1
2
/*
* defines common to all virtual CPUs
ths
authored
18 years ago
3
*
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
* Copyright ( c ) 2003 Fabrice Bellard
*
* This library is free software ; you can redistribute it and / or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation ; either
* version 2 of the License , or ( at your option ) any later version .
*
* This library is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the GNU
* Lesser General Public License for more details .
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library ; if not , write to the Free Software
* Foundation , Inc ., 59 Temple Place , Suite 330 , Boston , MA 02111 - 1307 USA
*/
# ifndef CPU_ALL_H
# define CPU_ALL_H
ths
authored
18 years ago
23
# if defined ( __arm__ ) || defined ( __sparc__ ) || defined ( __mips__ )
24
25
26
# define WORDS_ALIGNED
# endif
ths
authored
18 years ago
27
28
/* some important defines :
*
29
30
* WORDS_ALIGNED : if defined , the host cpu can only make word aligned
* memory accesses .
ths
authored
18 years ago
31
*
32
33
* WORDS_BIGENDIAN : if defined , the host cpu is big endian and
* otherwise little endian .
ths
authored
18 years ago
34
*
35
* ( TARGET_WORDS_ALIGNED : same for target cpu ( not supported yet ))
ths
authored
18 years ago
36
*
37
38
39
* TARGET_WORDS_BIGENDIAN : same for target cpu
*/
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
# include "bswap.h"
# if defined ( WORDS_BIGENDIAN ) != defined ( TARGET_WORDS_BIGENDIAN )
# define BSWAP_NEEDED
# endif
# ifdef BSWAP_NEEDED
static inline uint16_t tswap16 ( uint16_t s )
{
return bswap16 ( s );
}
static inline uint32_t tswap32 ( uint32_t s )
{
return bswap32 ( s );
}
static inline uint64_t tswap64 ( uint64_t s )
{
return bswap64 ( s );
}
static inline void tswap16s ( uint16_t * s )
{
* s = bswap16 ( * s );
}
static inline void tswap32s ( uint32_t * s )
{
* s = bswap32 ( * s );
}
static inline void tswap64s ( uint64_t * s )
{
* s = bswap64 ( * s );
}
# else
static inline uint16_t tswap16 ( uint16_t s )
{
return s ;
}
static inline uint32_t tswap32 ( uint32_t s )
{
return s ;
}
static inline uint64_t tswap64 ( uint64_t s )
{
return s ;
}
static inline void tswap16s ( uint16_t * s )
{
}
static inline void tswap32s ( uint32_t * s )
{
}
static inline void tswap64s ( uint64_t * s )
{
}
# endif
# if TARGET_LONG_SIZE == 4
# define tswapl ( s ) tswap32 ( s )
# define tswapls ( s ) tswap32s (( uint32_t * )( s ))
112
# define bswaptls ( s ) bswap32s ( s )
113
114
115
# else
# define tswapl ( s ) tswap64 ( s )
# define tswapls ( s ) tswap64s (( uint64_t * )( s ))
116
# define bswaptls ( s ) bswap64s ( s )
117
118
# endif
119
120
/* NOTE : arm FPA is horrible as double 32 bit words are stored in big
endian ! */
121
typedef union {
122
float64 d ;
123
124
# if defined ( WORDS_BIGENDIAN ) \
|| ( defined ( __arm__ ) && ! defined ( __VFP_FP__ ) && ! defined ( CONFIG_SOFTFLOAT ))
125
126
struct {
uint32_t upper ;
127
uint32_t lower ;
128
129
130
131
} l ;
# else
struct {
uint32_t lower ;
132
uint32_t upper ;
133
134
135
136
137
} l ;
# endif
uint64_t ll ;
} CPU_DoubleU ;
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# ifdef TARGET_SPARC
typedef union {
float128 q ;
# if defined ( WORDS_BIGENDIAN ) \
|| ( defined ( __arm__ ) && ! defined ( __VFP_FP__ ) && ! defined ( CONFIG_SOFTFLOAT ))
struct {
uint32_t upmost ;
uint32_t upper ;
uint32_t lower ;
uint32_t lowest ;
} l ;
struct {
uint64_t upper ;
uint64_t lower ;
} ll ;
# else
struct {
uint32_t lowest ;
uint32_t lower ;
uint32_t upper ;
uint32_t upmost ;
} l ;
struct {
uint64_t lower ;
uint64_t upper ;
} ll ;
# endif
} CPU_QuadU ;
# endif
168
169
/* CPU memory access without any memory or io remapping */
170
171
172
173
174
175
176
177
178
179
/*
* the generic syntax for the memory accesses is :
*
* load : ld { type }{ sign }{ size }{ endian } _ { access_type }( ptr )
*
* store : st { type }{ size }{ endian } _ { access_type }( ptr , val )
*
* type is :
* ( empty ) : integer access
* f : float access
ths
authored
18 years ago
180
*
181
182
183
184
185
186
187
188
189
190
* sign is :
* ( empty ) : for floats or 32 bit size
* u : unsigned
* s : signed
*
* size is :
* b : 8 bits
* w : 16 bits
* l : 32 bits
* q : 64 bits
ths
authored
18 years ago
191
*
192
193
194
195
196
197
198
199
200
201
202
* endian is :
* ( empty ) : target cpu endianness or 8 bit access
* r : reversed target cpu endianness ( not implemented yet )
* be : big endian ( not implemented yet )
* le : little endian ( not implemented yet )
*
* access_type is :
* raw : host memory access
* user : user mode access using soft MMU
* kernel : kernel mode access using soft MMU
*/
203
static inline int ldub_p ( void * ptr )
204
205
206
207
{
return * ( uint8_t * ) ptr ;
}
208
static inline int ldsb_p ( void * ptr )
209
210
211
212
{
return * ( int8_t * ) ptr ;
}
213
static inline void stb_p ( void * ptr , int v )
214
215
216
217
218
219
220
{
* ( uint8_t * ) ptr = v ;
}
/* NOTE : on arm , putting 2 in / proc / sys / debug / alignment so that the
kernel handles unaligned load / stores may give better results , but
it is a system wide setting : bad */
221
# if defined ( WORDS_BIGENDIAN ) || defined ( WORDS_ALIGNED )
222
223
/* conservative code for little endian unaligned accesses */
224
static inline int lduw_le_p ( void * ptr )
225
226
227
228
229
230
231
232
233
234
235
{
# ifdef __powerpc__
int val ;
__asm__ __volatile__ ( "lhbrx %0,0,%1" : "=r" ( val ) : "r" ( ptr ));
return val ;
# else
uint8_t * p = ptr ;
return p [ 0 ] | ( p [ 1 ] << 8 );
# endif
}
236
static inline int ldsw_le_p ( void * ptr )
237
238
239
240
241
242
243
244
245
246
247
{
# ifdef __powerpc__
int val ;
__asm__ __volatile__ ( "lhbrx %0,0,%1" : "=r" ( val ) : "r" ( ptr ));
return ( int16_t ) val ;
# else
uint8_t * p = ptr ;
return ( int16_t )( p [ 0 ] | ( p [ 1 ] << 8 ));
# endif
}
248
static inline int ldl_le_p ( void * ptr )
249
250
251
252
253
254
255
256
257
258
259
{
# ifdef __powerpc__
int val ;
__asm__ __volatile__ ( "lwbrx %0,0,%1" : "=r" ( val ) : "r" ( ptr ));
return val ;
# else
uint8_t * p = ptr ;
return p [ 0 ] | ( p [ 1 ] << 8 ) | ( p [ 2 ] << 16 ) | ( p [ 3 ] << 24 );
# endif
}
260
static inline uint64_t ldq_le_p ( void * ptr )
261
262
263
{
uint8_t * p = ptr ;
uint32_t v1 , v2 ;
264
265
v1 = ldl_le_p ( p );
v2 = ldl_le_p ( p + 4 );
266
267
268
return v1 | (( uint64_t ) v2 << 32 );
}
269
static inline void stw_le_p ( void * ptr , int v )
270
271
272
273
274
275
276
277
278
279
{
# ifdef __powerpc__
__asm__ __volatile__ ( "sthbrx %1,0,%2" : "=m" ( * ( uint16_t * ) ptr ) : "r" ( v ), "r" ( ptr ));
# else
uint8_t * p = ptr ;
p [ 0 ] = v ;
p [ 1 ] = v >> 8 ;
# endif
}
280
static inline void stl_le_p ( void * ptr , int v )
281
282
283
284
285
286
287
288
289
290
291
292
{
# ifdef __powerpc__
__asm__ __volatile__ ( "stwbrx %1,0,%2" : "=m" ( * ( uint32_t * ) ptr ) : "r" ( v ), "r" ( ptr ));
# else
uint8_t * p = ptr ;
p [ 0 ] = v ;
p [ 1 ] = v >> 8 ;
p [ 2 ] = v >> 16 ;
p [ 3 ] = v >> 24 ;
# endif
}
293
static inline void stq_le_p ( void * ptr , uint64_t v )
294
295
{
uint8_t * p = ptr ;
296
297
stl_le_p ( p , ( uint32_t ) v );
stl_le_p ( p + 4 , v >> 32 );
298
299
300
301
}
/* float access */
302
static inline float32 ldfl_le_p ( void * ptr )
303
304
{
union {
305
float32 f ;
306
307
uint32_t i ;
} u ;
308
u . i = ldl_le_p ( ptr );
309
310
311
return u . f ;
}
312
static inline void stfl_le_p ( void * ptr , float32 v )
313
314
{
union {
315
float32 f ;
316
317
318
uint32_t i ;
} u ;
u . f = v ;
319
stl_le_p ( ptr , u . i );
320
321
}
322
static inline float64 ldfq_le_p ( void * ptr )
323
{
324
CPU_DoubleU u ;
325
326
u . l . lower = ldl_le_p ( ptr );
u . l . upper = ldl_le_p ( ptr + 4 );
327
328
329
return u . d ;
}
330
static inline void stfq_le_p ( void * ptr , float64 v )
331
{
332
CPU_DoubleU u ;
333
u . d = v ;
334
335
stl_le_p ( ptr , u . l . lower );
stl_le_p ( ptr + 4 , u . l . upper );
336
337
}
338
339
340
341
342
343
344
345
346
347
348
# else
static inline int lduw_le_p ( void * ptr )
{
return * ( uint16_t * ) ptr ;
}
static inline int ldsw_le_p ( void * ptr )
{
return * ( int16_t * ) ptr ;
}
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
static inline int ldl_le_p ( void * ptr )
{
return * ( uint32_t * ) ptr ;
}
static inline uint64_t ldq_le_p ( void * ptr )
{
return * ( uint64_t * ) ptr ;
}
static inline void stw_le_p ( void * ptr , int v )
{
* ( uint16_t * ) ptr = v ;
}
static inline void stl_le_p ( void * ptr , int v )
{
* ( uint32_t * ) ptr = v ;
}
static inline void stq_le_p ( void * ptr , uint64_t v )
{
* ( uint64_t * ) ptr = v ;
}
/* float access */
static inline float32 ldfl_le_p ( void * ptr )
{
return * ( float32 * ) ptr ;
}
static inline float64 ldfq_le_p ( void * ptr )
{
return * ( float64 * ) ptr ;
}
static inline void stfl_le_p ( void * ptr , float32 v )
{
* ( float32 * ) ptr = v ;
}
static inline void stfq_le_p ( void * ptr , float64 v )
{
* ( float64 * ) ptr = v ;
}
# endif
# if ! defined ( WORDS_BIGENDIAN ) || defined ( WORDS_ALIGNED )
static inline int lduw_be_p ( void * ptr )
401
{
402
403
404
405
406
407
408
409
# if defined ( __i386__ )
int val ;
asm volatile ( "movzwl %1, %0 \n "
"xchgb %b0, %h0 \n "
: "=q" ( val )
: "m" ( * ( uint16_t * ) ptr ));
return val ;
# else
410
uint8_t * b = ( uint8_t * ) ptr ;
411
412
return (( b [ 0 ] << 8 ) | b [ 1 ]);
# endif
413
414
}
415
static inline int ldsw_be_p ( void * ptr )
416
{
417
418
419
420
421
422
423
424
425
426
427
# if defined ( __i386__ )
int val ;
asm volatile ( "movzwl %1, %0 \n "
"xchgb %b0, %h0 \n "
: "=q" ( val )
: "m" ( * ( uint16_t * ) ptr ));
return ( int16_t ) val ;
# else
uint8_t * b = ( uint8_t * ) ptr ;
return ( int16_t )(( b [ 0 ] << 8 ) | b [ 1 ]);
# endif
428
429
}
430
static inline int ldl_be_p ( void * ptr )
431
{
432
# if defined ( __i386__ ) || defined ( __x86_64__ )
433
434
435
436
437
438
439
int val ;
asm volatile ( "movl %1, %0 \n "
"bswap %0 \n "
: "=r" ( val )
: "m" ( * ( uint32_t * ) ptr ));
return val ;
# else
440
uint8_t * b = ( uint8_t * ) ptr ;
441
442
return ( b [ 0 ] << 24 ) | ( b [ 1 ] << 16 ) | ( b [ 2 ] << 8 ) | b [ 3 ];
# endif
443
444
}
445
static inline uint64_t ldq_be_p ( void * ptr )
446
447
{
uint32_t a , b ;
448
449
a = ldl_be_p ( ptr );
b = ldl_be_p ( ptr + 4 );
450
451
452
return ((( uint64_t ) a << 32 ) | b );
}
453
static inline void stw_be_p ( void * ptr , int v )
454
{
455
456
457
458
459
460
# if defined ( __i386__ )
asm volatile ( "xchgb %b0, %h0 \n "
"movw %w0, %1 \n "
: "=q" ( v )
: "m" ( * ( uint16_t * ) ptr ), "0" ( v ));
# else
461
462
463
uint8_t * d = ( uint8_t * ) ptr ;
d [ 0 ] = v >> 8 ;
d [ 1 ] = v ;
464
# endif
465
466
}
467
static inline void stl_be_p ( void * ptr , int v )
468
{
469
# if defined ( __i386__ ) || defined ( __x86_64__ )
470
471
472
473
474
asm volatile ( "bswap %0 \n "
"movl %0, %1 \n "
: "=r" ( v )
: "m" ( * ( uint32_t * ) ptr ), "0" ( v ));
# else
475
476
477
478
479
uint8_t * d = ( uint8_t * ) ptr ;
d [ 0 ] = v >> 24 ;
d [ 1 ] = v >> 16 ;
d [ 2 ] = v >> 8 ;
d [ 3 ] = v ;
480
# endif
481
482
}
483
static inline void stq_be_p ( void * ptr , uint64_t v )
484
{
485
486
stl_be_p ( ptr , v >> 32 );
stl_be_p ( ptr + 4 , v );
487
488
489
490
}
/* float access */
491
static inline float32 ldfl_be_p ( void * ptr )
492
493
{
union {
494
float32 f ;
495
496
uint32_t i ;
} u ;
497
u . i = ldl_be_p ( ptr );
498
499
500
return u . f ;
}
501
static inline void stfl_be_p ( void * ptr , float32 v )
502
503
{
union {
504
float32 f ;
505
506
507
uint32_t i ;
} u ;
u . f = v ;
508
stl_be_p ( ptr , u . i );
509
510
}
511
static inline float64 ldfq_be_p ( void * ptr )
512
513
{
CPU_DoubleU u ;
514
515
u . l . upper = ldl_be_p ( ptr );
u . l . lower = ldl_be_p ( ptr + 4 );
516
517
518
return u . d ;
}
519
static inline void stfq_be_p ( void * ptr , float64 v )
520
521
522
{
CPU_DoubleU u ;
u . d = v ;
523
524
stl_be_p ( ptr , u . l . upper );
stl_be_p ( ptr + 4 , u . l . lower );
525
526
}
527
528
# else
529
static inline int lduw_be_p ( void * ptr )
530
531
532
533
{
return * ( uint16_t * ) ptr ;
}
534
static inline int ldsw_be_p ( void * ptr )
535
536
537
538
{
return * ( int16_t * ) ptr ;
}
539
static inline int ldl_be_p ( void * ptr )
540
541
542
543
{
return * ( uint32_t * ) ptr ;
}
544
static inline uint64_t ldq_be_p ( void * ptr )
545
546
547
548
{
return * ( uint64_t * ) ptr ;
}
549
static inline void stw_be_p ( void * ptr , int v )
550
551
552
553
{
* ( uint16_t * ) ptr = v ;
}
554
static inline void stl_be_p ( void * ptr , int v )
555
556
557
558
{
* ( uint32_t * ) ptr = v ;
}
559
static inline void stq_be_p ( void * ptr , uint64_t v )
560
561
562
563
564
565
{
* ( uint64_t * ) ptr = v ;
}
/* float access */
566
static inline float32 ldfl_be_p ( void * ptr )
567
{
568
return * ( float32 * ) ptr ;
569
570
}
571
static inline float64 ldfq_be_p ( void * ptr )
572
{
573
return * ( float64 * ) ptr ;
574
575
}
576
static inline void stfl_be_p ( void * ptr , float32 v )
577
{
578
* ( float32 * ) ptr = v ;
579
580
}
581
static inline void stfq_be_p ( void * ptr , float64 v )
582
{
583
* ( float64 * ) ptr = v ;
584
}
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
# endif
/* target CPU memory access functions */
# if defined ( TARGET_WORDS_BIGENDIAN )
# define lduw_p ( p ) lduw_be_p ( p )
# define ldsw_p ( p ) ldsw_be_p ( p )
# define ldl_p ( p ) ldl_be_p ( p )
# define ldq_p ( p ) ldq_be_p ( p )
# define ldfl_p ( p ) ldfl_be_p ( p )
# define ldfq_p ( p ) ldfq_be_p ( p )
# define stw_p ( p , v ) stw_be_p ( p , v )
# define stl_p ( p , v ) stl_be_p ( p , v )
# define stq_p ( p , v ) stq_be_p ( p , v )
# define stfl_p ( p , v ) stfl_be_p ( p , v )
# define stfq_p ( p , v ) stfq_be_p ( p , v )
# else
# define lduw_p ( p ) lduw_le_p ( p )
# define ldsw_p ( p ) ldsw_le_p ( p )
# define ldl_p ( p ) ldl_le_p ( p )
# define ldq_p ( p ) ldq_le_p ( p )
# define ldfl_p ( p ) ldfl_le_p ( p )
# define ldfq_p ( p ) ldfq_le_p ( p )
# define stw_p ( p , v ) stw_le_p ( p , v )
# define stl_p ( p , v ) stl_le_p ( p , v )
# define stq_p ( p , v ) stq_le_p ( p , v )
# define stfl_p ( p , v ) stfl_le_p ( p , v )
# define stfq_p ( p , v ) stfq_le_p ( p , v )
613
614
# endif
615
616
/* MMU memory access macros */
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
# if defined ( CONFIG_USER_ONLY )
/* On some host systems the guest address space is reserved on the host .
* This allows the guest address space to be offset to a convenient location .
*/
// # define GUEST_BASE 0x20000000
# define GUEST_BASE 0
/* All direct uses of g2h and h2g need to go away for usermode softmmu. */
# define g2h ( x ) (( void * )(( unsigned long )( x ) + GUEST_BASE ))
# define h2g ( x ) (( target_ulong )( x - GUEST_BASE ))
# define saddr ( x ) g2h ( x )
# define laddr ( x ) g2h ( x )
# else /* !CONFIG_USER_ONLY */
632
633
/* NOTE : we use double casts if pointers and target_ulong have
different sizes */
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
# define saddr ( x ) ( uint8_t * )( long )( x )
# define laddr ( x ) ( uint8_t * )( long )( x )
# endif
# define ldub_raw ( p ) ldub_p ( laddr (( p )))
# define ldsb_raw ( p ) ldsb_p ( laddr (( p )))
# define lduw_raw ( p ) lduw_p ( laddr (( p )))
# define ldsw_raw ( p ) ldsw_p ( laddr (( p )))
# define ldl_raw ( p ) ldl_p ( laddr (( p )))
# define ldq_raw ( p ) ldq_p ( laddr (( p )))
# define ldfl_raw ( p ) ldfl_p ( laddr (( p )))
# define ldfq_raw ( p ) ldfq_p ( laddr (( p )))
# define stb_raw ( p , v ) stb_p ( saddr (( p )), v )
# define stw_raw ( p , v ) stw_p ( saddr (( p )), v )
# define stl_raw ( p , v ) stl_p ( saddr (( p )), v )
# define stq_raw ( p , v ) stq_p ( saddr (( p )), v )
# define stfl_raw ( p , v ) stfl_p ( saddr (( p )), v )
# define stfq_raw ( p , v ) stfq_p ( saddr (( p )), v )
652
653
ths
authored
18 years ago
654
# if defined ( CONFIG_USER_ONLY )
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
/* if user mode, no other memory access functions */
# define ldub ( p ) ldub_raw ( p )
# define ldsb ( p ) ldsb_raw ( p )
# define lduw ( p ) lduw_raw ( p )
# define ldsw ( p ) ldsw_raw ( p )
# define ldl ( p ) ldl_raw ( p )
# define ldq ( p ) ldq_raw ( p )
# define ldfl ( p ) ldfl_raw ( p )
# define ldfq ( p ) ldfq_raw ( p )
# define stb ( p , v ) stb_raw ( p , v )
# define stw ( p , v ) stw_raw ( p , v )
# define stl ( p , v ) stl_raw ( p , v )
# define stq ( p , v ) stq_raw ( p , v )
# define stfl ( p , v ) stfl_raw ( p , v )
# define stfq ( p , v ) stfq_raw ( p , v )
# define ldub_code ( p ) ldub_raw ( p )
# define ldsb_code ( p ) ldsb_raw ( p )
# define lduw_code ( p ) lduw_raw ( p )
# define ldsw_code ( p ) ldsw_raw ( p )
# define ldl_code ( p ) ldl_raw ( p )
677
# define ldq_code ( p ) ldq_raw ( p )
678
679
680
681
682
683
# define ldub_kernel ( p ) ldub_raw ( p )
# define ldsb_kernel ( p ) ldsb_raw ( p )
# define lduw_kernel ( p ) lduw_raw ( p )
# define ldsw_kernel ( p ) ldsw_raw ( p )
# define ldl_kernel ( p ) ldl_raw ( p )
684
# define ldq_kernel ( p ) ldq_raw ( p )
685
686
# define ldfl_kernel ( p ) ldfl_raw ( p )
# define ldfq_kernel ( p ) ldfq_raw ( p )
687
688
689
690
# define stb_kernel ( p , v ) stb_raw ( p , v )
# define stw_kernel ( p , v ) stw_raw ( p , v )
# define stl_kernel ( p , v ) stl_raw ( p , v )
# define stq_kernel ( p , v ) stq_raw ( p , v )
691
692
# define stfl_kernel ( p , v ) stfl_raw ( p , v )
# define stfq_kernel ( p , vt ) stfq_raw ( p , v )
693
694
695
# endif /* defined(CONFIG_USER_ONLY) */
696
697
698
699
700
701
/* page related stuff */
# define TARGET_PAGE_SIZE ( 1 << TARGET_PAGE_BITS )
# define TARGET_PAGE_MASK ~ ( TARGET_PAGE_SIZE - 1 )
# define TARGET_PAGE_ALIGN ( addr ) ((( addr ) + TARGET_PAGE_SIZE - 1 ) & TARGET_PAGE_MASK )
702
/* ??? These should be the larger of unsigned long and target_ulong. */
703
704
705
706
extern unsigned long qemu_real_host_page_size ;
extern unsigned long qemu_host_page_bits ;
extern unsigned long qemu_host_page_size ;
extern unsigned long qemu_host_page_mask ;
707
708
# define HOST_PAGE_ALIGN ( addr ) ((( addr ) + qemu_host_page_size - 1 ) & qemu_host_page_mask )
709
710
711
712
713
714
715
716
717
/* same as PROT_xxx */
# define PAGE_READ 0x0001
# define PAGE_WRITE 0x0002
# define PAGE_EXEC 0x0004
# define PAGE_BITS ( PAGE_READ | PAGE_WRITE | PAGE_EXEC )
# define PAGE_VALID 0x0008
/* original state of the write flag ( used when tracking self - modifying
code */
ths
authored
18 years ago
718
# define PAGE_WRITE_ORG 0x0010
719
# define PAGE_RESERVED 0x0020
720
721
void page_dump ( FILE * f );
722
723
int page_get_flags ( target_ulong address );
void page_set_flags ( target_ulong start , target_ulong end , int flags );
ths
authored
17 years ago
724
int page_check_range ( target_ulong start , target_ulong len , int flags );
725
ths
authored
18 years ago
726
727
CPUState * cpu_copy ( CPUState * env );
ths
authored
18 years ago
728
void cpu_dump_state ( CPUState * env , FILE * f ,
729
730
int ( * cpu_fprintf )( FILE * f , const char * fmt , ...),
int flags );
731
732
733
void cpu_dump_statistics ( CPUState * env , FILE * f ,
int ( * cpu_fprintf )( FILE * f , const char * fmt , ...),
int flags );
734
735
void cpu_abort ( CPUState * env , const char * fmt , ...)
736
737
__attribute__ (( __format__ ( __printf__ , 2 , 3 )))
__attribute__ (( __noreturn__ ));
738
extern CPUState * first_cpu ;
739
extern CPUState * cpu_single_env ;
740
extern int code_copy_enabled ;
741
742
743
744
# define CPU_INTERRUPT_EXIT 0x01 /* wants exit from main loop */
# define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
# define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
745
# define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */
746
# define CPU_INTERRUPT_FIQ 0x10 /* Fast interrupt pending. */
747
# define CPU_INTERRUPT_HALT 0x20 /* CPU halt wanted */
748
# define CPU_INTERRUPT_SMI 0x40 /* (x86 only) SMI interrupt pending */
749
# define CPU_INTERRUPT_DEBUG 0x80 /* Debug event occured. */
ths
authored
18 years ago
750
# define CPU_INTERRUPT_VIRQ 0x100 /* virtual interrupt pending. */
751
752
void cpu_interrupt ( CPUState * s , int mask );
753
void cpu_reset_interrupt ( CPUState * env , int mask );
754
755
756
int cpu_watchpoint_insert ( CPUState * env , target_ulong addr );
int cpu_watchpoint_remove ( CPUState * env , target_ulong addr );
757
758
int cpu_breakpoint_insert ( CPUState * env , target_ulong pc );
int cpu_breakpoint_remove ( CPUState * env , target_ulong pc );
759
void cpu_single_step ( CPUState * env , int enabled );
760
void cpu_reset ( CPUState * s );
761
762
763
764
/* Return the physical page corresponding to a virtual one . Use it
only for debugging because no protection checks are done . Return - 1
if no page found . */
765
target_phys_addr_t cpu_get_phys_page_debug ( CPUState * env , target_ulong addr );
766
ths
authored
18 years ago
767
# define CPU_LOG_TB_OUT_ASM ( 1 << 0 )
768
# define CPU_LOG_TB_IN_ASM ( 1 << 1 )
769
770
771
772
773
# define CPU_LOG_TB_OP ( 1 << 2 )
# define CPU_LOG_TB_OP_OPT ( 1 << 3 )
# define CPU_LOG_INT ( 1 << 4 )
# define CPU_LOG_EXEC ( 1 << 5 )
# define CPU_LOG_PCALL ( 1 << 6 )
774
# define CPU_LOG_IOPORT ( 1 << 7 )
775
# define CPU_LOG_TB_CPU ( 1 << 8 )
776
777
778
779
780
781
782
783
784
785
/* define log items */
typedef struct CPULogItem {
int mask ;
const char * name ;
const char * help ;
} CPULogItem ;
extern CPULogItem cpu_log_items [];
786
787
void cpu_set_log ( int log_flags );
void cpu_set_log_filename ( const char * filename );
788
int cpu_str_to_log_mask ( const char * str );
789
790
791
792
793
794
795
796
797
798
799
800
801
802
/* IO ports API */
/* NOTE : as these functions may be even used when there is an isa
brige on non x86 targets , we always defined them */
# ifndef NO_CPU_IO_DEFS
void cpu_outb ( CPUState * env , int addr , int val );
void cpu_outw ( CPUState * env , int addr , int val );
void cpu_outl ( CPUState * env , int addr , int val );
int cpu_inb ( CPUState * env , int addr );
int cpu_inw ( CPUState * env , int addr );
int cpu_inl ( CPUState * env , int addr );
# endif
803
804
/* memory API */
805
806
807
extern int phys_ram_size ;
extern int phys_ram_fd ;
extern uint8_t * phys_ram_base ;
808
extern uint8_t * phys_ram_dirty ;
809
810
811
812
/* physical memory access */
# define TLB_INVALID_MASK ( 1 << 3 )
# define IO_MEM_SHIFT 4
813
# define IO_MEM_NB_ENTRIES ( 1 << ( TARGET_PAGE_BITS - IO_MEM_SHIFT ))
814
815
816
817
# define IO_MEM_RAM ( 0 << IO_MEM_SHIFT ) /* hardcoded offset */
# define IO_MEM_ROM ( 1 << IO_MEM_SHIFT ) /* hardcoded offset */
# define IO_MEM_UNASSIGNED ( 2 << IO_MEM_SHIFT )
818
# define IO_MEM_NOTDIRTY ( 4 << IO_MEM_SHIFT ) /* used internally, never use directly */
819
820
821
822
/* acts like a ROM when read and like a device when written . As an
exception , the write memory callback gets the ram offset instead of
the physical address */
# define IO_MEM_ROMD ( 1 )
823
# define IO_MEM_SUBPAGE ( 2 )
824
# define IO_MEM_SUBWIDTH ( 4 )
825
826
827
typedef void CPUWriteMemoryFunc ( void * opaque , target_phys_addr_t addr , uint32_t value );
typedef uint32_t CPUReadMemoryFunc ( void * opaque , target_phys_addr_t addr );
828
ths
authored
18 years ago
829
void cpu_register_physical_memory ( target_phys_addr_t start_addr ,
830
831
unsigned long size ,
unsigned long phys_offset );
832
uint32_t cpu_get_physical_page_desc ( target_phys_addr_t addr );
833
834
ram_addr_t qemu_ram_alloc ( unsigned int size );
void qemu_ram_free ( ram_addr_t addr );
835
836
int cpu_register_io_memory ( int io_index ,
CPUReadMemoryFunc ** mem_read ,
837
838
CPUWriteMemoryFunc ** mem_write ,
void * opaque );
839
840
CPUWriteMemoryFunc ** cpu_get_io_memory_write ( int io_index );
CPUReadMemoryFunc ** cpu_get_io_memory_read ( int io_index );
841
842
void cpu_physical_memory_rw ( target_phys_addr_t addr , uint8_t * buf ,
843
int len , int is_write );
ths
authored
18 years ago
844
static inline void cpu_physical_memory_read ( target_phys_addr_t addr ,
845
uint8_t * buf , int len )
846
847
848
{
cpu_physical_memory_rw ( addr , buf , len , 0 );
}
ths
authored
18 years ago
849
static inline void cpu_physical_memory_write ( target_phys_addr_t addr ,
850
const uint8_t * buf , int len )
851
852
853
{
cpu_physical_memory_rw ( addr , ( uint8_t * ) buf , len , 1 );
}
854
855
uint32_t ldub_phys ( target_phys_addr_t addr );
uint32_t lduw_phys ( target_phys_addr_t addr );
856
uint32_t ldl_phys ( target_phys_addr_t addr );
857
uint64_t ldq_phys ( target_phys_addr_t addr );
858
void stl_phys_notdirty ( target_phys_addr_t addr , uint32_t val );
859
void stq_phys_notdirty ( target_phys_addr_t addr , uint64_t val );
860
861
void stb_phys ( target_phys_addr_t addr , uint32_t val );
void stw_phys ( target_phys_addr_t addr , uint32_t val );
862
void stl_phys ( target_phys_addr_t addr , uint32_t val );
863
void stq_phys ( target_phys_addr_t addr , uint64_t val );
864
ths
authored
18 years ago
865
void cpu_physical_memory_write_rom ( target_phys_addr_t addr ,
866
const uint8_t * buf , int len );
ths
authored
18 years ago
867
int cpu_memory_rw_debug ( CPUState * env , target_ulong addr ,
868
uint8_t * buf , int len , int is_write );
869
870
871
# define VGA_DIRTY_FLAG 0x01
# define CODE_DIRTY_FLAG 0x02
872
873
/* read dirty bit (return 0 or 1) */
874
static inline int cpu_physical_memory_is_dirty ( ram_addr_t addr )
875
{
876
877
878
return phys_ram_dirty [ addr >> TARGET_PAGE_BITS ] == 0xff ;
}
ths
authored
18 years ago
879
static inline int cpu_physical_memory_get_dirty ( ram_addr_t addr ,
880
881
882
int dirty_flags )
{
return phys_ram_dirty [ addr >> TARGET_PAGE_BITS ] & dirty_flags ;
883
884
}
885
static inline void cpu_physical_memory_set_dirty ( ram_addr_t addr )
886
{
887
phys_ram_dirty [ addr >> TARGET_PAGE_BITS ] = 0xff ;
888
889
}
890
void cpu_physical_memory_reset_dirty ( ram_addr_t start , ram_addr_t end ,
891
int dirty_flags );
892
void cpu_tlb_update_dirty ( CPUState * env );
893
894
895
896
void dump_exec_info ( FILE * f ,
int ( * cpu_fprintf )( FILE * f , const char * fmt , ...));
897
898
899
900
901
/*******************************************/
/* host CPU ticks (if available) */
# if defined ( __powerpc__ )
ths
authored
18 years ago
902
static inline uint32_t get_tbl ( void )
903
904
905
906
907
908
{
uint32_t tbl ;
asm volatile ( "mftb %0" : "=r" ( tbl ));
return tbl ;
}
ths
authored
18 years ago
909
static inline uint32_t get_tbu ( void )
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
{
uint32_t tbl ;
asm volatile ( "mftbu %0" : "=r" ( tbl ));
return tbl ;
}
static inline int64_t cpu_get_real_ticks ( void )
{
uint32_t l , h , h1 ;
/* NOTE: we test if wrapping has occurred */
do {
h = get_tbu ();
l = get_tbl ();
h1 = get_tbu ();
} while ( h != h1 );
return (( int64_t ) h << 32 ) | l ;
}
# elif defined ( __i386__ )
static inline int64_t cpu_get_real_ticks ( void )
931
932
933
934
935
936
{
int64_t val ;
asm volatile ( "rdtsc" : "=A" ( val ));
return val ;
}
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
# elif defined ( __x86_64__ )
static inline int64_t cpu_get_real_ticks ( void )
{
uint32_t low , high ;
int64_t val ;
asm volatile ( "rdtsc" : "=a" ( low ), "=d" ( high ));
val = high ;
val <<= 32 ;
val |= low ;
return val ;
}
# elif defined ( __ia64 )
static inline int64_t cpu_get_real_ticks ( void )
{
int64_t val ;
asm volatile ( "mov %0 = ar.itc" : "=r" ( val ) :: "memory" );
return val ;
}
# elif defined ( __s390__ )
static inline int64_t cpu_get_real_ticks ( void )
{
int64_t val ;
asm volatile ( "stck 0(%1)" : "=m" ( val ) : "a" ( & val ) : "cc" );
return val ;
}
968
# elif defined ( __sparc_v8plus__ ) || defined ( __sparc_v8plusa__ ) || defined ( __sparc_v9__ )
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
static inline int64_t cpu_get_real_ticks ( void )
{
# if defined ( _LP64 )
uint64_t rval ;
asm volatile ( "rd %%tick,%0" : "=r" ( rval ));
return rval ;
# else
union {
uint64_t i64 ;
struct {
uint32_t high ;
uint32_t low ;
} i32 ;
} rval ;
asm volatile ( "rd %%tick,%1; srlx %1,32,%0"
: "=r" ( rval . i32 . high ), "=r" ( rval . i32 . low ));
return rval . i64 ;
# endif
}
ths
authored
18 years ago
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
# elif defined ( __mips__ )
static inline int64_t cpu_get_real_ticks ( void )
{
# if __mips_isa_rev >= 2
uint32_t count ;
static uint32_t cyc_per_count = 0 ;
if ( ! cyc_per_count )
__asm__ __volatile__ ( "rdhwr %0, $3" : "=r" ( cyc_per_count ));
__asm__ __volatile__ ( "rdhwr %1, $2" : "=r" ( count ));
return ( int64_t )( count * cyc_per_count );
# else
/* FIXME */
static int64_t ticks = 0 ;
return ticks ++ ;
# endif
}
1010
1011
# else
/* The host CPU doesn ' t have an easily accessible cycle counter .
ths
authored
18 years ago
1012
1013
Just return a monotonically increasing value . This will be
totally wrong , but hopefully better than nothing . */
1014
1015
1016
1017
1018
static inline int64_t cpu_get_real_ticks ( void )
{
static int64_t ticks = 0 ;
return ticks ++ ;
}
1019
1020
1021
1022
1023
1024
1025
1026
1027
# endif
/* profiling */
# ifdef CONFIG_PROFILER
static inline int64_t profile_getclock ( void )
{
return cpu_get_real_ticks ();
}
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
extern int64_t kqemu_time , kqemu_time_start ;
extern int64_t qemu_time , qemu_time_start ;
extern int64_t tlb_flush_time ;
extern int64_t kqemu_exec_count ;
extern int64_t dev_time ;
extern int64_t kqemu_ret_int_count ;
extern int64_t kqemu_ret_excp_count ;
extern int64_t kqemu_ret_intr_count ;
# endif
1039
# endif /* CPU_ALL_H */