags2 = page_get_flags(tb->pc + tb->size - 1);
            if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
                printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
361
                       (long)tb->pc, tb->size, flags1, flags2);
bellard authored
362
363
364
365
366
            }
        }
    }
}
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
void tb_jmp_check(TranslationBlock *tb)
{
    TranslationBlock *tb1;
    unsigned int n1;

    /* suppress any remaining jumps to this TB */
    tb1 = tb->jmp_first;
    for(;;) {
        n1 = (long)tb1 & 3;
        tb1 = (TranslationBlock *)((long)tb1 & ~3);
        if (n1 == 2)
            break;
        tb1 = tb1->jmp_next[n1];
    }
    /* check end of list */
    if (tb1 != tb) {
        printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
    }
}
bellard authored
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
#endif

/* invalidate one TB */
static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
                             int next_offset)
{
    TranslationBlock *tb1;
    for(;;) {
        tb1 = *ptb;
        if (tb1 == tb) {
            *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
            break;
        }
        ptb = (TranslationBlock **)((char *)tb1 + next_offset);
    }
}
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
{
    TranslationBlock *tb1;
    unsigned int n1;

    for(;;) {
        tb1 = *ptb;
        n1 = (long)tb1 & 3;
        tb1 = (TranslationBlock *)((long)tb1 & ~3);
        if (tb1 == tb) {
            *ptb = tb1->page_next[n1];
            break;
        }
        ptb = &tb1->page_next[n1];
    }
}
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
static inline void tb_jmp_remove(TranslationBlock *tb, int n)
{
    TranslationBlock *tb1, **ptb;
    unsigned int n1;

    ptb = &tb->jmp_next[n];
    tb1 = *ptb;
    if (tb1) {
        /* find tb(n) in circular list */
        for(;;) {
            tb1 = *ptb;
            n1 = (long)tb1 & 3;
            tb1 = (TranslationBlock *)((long)tb1 & ~3);
            if (n1 == n && tb1 == tb)
                break;
            if (n1 == 2) {
                ptb = &tb1->jmp_first;
            } else {
                ptb = &tb1->jmp_next[n1];
            }
        }
        /* now we can suppress tb(n) from the list */
        *ptb = tb->jmp_next[n];

        tb->jmp_next[n] = NULL;
    }
}

/* reset the jump entry 'n' of a TB so that it is not chained to
   another TB */
static inline void tb_reset_jump(TranslationBlock *tb, int n)
{
    tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
}
456
static inline void tb_phys_invalidate(TranslationBlock *tb, unsigned int page_addr)
bellard authored
457
{
bellard authored
458
    CPUState *env;
459
    PageDesc *p;
460
    unsigned int h, n1;
461
462
    target_ulong phys_pc;
    TranslationBlock *tb1, *tb2;
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
    /* remove the TB from the hash list */
    phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
    h = tb_phys_hash_func(phys_pc);
    tb_remove(&tb_phys_hash[h], tb, 
              offsetof(TranslationBlock, phys_hash_next));

    /* remove the TB from the page list */
    if (tb->page_addr[0] != page_addr) {
        p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
        tb_page_remove(&p->first_tb, tb);
        invalidate_page_bitmap(p);
    }
    if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
        p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
        tb_page_remove(&p->first_tb, tb);
        invalidate_page_bitmap(p);
    }
482
    tb_invalidated_flag = 1;
483
bellard authored
484
    /* remove the TB from the hash list */
485
    h = tb_jmp_cache_hash_func(tb->pc);
bellard authored
486
487
488
489
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
        if (env->tb_jmp_cache[h] == tb)
            env->tb_jmp_cache[h] = NULL;
    }
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507

    /* suppress this TB from the two jump lists */
    tb_jmp_remove(tb, 0);
    tb_jmp_remove(tb, 1);

    /* suppress any remaining jumps to this TB */
    tb1 = tb->jmp_first;
    for(;;) {
        n1 = (long)tb1 & 3;
        if (n1 == 2)
            break;
        tb1 = (TranslationBlock *)((long)tb1 & ~3);
        tb2 = tb1->jmp_next[n1];
        tb_reset_jump(tb1, n1);
        tb1->jmp_next[n1] = NULL;
        tb1 = tb2;
    }
    tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
508
bellard authored
509
    tb_phys_invalidate_count++;
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
}

static inline void set_bits(uint8_t *tab, int start, int len)
{
    int end, mask, end1;

    end = start + len;
    tab += start >> 3;
    mask = 0xff << (start & 7);
    if ((start & ~7) == (end & ~7)) {
        if (start < end) {
            mask &= ~(0xff << (end & 7));
            *tab |= mask;
        }
    } else {
        *tab++ |= mask;
        start = (start + 8) & ~7;
        end1 = end & ~7;
        while (start < end1) {
            *tab++ = 0xff;
            start += 8;
        }
        if (start < end) {
            mask = ~(0xff << (end & 7));
            *tab |= mask;
        }
    }
}

static void build_page_bitmap(PageDesc *p)
{
    int n, tb_start, tb_end;
    TranslationBlock *tb;
544
    p->code_bitmap = qemu_malloc(TARGET_PAGE_SIZE / 8);
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
    if (!p->code_bitmap)
        return;
    memset(p->code_bitmap, 0, TARGET_PAGE_SIZE / 8);

    tb = p->first_tb;
    while (tb != NULL) {
        n = (long)tb & 3;
        tb = (TranslationBlock *)((long)tb & ~3);
        /* NOTE: this is subtle as a TB may span two physical pages */
        if (n == 0) {
            /* NOTE: tb_end may be after the end of the page, but
               it is not a problem */
            tb_start = tb->pc & ~TARGET_PAGE_MASK;
            tb_end = tb_start + tb->size;
            if (tb_end > TARGET_PAGE_SIZE)
                tb_end = TARGET_PAGE_SIZE;
        } else {
            tb_start = 0;
            tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
        }
        set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
        tb = tb->page_next[n];
    }
}
570
571
572
573
574
575
576
577
578
579
580
#ifdef TARGET_HAS_PRECISE_SMC

static void tb_gen_code(CPUState *env, 
                        target_ulong pc, target_ulong cs_base, int flags,
                        int cflags)
{
    TranslationBlock *tb;
    uint8_t *tc_ptr;
    target_ulong phys_pc, phys_page2, virt_page2;
    int code_gen_size;
bellard authored
581
582
    phys_pc = get_phys_addr_code(env, pc);
    tb = tb_alloc(pc);
583
584
585
586
    if (!tb) {
        /* flush must be done */
        tb_flush(env);
        /* cannot fail at this point */
bellard authored
587
        tb = tb_alloc(pc);
588
589
590
591
592
593
594
595
596
597
    }
    tc_ptr = code_gen_ptr;
    tb->tc_ptr = tc_ptr;
    tb->cs_base = cs_base;
    tb->flags = flags;
    tb->cflags = cflags;
    cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
    code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));

    /* check next page if needed */
bellard authored
598
    virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
599
    phys_page2 = -1;
bellard authored
600
    if ((pc & TARGET_PAGE_MASK) != virt_page2) {
601
602
603
604
605
606
        phys_page2 = get_phys_addr_code(env, virt_page2);
    }
    tb_link_phys(tb, phys_pc, phys_page2);
}
#endif
607
608
/* invalidate all TBs which intersect with the target physical page
   starting in range [start;end[. NOTE: start and end must refer to
609
610
611
612
613
614
615
616
   the same physical page. 'is_cpu_write_access' should be true if called
   from a real cpu write access: the virtual CPU will exit the current
   TB if code is modified inside this TB. */
void tb_invalidate_phys_page_range(target_ulong start, target_ulong end, 
                                   int is_cpu_write_access)
{
    int n, current_tb_modified, current_tb_not_found, current_flags;
    CPUState *env = cpu_single_env;
617
    PageDesc *p;
618
    TranslationBlock *tb, *tb_next, *current_tb, *saved_tb;
619
    target_ulong tb_start, tb_end;
620
    target_ulong current_pc, current_cs_base;
621
622
623
624
625

    p = page_find(start >> TARGET_PAGE_BITS);
    if (!p) 
        return;
    if (!p->code_bitmap && 
626
627
        ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
        is_cpu_write_access) {
628
629
630
631
632
633
        /* build code bitmap */
        build_page_bitmap(p);
    }

    /* we remove all the TBs in the range [start, end[ */
    /* XXX: see if in some cases it could be faster to invalidate all the code */
634
635
636
637
638
639
    current_tb_not_found = is_cpu_write_access;
    current_tb_modified = 0;
    current_tb = NULL; /* avoid warning */
    current_pc = 0; /* avoid warning */
    current_cs_base = 0; /* avoid warning */
    current_flags = 0; /* avoid warning */
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
    tb = p->first_tb;
    while (tb != NULL) {
        n = (long)tb & 3;
        tb = (TranslationBlock *)((long)tb & ~3);
        tb_next = tb->page_next[n];
        /* NOTE: this is subtle as a TB may span two physical pages */
        if (n == 0) {
            /* NOTE: tb_end may be after the end of the page, but
               it is not a problem */
            tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
            tb_end = tb_start + tb->size;
        } else {
            tb_start = tb->page_addr[1];
            tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
        }
        if (!(tb_end <= start || tb_start >= end)) {
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
#ifdef TARGET_HAS_PRECISE_SMC
            if (current_tb_not_found) {
                current_tb_not_found = 0;
                current_tb = NULL;
                if (env->mem_write_pc) {
                    /* now we have a real cpu fault */
                    current_tb = tb_find_pc(env->mem_write_pc);
                }
            }
            if (current_tb == tb &&
                !(current_tb->cflags & CF_SINGLE_INSN)) {
                /* If we are modifying the current TB, we must stop
                its execution. We could be more precise by checking
                that the modification is after the current PC, but it
                would require a specialized function to partially
                restore the CPU state */

                current_tb_modified = 1;
                cpu_restore_state(current_tb, env, 
                                  env->mem_write_pc, NULL);
#if defined(TARGET_I386)
                current_flags = env->hflags;
                current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
                current_cs_base = (target_ulong)env->segs[R_CS].base;
                current_pc = current_cs_base + env->eip;
#else
#error unsupported CPU
#endif
            }
#endif /* TARGET_HAS_PRECISE_SMC */
686
687
688
689
690
691
692
            /* we need to do that to handle the case where a signal
               occurs while doing tb_phys_invalidate() */
            saved_tb = NULL;
            if (env) {
                saved_tb = env->current_tb;
                env->current_tb = NULL;
            }
693
            tb_phys_invalidate(tb, -1);
694
695
696
697
698
            if (env) {
                env->current_tb = saved_tb;
                if (env->interrupt_request && env->current_tb)
                    cpu_interrupt(env, env->interrupt_request);
            }
699
700
701
702
703
704
705
        }
        tb = tb_next;
    }
#if !defined(CONFIG_USER_ONLY)
    /* if no code remaining, no need to continue to use slow writes */
    if (!p->first_tb) {
        invalidate_page_bitmap(p);
706
707
708
709
710
711
712
713
714
715
        if (is_cpu_write_access) {
            tlb_unprotect_code_phys(env, start, env->mem_write_vaddr);
        }
    }
#endif
#ifdef TARGET_HAS_PRECISE_SMC
    if (current_tb_modified) {
        /* we generate a block containing just the instruction
           modifying the memory. It will ensure that it cannot modify
           itself */
716
        env->current_tb = NULL;
717
718
719
        tb_gen_code(env, current_pc, current_cs_base, current_flags, 
                    CF_SINGLE_INSN);
        cpu_resume_from_signal(env, NULL);
720
    }
bellard authored
721
#endif
722
}
bellard authored
723
724
/* len must be <= 8 and start must be a multiple of len */
725
static inline void tb_invalidate_phys_page_fast(target_ulong start, int len)
726
727
728
{
    PageDesc *p;
    int offset, b;
729
#if 0
730
731
732
733
734
735
736
    if (1) {
        if (loglevel) {
            fprintf(logfile, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n", 
                   cpu_single_env->mem_write_vaddr, len, 
                   cpu_single_env->eip, 
                   cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
        }
737
738
    }
#endif
739
740
741
742
743
744
745
746
747
748
    p = page_find(start >> TARGET_PAGE_BITS);
    if (!p) 
        return;
    if (p->code_bitmap) {
        offset = start & ~TARGET_PAGE_MASK;
        b = p->code_bitmap[offset >> 3] >> (offset & 7);
        if (b & ((1 << len) - 1))
            goto do_invalidate;
    } else {
    do_invalidate:
749
        tb_invalidate_phys_page_range(start, start + len, 1);
750
751
752
753
    }
}

#if !defined(CONFIG_SOFTMMU)
754
755
static void tb_invalidate_phys_page(target_ulong addr, 
                                    unsigned long pc, void *puc)
756
{
757
758
    int n, current_flags, current_tb_modified;
    target_ulong current_pc, current_cs_base;
759
    PageDesc *p;
760
761
762
763
    TranslationBlock *tb, *current_tb;
#ifdef TARGET_HAS_PRECISE_SMC
    CPUState *env = cpu_single_env;
#endif
764
765
766
767
768
769

    addr &= TARGET_PAGE_MASK;
    p = page_find(addr >> TARGET_PAGE_BITS);
    if (!p) 
        return;
    tb = p->first_tb;
770
771
772
773
774
775
776
777
778
779
    current_tb_modified = 0;
    current_tb = NULL;
    current_pc = 0; /* avoid warning */
    current_cs_base = 0; /* avoid warning */
    current_flags = 0; /* avoid warning */
#ifdef TARGET_HAS_PRECISE_SMC
    if (tb && pc != 0) {
        current_tb = tb_find_pc(pc);
    }
#endif
780
781
782
    while (tb != NULL) {
        n = (long)tb & 3;
        tb = (TranslationBlock *)((long)tb & ~3);
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
#ifdef TARGET_HAS_PRECISE_SMC
        if (current_tb == tb &&
            !(current_tb->cflags & CF_SINGLE_INSN)) {
                /* If we are modifying the current TB, we must stop
                   its execution. We could be more precise by checking
                   that the modification is after the current PC, but it
                   would require a specialized function to partially
                   restore the CPU state */

            current_tb_modified = 1;
            cpu_restore_state(current_tb, env, pc, puc);
#if defined(TARGET_I386)
            current_flags = env->hflags;
            current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
            current_cs_base = (target_ulong)env->segs[R_CS].base;
            current_pc = current_cs_base + env->eip;
#else
#error unsupported CPU
#endif
        }
#endif /* TARGET_HAS_PRECISE_SMC */
804
805
806
        tb_phys_invalidate(tb, addr);
        tb = tb->page_next[n];
    }
bellard authored
807
    p->first_tb = NULL;
808
809
810
811
812
#ifdef TARGET_HAS_PRECISE_SMC
    if (current_tb_modified) {
        /* we generate a block containing just the instruction
           modifying the memory. It will ensure that it cannot modify
           itself */
813
        env->current_tb = NULL;
814
815
816
817
818
        tb_gen_code(env, current_pc, current_cs_base, current_flags, 
                    CF_SINGLE_INSN);
        cpu_resume_from_signal(env, puc);
    }
#endif
bellard authored
819
}
820
#endif
bellard authored
821
822

/* add the tb in the target page and protect it if necessary */
823
static inline void tb_alloc_page(TranslationBlock *tb, 
824
                                 unsigned int n, target_ulong page_addr)
bellard authored
825
826
{
    PageDesc *p;
827
828
829
    TranslationBlock *last_first_tb;

    tb->page_addr[n] = page_addr;
830
    p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
831
832
833
834
    tb->page_next[n] = p->first_tb;
    last_first_tb = p->first_tb;
    p->first_tb = (TranslationBlock *)((long)tb | n);
    invalidate_page_bitmap(p);
bellard authored
835
836
#if defined(TARGET_HAS_SMC) || 1
837
838
#if defined(CONFIG_USER_ONLY)
bellard authored
839
    if (p->flags & PAGE_WRITE) {
840
841
        target_ulong addr;
        PageDesc *p2;
842
843
        int prot;
bellard authored
844
845
        /* force the host page as non writable (writes will have a
           page fault + mprotect overhead) */
846
        page_addr &= qemu_host_page_mask;
bellard authored
847
        prot = 0;
848
849
850
851
852
853
854
855
856
857
858
        for(addr = page_addr; addr < page_addr + qemu_host_page_size;
            addr += TARGET_PAGE_SIZE) {

            p2 = page_find (addr >> TARGET_PAGE_BITS);
            if (!p2)
                continue;
            prot |= p2->flags;
            p2->flags &= ~PAGE_WRITE;
            page_get_flags(addr);
          }
        mprotect(g2h(page_addr), qemu_host_page_size, 
bellard authored
859
860
861
                 (prot & PAGE_BITS) & ~PAGE_WRITE);
#ifdef DEBUG_TB_INVALIDATE
        printf("protecting code page: 0x%08lx\n", 
862
               page_addr);
bellard authored
863
864
#endif
    }
865
866
867
868
869
#else
    /* if some code is already present, then the pages are already
       protected. So we handle the case where only the first TB is
       allocated in a physical page */
    if (!last_first_tb) {
bellard authored
870
        tlb_protect_code(page_addr);
871
872
    }
#endif
873
874

#endif /* TARGET_HAS_SMC */
bellard authored
875
876
877
878
}

/* Allocate a new translation block. Flush the translation buffer if
   too many translation blocks or too much generated code. */
bellard authored
879
TranslationBlock *tb_alloc(target_ulong pc)
bellard authored
880
881
882
883
884
{
    TranslationBlock *tb;

    if (nb_tbs >= CODE_GEN_MAX_BLOCKS || 
        (code_gen_ptr - code_gen_buffer) >= CODE_GEN_BUFFER_MAX_SIZE)
885
        return NULL;
bellard authored
886
887
    tb = &tbs[nb_tbs++];
    tb->pc = pc;
888
    tb->cflags = 0;
889
890
891
    return tb;
}
892
893
894
895
/* add a new TB and link it to the physical page tables. phys_page2 is
   (-1) to indicate that only one page contains the TB. */
void tb_link_phys(TranslationBlock *tb, 
                  target_ulong phys_pc, target_ulong phys_page2)
896
{
897
898
899
900
901
902
903
904
    unsigned int h;
    TranslationBlock **ptb;

    /* add in the physical hash table */
    h = tb_phys_hash_func(phys_pc);
    ptb = &tb_phys_hash[h];
    tb->phys_hash_next = *ptb;
    *ptb = tb;
bellard authored
905
906

    /* add in the page list */
907
908
909
910
911
912
    tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
    if (phys_page2 != -1)
        tb_alloc_page(tb, 1, phys_page2);
    else
        tb->page_addr[1] = -1;
913
914
915
    tb->jmp_first = (TranslationBlock *)((long)tb | 2);
    tb->jmp_next[0] = NULL;
    tb->jmp_next[1] = NULL;
916
917
918
919
920
#ifdef USE_CODE_COPY
    tb->cflags &= ~CF_FP_USED;
    if (tb->cflags & CF_TB_FP_USED)
        tb->cflags |= CF_FP_USED;
#endif
921
922
923
924
925
926

    /* init original jump addresses */
    if (tb->tb_next_offset[0] != 0xffff)
        tb_reset_jump(tb, 0);
    if (tb->tb_next_offset[1] != 0xffff)
        tb_reset_jump(tb, 1);
927
928
929
930

#ifdef DEBUG_TB_CHECK
    tb_page_check();
#endif
bellard authored
931
932
}
933
934
935
/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
   tb[1].tc_ptr. Return NULL if not found */
TranslationBlock *tb_find_pc(unsigned long tc_ptr)
bellard authored
936
{
937
938
939
    int m_min, m_max, m;
    unsigned long v;
    TranslationBlock *tb;
bellard authored
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962

    if (nb_tbs <= 0)
        return NULL;
    if (tc_ptr < (unsigned long)code_gen_buffer ||
        tc_ptr >= (unsigned long)code_gen_ptr)
        return NULL;
    /* binary search (cf Knuth) */
    m_min = 0;
    m_max = nb_tbs - 1;
    while (m_min <= m_max) {
        m = (m_min + m_max) >> 1;
        tb = &tbs[m];
        v = (unsigned long)tb->tc_ptr;
        if (v == tc_ptr)
            return tb;
        else if (tc_ptr < v) {
            m_max = m - 1;
        } else {
            m_min = m + 1;
        }
    } 
    return &tbs[m_max];
}
bellard authored
963
bellard authored
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
static void tb_reset_jump_recursive(TranslationBlock *tb);

static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
{
    TranslationBlock *tb1, *tb_next, **ptb;
    unsigned int n1;

    tb1 = tb->jmp_next[n];
    if (tb1 != NULL) {
        /* find head of list */
        for(;;) {
            n1 = (long)tb1 & 3;
            tb1 = (TranslationBlock *)((long)tb1 & ~3);
            if (n1 == 2)
                break;
            tb1 = tb1->jmp_next[n1];
        }
        /* we are now sure now that tb jumps to tb1 */
        tb_next = tb1;

        /* remove tb from the jmp_first list */
        ptb = &tb_next->jmp_first;
        for(;;) {
            tb1 = *ptb;
            n1 = (long)tb1 & 3;
            tb1 = (TranslationBlock *)((long)tb1 & ~3);
            if (n1 == n && tb1 == tb)
                break;
            ptb = &tb1->jmp_next[n1];
        }
        *ptb = tb->jmp_next[n];
        tb->jmp_next[n] = NULL;

        /* suppress the jump to next tb in generated code */
        tb_reset_jump(tb, n);
1000
        /* suppress jumps in the tb on which we could have jumped */
bellard authored
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
        tb_reset_jump_recursive(tb_next);
    }
}

static void tb_reset_jump_recursive(TranslationBlock *tb)
{
    tb_reset_jump_recursive2(tb, 0);
    tb_reset_jump_recursive2(tb, 1);
}
1011
#if defined(TARGET_HAS_ICE)
1012
1013
static void breakpoint_invalidate(CPUState *env, target_ulong pc)
{
1014
1015
1016
    target_ulong addr, pd;
    ram_addr_t ram_addr;
    PhysPageDesc *p;
1017
1018
1019
1020
1021
1022
1023
1024
1025
    addr = cpu_get_phys_page_debug(env, pc);
    p = phys_page_find(addr >> TARGET_PAGE_BITS);
    if (!p) {
        pd = IO_MEM_UNASSIGNED;
    } else {
        pd = p->phys_offset;
    }
    ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
pbrook authored
1026
    tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1027
}
bellard authored
1028
#endif
1029
1030
1031
/* add a breakpoint. EXCP_DEBUG is returned by the CPU loop if a
   breakpoint is reached */
1032
int cpu_breakpoint_insert(CPUState *env, target_ulong pc)
bellard authored
1033
{
1034
#if defined(TARGET_HAS_ICE)
bellard authored
1035
    int i;
1036
bellard authored
1037
1038
1039
1040
1041
1042
1043
1044
    for(i = 0; i < env->nb_breakpoints; i++) {
        if (env->breakpoints[i] == pc)
            return 0;
    }

    if (env->nb_breakpoints >= MAX_BREAKPOINTS)
        return -1;
    env->breakpoints[env->nb_breakpoints++] = pc;
1045
1046

    breakpoint_invalidate(env, pc);
bellard authored
1047
1048
1049
1050
1051
1052
1053
    return 0;
#else
    return -1;
#endif
}

/* remove a breakpoint */
1054
int cpu_breakpoint_remove(CPUState *env, target_ulong pc)
bellard authored
1055
{
1056
#if defined(TARGET_HAS_ICE)
bellard authored
1057
1058
1059
1060
1061
1062
1063
1064
    int i;
    for(i = 0; i < env->nb_breakpoints; i++) {
        if (env->breakpoints[i] == pc)
            goto found;
    }
    return -1;
 found:
    env->nb_breakpoints--;
1065
1066
    if (i < env->nb_breakpoints)
      env->breakpoints[i] = env->breakpoints[env->nb_breakpoints];
1067
1068

    breakpoint_invalidate(env, pc);
bellard authored
1069
1070
1071
1072
1073
1074
    return 0;
#else
    return -1;
#endif
}
1075
1076
1077
1078
/* enable or disable single step mode. EXCP_DEBUG is returned by the
   CPU loop after each instruction */
void cpu_single_step(CPUState *env, int enabled)
{
1079
#if defined(TARGET_HAS_ICE)
1080
1081
1082
    if (env->singlestep_enabled != enabled) {
        env->singlestep_enabled = enabled;
        /* must flush all the translated code to avoid inconsistancies */
1083
        /* XXX: only flush what is necessary */
1084
        tb_flush(env);
1085
1086
1087
1088
    }
#endif
}
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
/* enable or disable low levels log */
void cpu_set_log(int log_flags)
{
    loglevel = log_flags;
    if (loglevel && !logfile) {
        logfile = fopen(logfilename, "w");
        if (!logfile) {
            perror(logfilename);
            _exit(1);
        }
1099
1100
1101
1102
1103
1104
1105
#if !defined(CONFIG_SOFTMMU)
        /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
        {
            static uint8_t logfile_buf[4096];
            setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
        }
#else
1106
        setvbuf(logfile, NULL, _IOLBF, 0);
1107
#endif
1108
1109
1110
1111
1112
1113
1114
    }
}

void cpu_set_log_filename(const char *filename)
{
    logfilename = strdup(filename);
}
1115
1116
/* mask must never be zero, except for A20 change call */
bellard authored
1117
void cpu_interrupt(CPUState *env, int mask)
bellard authored
1118
1119
{
    TranslationBlock *tb;
1120
    static int interrupt_lock;
1121
bellard authored
1122
    env->interrupt_request |= mask;
bellard authored
1123
1124
1125
    /* if the cpu is currently executing code, we must unlink it and
       all the potentially executing TB */
    tb = env->current_tb;
1126
1127
    if (tb && !testandset(&interrupt_lock)) {
        env->current_tb = NULL;
bellard authored
1128
        tb_reset_jump_recursive(tb);
1129
        interrupt_lock = 0;
bellard authored
1130
1131
1132
    }
}
1133
1134
1135
1136
1137
void cpu_reset_interrupt(CPUState *env, int mask)
{
    env->interrupt_request &= ~mask;
}
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
CPULogItem cpu_log_items[] = {
    { CPU_LOG_TB_OUT_ASM, "out_asm", 
      "show generated host assembly code for each compiled TB" },
    { CPU_LOG_TB_IN_ASM, "in_asm",
      "show target assembly code for each compiled TB" },
    { CPU_LOG_TB_OP, "op", 
      "show micro ops for each compiled TB (only usable if 'in_asm' used)" },
#ifdef TARGET_I386
    { CPU_LOG_TB_OP_OPT, "op_opt",
      "show micro ops after optimization for each compiled TB" },
#endif
    { CPU_LOG_INT, "int",
      "show interrupts/exceptions in short format" },
    { CPU_LOG_EXEC, "exec",
      "show trace before each executed TB (lots of logs)" },
1153
1154
    { CPU_LOG_TB_CPU, "cpu",
      "show CPU state before bloc translation" },
1155
1156
1157
1158
#ifdef TARGET_I386
    { CPU_LOG_PCALL, "pcall",
      "show protected mode far calls/returns/exceptions" },
#endif
1159
#ifdef DEBUG_IOPORT
1160
1161
    { CPU_LOG_IOPORT, "ioport",
      "show all i/o ports accesses" },
1162
#endif
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
    { 0, NULL, NULL },
};

static int cmp1(const char *s1, int n, const char *s2)
{
    if (strlen(s2) != n)
        return 0;
    return memcmp(s1, s2, n) == 0;
}

/* takes a comma separated list of log masks. Return 0 if error. */
int cpu_str_to_log_mask(const char *str)
{
    CPULogItem *item;
    int mask;
    const char *p, *p1;

    p = str;
    mask = 0;
    for(;;) {
        p1 = strchr(p, ',');
        if (!p1)
            p1 = p + strlen(p);
1186
1187
1188
1189
1190
	if(cmp1(p,p1-p,"all")) {
		for(item = cpu_log_items; item->mask != 0; item++) {
			mask |= item->mask;
		}
	} else {
1191
1192
1193
1194
1195
        for(item = cpu_log_items; item->mask != 0; item++) {
            if (cmp1(p, p1 - p, item->name))
                goto found;
        }
        return 0;
1196
	}
1197
1198
1199
1200
1201
1202
1203
1204
    found:
        mask |= item->mask;
        if (*p1 != ',')
            break;
        p = p1 + 1;
    }
    return mask;
}
bellard authored
1205
bellard authored
1206
1207
1208
1209
1210
1211
1212
1213
1214
void cpu_abort(CPUState *env, const char *fmt, ...)
{
    va_list ap;

    va_start(ap, fmt);
    fprintf(stderr, "qemu: fatal: ");
    vfprintf(stderr, fmt, ap);
    fprintf(stderr, "\n");
#ifdef TARGET_I386
bellard authored
1215
1216
1217
    cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
#else
    cpu_dump_state(env, stderr, fprintf, 0);
bellard authored
1218
1219
1220
1221
1222
#endif
    va_end(ap);
    abort();
}
1223
1224
#if !defined(CONFIG_USER_ONLY)
1225
1226
1227
/* NOTE: if flush_global is true, also flush global entries (not
   implemented yet) */
void tlb_flush(CPUState *env, int flush_global)
1228
1229
{
    int i;
1230
1231
1232
1233
#if defined(DEBUG_TLB)
    printf("tlb_flush:\n");
#endif
1234
1235
1236
1237
    /* must reset current TB so that interrupts cannot modify the
       links while we are modifying them */
    env->current_tb = NULL;
1238
    for(i = 0; i < CPU_TLB_SIZE; i++) {
bellard authored
1239
1240
1241
1242
1243
1244
        env->tlb_table[0][i].addr_read = -1;
        env->tlb_table[0][i].addr_write = -1;
        env->tlb_table[0][i].addr_code = -1;
        env->tlb_table[1][i].addr_read = -1;
        env->tlb_table[1][i].addr_write = -1;
        env->tlb_table[1][i].addr_code = -1;
1245
    }
1246
1247
    memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1248
1249
1250
1251

#if !defined(CONFIG_SOFTMMU)
    munmap((void *)MMAP_AREA_START, MMAP_AREA_END - MMAP_AREA_START);
#endif
bellard authored
1252
1253
1254
1255
1256
#ifdef USE_KQEMU
    if (env->kqemu_enabled) {
        kqemu_flush(env, flush_global);
    }
#endif
bellard authored
1257
    tlb_flush_count++;
1258
1259
}
bellard authored
1260
static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
bellard authored
1261
{
bellard authored
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
    if (addr == (tlb_entry->addr_read & 
                 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
        addr == (tlb_entry->addr_write & 
                 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
        addr == (tlb_entry->addr_code & 
                 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
        tlb_entry->addr_read = -1;
        tlb_entry->addr_write = -1;
        tlb_entry->addr_code = -1;
    }
bellard authored
1272
1273
}
1274
void tlb_flush_page(CPUState *env, target_ulong addr)
1275
{
1276
    int i;
1277
    TranslationBlock *tb;
1278
1279
#if defined(DEBUG_TLB)
1280
    printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1281
#endif
1282
1283
1284
    /* must reset current TB so that interrupts cannot modify the
       links while we are modifying them */
    env->current_tb = NULL;
bellard authored
1285
1286
1287

    addr &= TARGET_PAGE_MASK;
    i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
bellard authored
1288
1289
    tlb_flush_entry(&env->tlb_table[0][i], addr);
    tlb_flush_entry(&env->tlb_table[1][i], addr);
1290
1291
1292
1293
1294
1295
1296
    for(i = 0; i < TB_JMP_CACHE_SIZE; i++) {
        tb = env->tb_jmp_cache[i];
        if (tb && 
            ((tb->pc & TARGET_PAGE_MASK) == addr ||
             ((tb->pc + tb->size - 1) & TARGET_PAGE_MASK) == addr)) {
            env->tb_jmp_cache[i] = NULL;
1297
1298
1299
        }
    }
1300
#if !defined(CONFIG_SOFTMMU)
1301
    if (addr < MMAP_AREA_END)
1302
        munmap((void *)addr, TARGET_PAGE_SIZE);
bellard authored
1303
#endif
bellard authored
1304
1305
1306
1307
1308
#ifdef USE_KQEMU
    if (env->kqemu_enabled) {
        kqemu_flush_page(env, addr);
    }
#endif
1309
1310
1311
1312
}

/* update the TLBs so that writes to code in the virtual page 'addr'
   can be detected */
bellard authored
1313
static void tlb_protect_code(ram_addr_t ram_addr)
1314
{
bellard authored
1315
1316
1317
    cpu_physical_memory_reset_dirty(ram_addr, 
                                    ram_addr + TARGET_PAGE_SIZE,
                                    CODE_DIRTY_FLAG);
1318
1319
1320
}

/* update the TLB so that writes in physical page 'phys_addr' are no longer
1321
1322
1323
   tested for self modifying code */
static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr, 
                                    target_ulong vaddr)
1324
{
1325
    phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1326
1327
1328
1329
1330
1331
}

static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, 
                                         unsigned long start, unsigned long length)
{
    unsigned long addr;
bellard authored
1332
1333
    if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
        addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1334
        if ((addr - start) < length) {
bellard authored
1335
            tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | IO_MEM_NOTDIRTY;
1336
1337
1338
1339
        }
    }
}
1340
void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
bellard authored
1341
                                     int dirty_flags)
1342
1343
{
    CPUState *env;
bellard authored
1344
    unsigned long length, start1;
bellard authored
1345
1346
    int i, mask, len;
    uint8_t *p;
1347
1348
1349
1350
1351
1352
1353

    start &= TARGET_PAGE_MASK;
    end = TARGET_PAGE_ALIGN(end);

    length = end - start;
    if (length == 0)
        return;
bellard authored
1354
    len = length >> TARGET_PAGE_BITS;
1355
#ifdef USE_KQEMU
bellard authored
1356
1357
    /* XXX: should not depend on cpu context */
    env = first_cpu;
1358
    if (env->kqemu_enabled) {
1359
1360
1361
1362
1363
1364
        ram_addr_t addr;
        addr = start;
        for(i = 0; i < len; i++) {
            kqemu_set_notdirty(env, addr);
            addr += TARGET_PAGE_SIZE;
        }
1365
1366
    }
#endif
1367
1368
1369
1370
1371
    mask = ~dirty_flags;
    p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
    for(i = 0; i < len; i++)
        p[i] &= mask;
1372
1373
    /* we modify the TLB cache so that the dirty bit will be set again
       when accessing the range */
1374
    start1 = start + (unsigned long)phys_ram_base;
bellard authored
1375
1376
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
        for(i = 0; i < CPU_TLB_SIZE; i++)
bellard authored
1377
            tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
bellard authored
1378
        for(i = 0; i < CPU_TLB_SIZE; i++)
bellard authored
1379
            tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
bellard authored
1380
    }
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408

#if !defined(CONFIG_SOFTMMU)
    /* XXX: this is expensive */
    {
        VirtPageDesc *p;
        int j;
        target_ulong addr;

        for(i = 0; i < L1_SIZE; i++) {
            p = l1_virt_map[i];
            if (p) {
                addr = i << (TARGET_PAGE_BITS + L2_BITS);
                for(j = 0; j < L2_SIZE; j++) {
                    if (p->valid_tag == virt_valid_tag &&
                        p->phys_addr >= start && p->phys_addr < end &&
                        (p->prot & PROT_WRITE)) {
                        if (addr < MMAP_AREA_END) {
                            mprotect((void *)addr, TARGET_PAGE_SIZE, 
                                     p->prot & ~PROT_WRITE);
                        }
                    }
                    addr += TARGET_PAGE_SIZE;
                    p++;
                }
            }
        }
    }
#endif
1409
1410
}
1411
1412
1413
1414
static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
{
    ram_addr_t ram_addr;
bellard authored
1415
1416
    if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
        ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + 
1417
1418
            tlb_entry->addend - (unsigned long)phys_ram_base;
        if (!cpu_physical_memory_is_dirty(ram_addr)) {
bellard authored
1419
            tlb_entry->addr_write |= IO_MEM_NOTDIRTY;
1420
1421
1422
1423
1424
1425
1426
1427
1428
        }
    }
}

/* update the TLB according to the current state of the dirty bits */
void cpu_tlb_update_dirty(CPUState *env)
{
    int i;
    for(i = 0; i < CPU_TLB_SIZE; i++)
bellard authored
1429
        tlb_update_dirty(&env->tlb_table[0][i]);
1430
    for(i = 0; i < CPU_TLB_SIZE; i++)
bellard authored
1431
        tlb_update_dirty(&env->tlb_table[1][i]);
1432
1433
}
1434
static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, 
1435
                                  unsigned long start)
1436
1437
{
    unsigned long addr;
bellard authored
1438
1439
    if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_NOTDIRTY) {
        addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1440
        if (addr == start) {
bellard authored
1441
            tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | IO_MEM_RAM;
1442
1443
1444
1445
1446
1447
        }
    }
}

/* update the TLB corresponding to virtual page vaddr and phys addr
   addr so that it is no longer dirty */
bellard authored
1448
1449
static inline void tlb_set_dirty(CPUState *env,
                                 unsigned long addr, target_ulong vaddr)
1450
1451
1452
1453
1454
{
    int i;

    addr &= TARGET_PAGE_MASK;
    i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
bellard authored
1455
1456
    tlb_set_dirty1(&env->tlb_table[0][i], addr);
    tlb_set_dirty1(&env->tlb_table[1][i], addr);
1457
1458
}
1459
1460
1461
1462
/* add a new TLB entry. At most one entry for a given virtual address
   is permitted. Return 0 if OK or 2 if the page could not be mapped
   (can only happen in non SOFTMMU mode for I/O pages or pages
   conflicting with the host address space). */
bellard authored
1463
1464
1465
int tlb_set_page_exec(CPUState *env, target_ulong vaddr, 
                      target_phys_addr_t paddr, int prot, 
                      int is_user, int is_softmmu)
1466
{
1467
    PhysPageDesc *p;
bellard authored
1468
    unsigned long pd;
1469
    unsigned int index;
bellard authored
1470
    target_ulong address;
1471
    target_phys_addr_t addend;
1472
    int ret;
bellard authored
1473
    CPUTLBEntry *te;
1474
1475
    p = phys_page_find(paddr >> TARGET_PAGE_BITS);
1476
1477
1478
1479
1480
1481
    if (!p) {
        pd = IO_MEM_UNASSIGNED;
    } else {
        pd = p->phys_offset;
    }
#if defined(DEBUG_TLB)
1482
    printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x u=%d smmu=%d pd=0x%08lx\n",
bellard authored
1483
           vaddr, (int)paddr, prot, is_user, is_softmmu, pd);
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
#endif

    ret = 0;
#if !defined(CONFIG_SOFTMMU)
    if (is_softmmu) 
#endif
    {
        if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM) {
            /* IO memory case */
            address = vaddr | pd;
            addend = paddr;
        } else {
            /* standard memory */
            address = vaddr;
            addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
        }
1501
        index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1502
        addend -= vaddr;
bellard authored
1503
1504
        te = &env->tlb_table[is_user][index];
        te->addend = addend;
1505
        if (prot & PAGE_READ) {
bellard authored
1506
1507
1508
1509
1510
1511
            te->addr_read = address;
        } else {
            te->addr_read = -1;
        }
        if (prot & PAGE_EXEC) {
            te->addr_code = address;
1512
        } else {
bellard authored
1513
            te->addr_code = -1;
1514
        }
1515
        if (prot & PAGE_WRITE) {
1516
1517
            if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM) {
                /* ROM: access is ignored (same as unassigned) */
bellard authored
1518
                te->addr_write = vaddr | IO_MEM_ROM;
1519
            } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM && 
1520
                       !cpu_physical_memory_is_dirty(pd)) {
bellard authored
1521
                te->addr_write = vaddr | IO_MEM_NOTDIRTY;
1522
            } else {
bellard authored
1523
                te->addr_write = address;
1524
1525
            }
        } else {
bellard authored
1526
            te->addr_write = -1;
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
        }
    }
#if !defined(CONFIG_SOFTMMU)
    else {
        if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM) {
            /* IO access: no mapping is done as it will be handled by the
               soft MMU */
            if (!(env->hflags & HF_SOFTMMU_MASK))
                ret = 2;
        } else {
            void *map_addr;
1538
1539
1540
1541
1542
1543

            if (vaddr >= MMAP_AREA_END) {
                ret = 2;
            } else {
                if (prot & PROT_WRITE) {
                    if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM || 
1544
#if defined(TARGET_HAS_SMC) || 1
1545
                        first_tb ||
1546
#endif
1547
1548
1549
1550
1551
1552
1553
                        ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM && 
                         !cpu_physical_memory_is_dirty(pd))) {
                        /* ROM: we do as if code was inside */
                        /* if code is present, we only map as read only and save the
                           original mapping */
                        VirtPageDesc *vp;
1554
                        vp = virt_page_find_alloc(vaddr >> TARGET_PAGE_BITS, 1);
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
                        vp->phys_addr = pd;
                        vp->prot = prot;
                        vp->valid_tag = virt_valid_tag;
                        prot &= ~PAGE_WRITE;
                    }
                }
                map_addr = mmap((void *)vaddr, TARGET_PAGE_SIZE, prot, 
                                MAP_SHARED | MAP_FIXED, phys_ram_fd, (pd & TARGET_PAGE_MASK));
                if (map_addr == MAP_FAILED) {
                    cpu_abort(env, "mmap failed when mapped physical address 0x%08x to virtual address 0x%08x\n",
                              paddr, vaddr);
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
                }
            }
        }
    }
#endif
    return ret;
}

/* called from signal handler: invalidate the code and unprotect the
   page. Return TRUE if the fault was succesfully handled. */
1576
int page_unprotect(target_ulong addr, unsigned long pc, void *puc)
1577
1578
1579
1580
1581
1582
1583
1584
{
#if !defined(CONFIG_SOFTMMU)
    VirtPageDesc *vp;

#if defined(DEBUG_TLB)
    printf("page_unprotect: addr=0x%08x\n", addr);
#endif
    addr &= TARGET_PAGE_MASK;
1585
1586
1587
1588

    /* if it is not mapped, no need to worry here */
    if (addr >= MMAP_AREA_END)
        return 0;
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
    vp = virt_page_find(addr >> TARGET_PAGE_BITS);
    if (!vp)
        return 0;
    /* NOTE: in this case, validate_tag is _not_ tested as it
       validates only the code TLB */
    if (vp->valid_tag != virt_valid_tag)
        return 0;
    if (!(vp->prot & PAGE_WRITE))
        return 0;
#if defined(DEBUG_TLB)
    printf("page_unprotect: addr=0x%08x phys_addr=0x%08x prot=%x\n", 
           addr, vp->phys_addr, vp->prot);
#endif
1602
1603
1604
    if (mprotect((void *)addr, TARGET_PAGE_SIZE, vp->prot) < 0)
        cpu_abort(cpu_single_env, "error mprotect addr=0x%lx prot=%d\n",
                  (unsigned long)addr, vp->prot);
1605
    /* set the dirty bit */
bellard authored
1606
    phys_ram_dirty[vp->phys_addr >> TARGET_PAGE_BITS] = 0xff;
1607
1608
    /* flush the code inside */
    tb_invalidate_phys_page(vp->phys_addr, pc, puc);
1609
1610
1611
1612
    return 1;
#else
    return 0;
#endif
1613
1614
}
1615
1616
#else
1617
void tlb_flush(CPUState *env, int flush_global)
1618
1619
1620
{
}
1621
void tlb_flush_page(CPUState *env, target_ulong addr)
1622
1623
1624
{
}
bellard authored
1625
1626
1627
int tlb_set_page_exec(CPUState *env, target_ulong vaddr, 
                      target_phys_addr_t paddr, int prot, 
                      int is_user, int is_softmmu)
1628
1629
1630
{
    return 0;
}
1631
1632
1633
/* dump memory mappings */
void page_dump(FILE *f)
1634
{
1635
1636
1637
    unsigned long start, end;
    int i, j, prot, prot1;
    PageDesc *p;
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
    fprintf(f, "%-8s %-8s %-8s %s\n",
            "start", "end", "size", "prot");
    start = -1;
    end = -1;
    prot = 0;
    for(i = 0; i <= L1_SIZE; i++) {
        if (i < L1_SIZE)
            p = l1_map[i];
        else
            p = NULL;
        for(j = 0;j < L2_SIZE; j++) {
            if (!p)
                prot1 = 0;
            else
                prot1 = p[j].flags;
            if (prot1 != prot) {
                end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
                if (start != -1) {
                    fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
                            start, end, end - start, 
                            prot & PAGE_READ ? 'r' : '-',
                            prot & PAGE_WRITE ? 'w' : '-',
                            prot & PAGE_EXEC ? 'x' : '-');
                }
                if (prot1 != 0)
                    start = end;
                else
                    start = -1;
                prot = prot1;
            }
            if (!p)
                break;
        }
1672
1673
1674
    }
}
1675
int page_get_flags(target_ulong address)
1676
{
1677
1678
1679
    PageDesc *p;

    p = page_find(address >> TARGET_PAGE_BITS);
1680
    if (!p)
1681
1682
1683
1684
1685
1686
1687
        return 0;
    return p->flags;
}

/* modify the flags of a page and invalidate the code if
   necessary. The flag PAGE_WRITE_ORG is positionned automatically
   depending on PAGE_WRITE */
1688
void page_set_flags(target_ulong start, target_ulong end, int flags)
1689
1690
{
    PageDesc *p;
1691
    target_ulong addr;
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704

    start = start & TARGET_PAGE_MASK;
    end = TARGET_PAGE_ALIGN(end);
    if (flags & PAGE_WRITE)
        flags |= PAGE_WRITE_ORG;
    spin_lock(&tb_lock);
    for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
        p = page_find_alloc(addr >> TARGET_PAGE_BITS);
        /* if the write protection is set, then we invalidate the code
           inside */
        if (!(p->flags & PAGE_WRITE) && 
            (flags & PAGE_WRITE) &&
            p->first_tb) {
1705
            tb_invalidate_phys_page(addr, 0, NULL);
1706
1707
1708
1709
        }
        p->flags = flags;
    }
    spin_unlock(&tb_lock);
1710
1711
}
1712
1713
/* called from signal handler: invalidate the code and unprotect the
   page. Return TRUE if the fault was succesfully handled. */
1714
int page_unprotect(target_ulong address, unsigned long pc, void *puc)
1715
1716
1717
{
    unsigned int page_index, prot, pindex;
    PageDesc *p, *p1;
1718
    target_ulong host_start, host_end, addr;
1719
1720
    host_start = address & qemu_host_page_mask;
1721
1722
1723
1724
    page_index = host_start >> TARGET_PAGE_BITS;
    p1 = page_find(page_index);
    if (!p1)
        return 0;
1725
    host_end = host_start + qemu_host_page_size;
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
    p = p1;
    prot = 0;
    for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
        prot |= p->flags;
        p++;
    }
    /* if the page was really writable, then we change its
       protection back to writable */
    if (prot & PAGE_WRITE_ORG) {
        pindex = (address - host_start) >> TARGET_PAGE_BITS;
        if (!(p1[pindex].flags & PAGE_WRITE)) {
1737
            mprotect((void *)g2h(host_start), qemu_host_page_size, 
1738
1739
1740
1741
                     (prot & PAGE_BITS) | PAGE_WRITE);
            p1[pindex].flags |= PAGE_WRITE;
            /* and since the content will be modified, we must invalidate
               the corresponding translated code. */
1742
            tb_invalidate_phys_page(address, pc, puc);
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
#ifdef DEBUG_TB_CHECK
            tb_invalidate_check(address);
#endif
            return 1;
        }
    }
    return 0;
}

/* call this function when system calls directly modify a memory area */
1753
1754
/* ??? This should be redundant now we have lock_user.  */
void page_unprotect_range(target_ulong data, target_ulong data_size)
1755
{
1756
    target_ulong start, end, addr;
1757
1758
    start = data;
1759
1760
1761
1762
    end = start + data_size;
    start &= TARGET_PAGE_MASK;
    end = TARGET_PAGE_ALIGN(end);
    for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
1763
        page_unprotect(addr, 0, NULL);
1764
1765
1766
    }
}
bellard authored
1767
1768
static inline void tlb_set_dirty(CPUState *env,
                                 unsigned long addr, target_ulong vaddr)
1769
1770
{
}
1771
1772
#endif /* defined(CONFIG_USER_ONLY) */
1773
1774
1775
/* register physical memory. 'size' must be a multiple of the target
   page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
   io memory page */
1776
1777
1778
void cpu_register_physical_memory(target_phys_addr_t start_addr, 
                                  unsigned long size,
                                  unsigned long phys_offset)
1779
{
1780
    target_phys_addr_t addr, end_addr;
1781
    PhysPageDesc *p;
1782
bellard authored
1783
    size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
1784
    end_addr = start_addr + size;
bellard authored
1785
    for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
1786
        p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
1787
1788
        p->phys_offset = phys_offset;
        if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM)
1789
1790
1791
1792
            phys_offset += TARGET_PAGE_SIZE;
    }
}
1793
static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
1794
1795
1796
1797
{
    return 0;
}
1798
static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
{
}

static CPUReadMemoryFunc *unassigned_mem_read[3] = {
    unassigned_mem_readb,
    unassigned_mem_readb,
    unassigned_mem_readb,
};

static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
    unassigned_mem_writeb,
    unassigned_mem_writeb,
    unassigned_mem_writeb,
};
1814
static void notdirty_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1815
{
1816
1817
1818
1819
1820
    unsigned long ram_addr;
    int dirty_flags;
    ram_addr = addr - (unsigned long)phys_ram_base;
    dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
    if (!(dirty_flags & CODE_DIRTY_FLAG)) {
1821
#if !defined(CONFIG_USER_ONLY)
1822
1823
        tb_invalidate_phys_page_fast(ram_addr, 1);
        dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
1824
#endif
1825
    }
bellard authored
1826
    stb_p((uint8_t *)(long)addr, val);
1827
1828
1829
1830
1831
#ifdef USE_KQEMU
    if (cpu_single_env->kqemu_enabled &&
        (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
        kqemu_modify_page(cpu_single_env, ram_addr);
#endif
1832
1833
1834
1835
1836
    dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
    phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
    /* we remove the notdirty callback only if the code has been
       flushed */
    if (dirty_flags == 0xff)
bellard authored
1837
        tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
1838
1839
}
1840
static void notdirty_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1841
{
1842
1843
1844
1845
1846
    unsigned long ram_addr;
    int dirty_flags;
    ram_addr = addr - (unsigned long)phys_ram_base;
    dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
    if (!(dirty_flags & CODE_DIRTY_FLAG)) {
1847
#if !defined(CONFIG_USER_ONLY)
1848
1849
        tb_invalidate_phys_page_fast(ram_addr, 2);
        dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
1850
#endif
1851
    }
bellard authored
1852
    stw_p((uint8_t *)(long)addr, val);
1853
1854
1855
1856
1857
#ifdef USE_KQEMU
    if (cpu_single_env->kqemu_enabled &&
        (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
        kqemu_modify_page(cpu_single_env, ram_addr);
#endif
1858
1859
1860
1861
1862
    dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
    phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
    /* we remove the notdirty callback only if the code has been
       flushed */
    if (dirty_flags == 0xff)
bellard authored
1863
        tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
1864
1865
}
1866
static void notdirty_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1867
{
1868
1869
1870
1871
1872
    unsigned long ram_addr;
    int dirty_flags;
    ram_addr = addr - (unsigned long)phys_ram_base;
    dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
    if (!(dirty_flags & CODE_DIRTY_FLAG)) {
1873
#if !defined(CONFIG_USER_ONLY)
1874
1875
        tb_invalidate_phys_page_fast(ram_addr, 4);
        dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
1876
#endif
1877
    }
bellard authored
1878
    stl_p((uint8_t *)(long)addr, val);
1879
1880
1881
1882
1883
#ifdef USE_KQEMU
    if (cpu_single_env->kqemu_enabled &&
        (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
        kqemu_modify_page(cpu_single_env, ram_addr);
#endif
1884
1885
1886
1887
1888
    dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
    phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
    /* we remove the notdirty callback only if the code has been
       flushed */
    if (dirty_flags == 0xff)
bellard authored
1889
        tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
1890
1891
}
1892
static CPUReadMemoryFunc *error_mem_read[3] = {
1893
1894
1895
1896
1897
    NULL, /* never used */
    NULL, /* never used */
    NULL, /* never used */
};
1898
1899
1900
1901
1902
1903
static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
    notdirty_mem_writeb,
    notdirty_mem_writew,
    notdirty_mem_writel,
};
1904
1905
static void io_mem_init(void)
{
1906
    cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
1907
    cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
1908
    cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
1909
1910
1911
    io_mem_nb = 5;

    /* alloc dirty bits array */
bellard authored
1912
    phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
1913
    memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
}

/* mem_read and mem_write are arrays of functions containing the
   function to access byte (index 0), word (index 1) and dword (index
   2). All functions must be supplied. If io_index is non zero, the
   corresponding io zone is modified. If it is zero, a new io zone is
   allocated. The return value can be used with
   cpu_register_physical_memory(). (-1) is returned if error. */
int cpu_register_io_memory(int io_index,
                           CPUReadMemoryFunc **mem_read,
1924
1925
                           CPUWriteMemoryFunc **mem_write,
                           void *opaque)
1926
1927
1928
1929
{
    int i;

    if (io_index <= 0) {
1930
        if (io_mem_nb >= IO_MEM_NB_ENTRIES)
1931
1932
1933
1934
1935
1936
            return -1;
        io_index = io_mem_nb++;
    } else {
        if (io_index >= IO_MEM_NB_ENTRIES)
            return -1;
    }
1937
1938
1939
1940
1941
    for(i = 0;i < 3; i++) {
        io_mem_read[io_index][i] = mem_read[i];
        io_mem_write[io_index][i] = mem_write[i];
    }
1942
    io_mem_opaque[io_index] = opaque;
1943
1944
    return io_index << IO_MEM_SHIFT;
}
bellard authored
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
{
    return io_mem_write[io_index >> IO_MEM_SHIFT];
}

CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
{
    return io_mem_read[io_index >> IO_MEM_SHIFT];
}
1956
1957
/* physical memory access (slow version, mainly for debug) */
#if defined(CONFIG_USER_ONLY)
1958
void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf, 
1959
1960
1961
1962
                            int len, int is_write)
{
    int l, flags;
    target_ulong page;
1963
    void * p;
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975

    while (len > 0) {
        page = addr & TARGET_PAGE_MASK;
        l = (page + TARGET_PAGE_SIZE) - addr;
        if (l > len)
            l = len;
        flags = page_get_flags(page);
        if (!(flags & PAGE_VALID))
            return;
        if (is_write) {
            if (!(flags & PAGE_WRITE))
                return;
1976
1977
1978
            p = lock_user(addr, len, 0);
            memcpy(p, buf, len);
            unlock_user(p, addr, len);
1979
1980
1981
        } else {
            if (!(flags & PAGE_READ))
                return;
1982
1983
1984
            p = lock_user(addr, len, 1);
            memcpy(buf, p, len);
            unlock_user(p, addr, 0);
1985
1986
1987
1988
1989
1990
        }
        len -= l;
        buf += l;
        addr += l;
    }
}
1991
1992
#else
1993
void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf, 
1994
1995
1996
1997
1998
                            int len, int is_write)
{
    int l, io_index;
    uint8_t *ptr;
    uint32_t val;
1999
2000
    target_phys_addr_t page;
    unsigned long pd;
2001
    PhysPageDesc *p;
2002
2003
2004
2005
2006
2007

    while (len > 0) {
        page = addr & TARGET_PAGE_MASK;
        l = (page + TARGET_PAGE_SIZE) - addr;
        if (l > len)
            l = len;
2008
        p = phys_page_find(page >> TARGET_PAGE_BITS);
2009
2010
2011
2012
2013
2014
2015
        if (!p) {
            pd = IO_MEM_UNASSIGNED;
        } else {
            pd = p->phys_offset;
        }

        if (is_write) {
2016
            if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2017
                io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
bellard authored
2018
2019
                /* XXX: could force cpu_single_env to NULL to avoid
                   potential bugs */
2020
                if (l >= 4 && ((addr & 3) == 0)) {
bellard authored
2021
                    /* 32 bit write access */
bellard authored
2022
                    val = ldl_p(buf);
2023
                    io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2024
2025
                    l = 4;
                } else if (l >= 2 && ((addr & 1) == 0)) {
bellard authored
2026
                    /* 16 bit write access */
bellard authored
2027
                    val = lduw_p(buf);
2028
                    io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
2029
2030
                    l = 2;
                } else {
bellard authored
2031
                    /* 8 bit write access */
bellard authored
2032
                    val = ldub_p(buf);
2033
                    io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val);
2034
2035
2036
                    l = 1;
                }
            } else {
2037
2038
                unsigned long addr1;
                addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2039
                /* RAM case */
2040
                ptr = phys_ram_base + addr1;
2041
                memcpy(ptr, buf, l);
2042
2043
2044
2045
                if (!cpu_physical_memory_is_dirty(addr1)) {
                    /* invalidate code */
                    tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
                    /* set dirty bit */
2046
2047
                    phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |= 
                        (0xff & ~CODE_DIRTY_FLAG);
2048
                }
2049
2050
            }
        } else {
2051
            if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM) {
2052
2053
2054
2055
                /* I/O case */
                io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
                if (l >= 4 && ((addr & 3) == 0)) {
                    /* 32 bit read access */
2056
                    val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
bellard authored
2057
                    stl_p(buf, val);
2058
2059
2060
                    l = 4;
                } else if (l >= 2 && ((addr & 1) == 0)) {
                    /* 16 bit read access */
2061
                    val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
bellard authored
2062
                    stw_p(buf, val);
2063
2064
                    l = 2;
                } else {
bellard authored
2065
                    /* 8 bit read access */
2066
                    val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr);
bellard authored
2067
                    stb_p(buf, val);
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
                    l = 1;
                }
            } else {
                /* RAM case */
                ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) + 
                    (addr & ~TARGET_PAGE_MASK);
                memcpy(buf, ptr, l);
            }
        }
        len -= l;
        buf += l;
        addr += l;
    }
}
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
/* used for ROM loading : can write in RAM and ROM */
void cpu_physical_memory_write_rom(target_phys_addr_t addr, 
                                   const uint8_t *buf, int len)
{
    int l;
    uint8_t *ptr;
    target_phys_addr_t page;
    unsigned long pd;
    PhysPageDesc *p;

    while (len > 0) {
        page = addr & TARGET_PAGE_MASK;
        l = (page + TARGET_PAGE_SIZE) - addr;
        if (l > len)
            l = len;
        p = phys_page_find(page >> TARGET_PAGE_BITS);
        if (!p) {
            pd = IO_MEM_UNASSIGNED;
        } else {
            pd = p->phys_offset;
        }

        if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
            (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM) {
            /* do nothing */
        } else {
            unsigned long addr1;
            addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
            /* ROM/RAM case */
            ptr = phys_ram_base + addr1;
            memcpy(ptr, buf, l);
        }
        len -= l;
        buf += l;
        addr += l;
    }
}
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
/* warning: addr must be aligned */
uint32_t ldl_phys(target_phys_addr_t addr)
{
    int io_index;
    uint8_t *ptr;
    uint32_t val;
    unsigned long pd;
    PhysPageDesc *p;

    p = phys_page_find(addr >> TARGET_PAGE_BITS);
    if (!p) {
        pd = IO_MEM_UNASSIGNED;
    } else {
        pd = p->phys_offset;
    }
2138
    if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM) {
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
        /* I/O case */
        io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
        val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
    } else {
        /* RAM case */
        ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) + 
            (addr & ~TARGET_PAGE_MASK);
        val = ldl_p(ptr);
    }
    return val;
}
bellard authored
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
/* warning: addr must be aligned */
uint64_t ldq_phys(target_phys_addr_t addr)
{
    int io_index;
    uint8_t *ptr;
    uint64_t val;
    unsigned long pd;
    PhysPageDesc *p;

    p = phys_page_find(addr >> TARGET_PAGE_BITS);
    if (!p) {
        pd = IO_MEM_UNASSIGNED;
    } else {
        pd = p->phys_offset;
    }

    if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM) {
        /* I/O case */
        io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
#ifdef TARGET_WORDS_BIGENDIAN
        val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
        val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
#else
        val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
        val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
#endif
    } else {
        /* RAM case */
        ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) + 
            (addr & ~TARGET_PAGE_MASK);
        val = ldq_p(ptr);
    }
    return val;
}
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
/* XXX: optimize */
uint32_t ldub_phys(target_phys_addr_t addr)
{
    uint8_t val;
    cpu_physical_memory_read(addr, &val, 1);
    return val;
}

/* XXX: optimize */
uint32_t lduw_phys(target_phys_addr_t addr)
{
    uint16_t val;
    cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
    return tswap16(val);
}
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
/* warning: addr must be aligned. The ram page is not masked as dirty
   and the code inside is not invalidated. It is useful if the dirty
   bits are used to track modified PTEs */
void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
{
    int io_index;
    uint8_t *ptr;
    unsigned long pd;
    PhysPageDesc *p;

    p = phys_page_find(addr >> TARGET_PAGE_BITS);
    if (!p) {
        pd = IO_MEM_UNASSIGNED;
    } else {
        pd = p->phys_offset;
    }
2219
    if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
        io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
        io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
    } else {
        ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) + 
            (addr & ~TARGET_PAGE_MASK);
        stl_p(ptr, val);
    }
}

/* warning: addr must be aligned */
void stl_phys(target_phys_addr_t addr, uint32_t val)
{
    int io_index;
    uint8_t *ptr;
    unsigned long pd;
    PhysPageDesc *p;

    p = phys_page_find(addr >> TARGET_PAGE_BITS);
    if (!p) {
        pd = IO_MEM_UNASSIGNED;
    } else {
        pd = p->phys_offset;
    }
2244
    if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2245
2246
2247
2248
2249
2250
2251
2252
        io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
        io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
    } else {
        unsigned long addr1;
        addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
        /* RAM case */
        ptr = phys_ram_base + addr1;
        stl_p(ptr, val);
2253
2254
2255
2256
        if (!cpu_physical_memory_is_dirty(addr1)) {
            /* invalidate code */
            tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
            /* set dirty bit */
2257
2258
            phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
                (0xff & ~CODE_DIRTY_FLAG);
2259
        }
2260
2261
2262
    }
}
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
/* XXX: optimize */
void stb_phys(target_phys_addr_t addr, uint32_t val)
{
    uint8_t v = val;
    cpu_physical_memory_write(addr, &v, 1);
}

/* XXX: optimize */
void stw_phys(target_phys_addr_t addr, uint32_t val)
{
    uint16_t v = tswap16(val);
    cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
}

/* XXX: optimize */
void stq_phys(target_phys_addr_t addr, uint64_t val)
{
    val = tswap64(val);
    cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
}
2284
2285
2286
#endif

/* virtual memory access for debug */
2287
2288
int cpu_memory_rw_debug(CPUState *env, target_ulong addr, 
                        uint8_t *buf, int len, int is_write)
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
{
    int l;
    target_ulong page, phys_addr;

    while (len > 0) {
        page = addr & TARGET_PAGE_MASK;
        phys_addr = cpu_get_phys_page_debug(env, page);
        /* if no physical page mapped, return an error */
        if (phys_addr == -1)
            return -1;
        l = (page + TARGET_PAGE_SIZE) - addr;
        if (l > len)
            l = len;
2302
2303
        cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK), 
                               buf, l, is_write);
2304
2305
2306
2307
2308
2309
2310
        len -= l;
        buf += l;
        addr += l;
    }
    return 0;
}
bellard authored
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
void dump_exec_info(FILE *f,
                    int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
{
    int i, target_code_size, max_target_code_size;
    int direct_jmp_count, direct_jmp2_count, cross_page;
    TranslationBlock *tb;

    target_code_size = 0;
    max_target_code_size = 0;
    cross_page = 0;
    direct_jmp_count = 0;
    direct_jmp2_count = 0;
    for(i = 0; i < nb_tbs; i++) {
        tb = &tbs[i];
        target_code_size += tb->size;
        if (tb->size > max_target_code_size)
            max_target_code_size = tb->size;
        if (tb->page_addr[1] != -1)
            cross_page++;
        if (tb->tb_next_offset[0] != 0xffff) {
            direct_jmp_count++;
            if (tb->tb_next_offset[1] != 0xffff) {
                direct_jmp2_count++;
            }
        }
    }
    /* XXX: avoid using doubles ? */
    cpu_fprintf(f, "TB count            %d\n", nb_tbs);
    cpu_fprintf(f, "TB avg target size  %d max=%d bytes\n", 
                nb_tbs ? target_code_size / nb_tbs : 0,
                max_target_code_size);
    cpu_fprintf(f, "TB avg host size    %d bytes (expansion ratio: %0.1f)\n", 
                nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
                target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
    cpu_fprintf(f, "cross page TB count %d (%d%%)\n", 
            cross_page, 
            nb_tbs ? (cross_page * 100) / nb_tbs : 0);
    cpu_fprintf(f, "direct jump count   %d (%d%%) (2 jumps=%d %d%%)\n",
                direct_jmp_count, 
                nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
                direct_jmp2_count,
                nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
    cpu_fprintf(f, "TB flush count      %d\n", tb_flush_count);
    cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
    cpu_fprintf(f, "TLB flush count     %d\n", tlb_flush_count);
}
bellard authored
2358
2359
2360
2361
2362
#if !defined(CONFIG_USER_ONLY) 

#define MMUSUFFIX _cmmu
#define GETPC() NULL
#define env cpu_single_env
bellard authored
2363
#define SOFTMMU_CODE_ACCESS
bellard authored
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379

#define SHIFT 0
#include "softmmu_template.h"

#define SHIFT 1
#include "softmmu_template.h"

#define SHIFT 2
#include "softmmu_template.h"

#define SHIFT 3
#include "softmmu_template.h"

#undef env

#endif