Blame view

cpu-all.h 24.9 KB
bellard authored
1
2
/*
 * defines common to all virtual CPUs
3
 *
bellard authored
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
#ifndef CPU_ALL_H
#define CPU_ALL_H
23
#if defined(__arm__) || defined(__sparc__) || defined(__mips__)
bellard authored
24
25
26
#define WORDS_ALIGNED
#endif
27
28
/* some important defines:
 *
bellard authored
29
30
 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
 * memory accesses.
31
 *
bellard authored
32
33
 * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
 * otherwise little endian.
34
 *
bellard authored
35
 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
36
 *
bellard authored
37
38
39
 * TARGET_WORDS_BIGENDIAN : same for target cpu
 */
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
#include "bswap.h"

#if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
#define BSWAP_NEEDED
#endif

#ifdef BSWAP_NEEDED

static inline uint16_t tswap16(uint16_t s)
{
    return bswap16(s);
}

static inline uint32_t tswap32(uint32_t s)
{
    return bswap32(s);
}

static inline uint64_t tswap64(uint64_t s)
{
    return bswap64(s);
}

static inline void tswap16s(uint16_t *s)
{
    *s = bswap16(*s);
}

static inline void tswap32s(uint32_t *s)
{
    *s = bswap32(*s);
}

static inline void tswap64s(uint64_t *s)
{
    *s = bswap64(*s);
}

#else

static inline uint16_t tswap16(uint16_t s)
{
    return s;
}

static inline uint32_t tswap32(uint32_t s)
{
    return s;
}

static inline uint64_t tswap64(uint64_t s)
{
    return s;
}

static inline void tswap16s(uint16_t *s)
{
}

static inline void tswap32s(uint32_t *s)
{
}

static inline void tswap64s(uint64_t *s)
{
}

#endif

#if TARGET_LONG_SIZE == 4
#define tswapl(s) tswap32(s)
#define tswapls(s) tswap32s((uint32_t *)(s))
bellard authored
112
#define bswaptls(s) bswap32s(s)
113
114
115
#else
#define tswapl(s) tswap64(s)
#define tswapls(s) tswap64s((uint64_t *)(s))
bellard authored
116
#define bswaptls(s) bswap64s(s)
117
118
#endif
bellard authored
119
120
/* NOTE: arm FPA is horrible as double 32 bit words are stored in big
   endian ! */
bellard authored
121
typedef union {
bellard authored
122
    float64 d;
123
124
#if defined(WORDS_BIGENDIAN) \
    || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
bellard authored
125
126
    struct {
        uint32_t upper;
bellard authored
127
        uint32_t lower;
bellard authored
128
129
130
131
    } l;
#else
    struct {
        uint32_t lower;
bellard authored
132
        uint32_t upper;
bellard authored
133
134
135
136
137
    } l;
#endif
    uint64_t ll;
} CPU_DoubleU;
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
#ifdef TARGET_SPARC
typedef union {
    float128 q;
#if defined(WORDS_BIGENDIAN) \
    || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
    struct {
        uint32_t upmost;
        uint32_t upper;
        uint32_t lower;
        uint32_t lowest;
    } l;
    struct {
        uint64_t upper;
        uint64_t lower;
    } ll;
#else
    struct {
        uint32_t lowest;
        uint32_t lower;
        uint32_t upper;
        uint32_t upmost;
    } l;
    struct {
        uint64_t lower;
        uint64_t upper;
    } ll;
#endif
} CPU_QuadU;
#endif
bellard authored
168
169
/* CPU memory access without any memory or io remapping */
170
171
172
173
174
175
176
177
178
179
/*
 * the generic syntax for the memory accesses is:
 *
 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
 *
 * store: st{type}{size}{endian}_{access_type}(ptr, val)
 *
 * type is:
 * (empty): integer access
 *   f    : float access
180
 *
181
182
183
184
185
186
187
188
189
190
 * sign is:
 * (empty): for floats or 32 bit size
 *   u    : unsigned
 *   s    : signed
 *
 * size is:
 *   b: 8 bits
 *   w: 16 bits
 *   l: 32 bits
 *   q: 64 bits
191
 *
192
193
194
195
196
197
198
199
200
201
202
 * endian is:
 * (empty): target cpu endianness or 8 bit access
 *   r    : reversed target cpu endianness (not implemented yet)
 *   be   : big endian (not implemented yet)
 *   le   : little endian (not implemented yet)
 *
 * access_type is:
 *   raw    : host memory access
 *   user   : user mode access using soft MMU
 *   kernel : kernel mode access using soft MMU
 */
bellard authored
203
static inline int ldub_p(void *ptr)
bellard authored
204
205
206
207
{
    return *(uint8_t *)ptr;
}
bellard authored
208
static inline int ldsb_p(void *ptr)
bellard authored
209
210
211
212
{
    return *(int8_t *)ptr;
}
bellard authored
213
static inline void stb_p(void *ptr, int v)
bellard authored
214
215
216
217
218
219
220
{
    *(uint8_t *)ptr = v;
}

/* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
   kernel handles unaligned load/stores may give better results, but
   it is a system wide setting : bad */
221
#if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
bellard authored
222
223

/* conservative code for little endian unaligned accesses */
224
static inline int lduw_le_p(void *ptr)
bellard authored
225
226
227
228
229
230
231
232
233
234
235
{
#ifdef __powerpc__
    int val;
    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
    return val;
#else
    uint8_t *p = ptr;
    return p[0] | (p[1] << 8);
#endif
}
236
static inline int ldsw_le_p(void *ptr)
bellard authored
237
238
239
240
241
242
243
244
245
246
247
{
#ifdef __powerpc__
    int val;
    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
    return (int16_t)val;
#else
    uint8_t *p = ptr;
    return (int16_t)(p[0] | (p[1] << 8));
#endif
}
248
static inline int ldl_le_p(void *ptr)
bellard authored
249
250
251
252
253
254
255
256
257
258
259
{
#ifdef __powerpc__
    int val;
    __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
    return val;
#else
    uint8_t *p = ptr;
    return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
#endif
}
260
static inline uint64_t ldq_le_p(void *ptr)
bellard authored
261
262
263
{
    uint8_t *p = ptr;
    uint32_t v1, v2;
264
265
    v1 = ldl_le_p(p);
    v2 = ldl_le_p(p + 4);
bellard authored
266
267
268
    return v1 | ((uint64_t)v2 << 32);
}
269
static inline void stw_le_p(void *ptr, int v)
bellard authored
270
271
272
273
274
275
276
277
278
279
{
#ifdef __powerpc__
    __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
#else
    uint8_t *p = ptr;
    p[0] = v;
    p[1] = v >> 8;
#endif
}
280
static inline void stl_le_p(void *ptr, int v)
bellard authored
281
282
283
284
285
286
287
288
289
290
291
292
{
#ifdef __powerpc__
    __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
#else
    uint8_t *p = ptr;
    p[0] = v;
    p[1] = v >> 8;
    p[2] = v >> 16;
    p[3] = v >> 24;
#endif
}
293
static inline void stq_le_p(void *ptr, uint64_t v)
bellard authored
294
295
{
    uint8_t *p = ptr;
296
297
    stl_le_p(p, (uint32_t)v);
    stl_le_p(p + 4, v >> 32);
bellard authored
298
299
300
301
}

/* float access */
302
static inline float32 ldfl_le_p(void *ptr)
bellard authored
303
304
{
    union {
bellard authored
305
        float32 f;
bellard authored
306
307
        uint32_t i;
    } u;
308
    u.i = ldl_le_p(ptr);
bellard authored
309
310
311
    return u.f;
}
312
static inline void stfl_le_p(void *ptr, float32 v)
bellard authored
313
314
{
    union {
bellard authored
315
        float32 f;
bellard authored
316
317
318
        uint32_t i;
    } u;
    u.f = v;
319
    stl_le_p(ptr, u.i);
bellard authored
320
321
}
322
static inline float64 ldfq_le_p(void *ptr)
bellard authored
323
{
bellard authored
324
    CPU_DoubleU u;
325
326
    u.l.lower = ldl_le_p(ptr);
    u.l.upper = ldl_le_p(ptr + 4);
bellard authored
327
328
329
    return u.d;
}
330
static inline void stfq_le_p(void *ptr, float64 v)
bellard authored
331
{
bellard authored
332
    CPU_DoubleU u;
bellard authored
333
    u.d = v;
334
335
    stl_le_p(ptr, u.l.lower);
    stl_le_p(ptr + 4, u.l.upper);
bellard authored
336
337
}
338
339
340
341
342
343
344
345
346
347
348
#else

static inline int lduw_le_p(void *ptr)
{
    return *(uint16_t *)ptr;
}

static inline int ldsw_le_p(void *ptr)
{
    return *(int16_t *)ptr;
}
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
static inline int ldl_le_p(void *ptr)
{
    return *(uint32_t *)ptr;
}

static inline uint64_t ldq_le_p(void *ptr)
{
    return *(uint64_t *)ptr;
}

static inline void stw_le_p(void *ptr, int v)
{
    *(uint16_t *)ptr = v;
}

static inline void stl_le_p(void *ptr, int v)
{
    *(uint32_t *)ptr = v;
}

static inline void stq_le_p(void *ptr, uint64_t v)
{
    *(uint64_t *)ptr = v;
}

/* float access */

static inline float32 ldfl_le_p(void *ptr)
{
    return *(float32 *)ptr;
}

static inline float64 ldfq_le_p(void *ptr)
{
    return *(float64 *)ptr;
}

static inline void stfl_le_p(void *ptr, float32 v)
{
    *(float32 *)ptr = v;
}

static inline void stfq_le_p(void *ptr, float64 v)
{
    *(float64 *)ptr = v;
}
#endif

#if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)

static inline int lduw_be_p(void *ptr)
401
{
402
403
404
405
406
407
408
409
#if defined(__i386__)
    int val;
    asm volatile ("movzwl %1, %0\n"
                  "xchgb %b0, %h0\n"
                  : "=q" (val)
                  : "m" (*(uint16_t *)ptr));
    return val;
#else
410
    uint8_t *b = (uint8_t *) ptr;
411
412
    return ((b[0] << 8) | b[1]);
#endif
413
414
}
415
static inline int ldsw_be_p(void *ptr)
416
{
417
418
419
420
421
422
423
424
425
426
427
#if defined(__i386__)
    int val;
    asm volatile ("movzwl %1, %0\n"
                  "xchgb %b0, %h0\n"
                  : "=q" (val)
                  : "m" (*(uint16_t *)ptr));
    return (int16_t)val;
#else
    uint8_t *b = (uint8_t *) ptr;
    return (int16_t)((b[0] << 8) | b[1]);
#endif
428
429
}
430
static inline int ldl_be_p(void *ptr)
431
{
bellard authored
432
#if defined(__i386__) || defined(__x86_64__)
433
434
435
436
437
438
439
    int val;
    asm volatile ("movl %1, %0\n"
                  "bswap %0\n"
                  : "=r" (val)
                  : "m" (*(uint32_t *)ptr));
    return val;
#else
440
    uint8_t *b = (uint8_t *) ptr;
441
442
    return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
#endif
443
444
}
445
static inline uint64_t ldq_be_p(void *ptr)
446
447
{
    uint32_t a,b;
448
449
    a = ldl_be_p(ptr);
    b = ldl_be_p(ptr+4);
450
451
452
    return (((uint64_t)a<<32)|b);
}
453
static inline void stw_be_p(void *ptr, int v)
454
{
455
456
457
458
459
460
#if defined(__i386__)
    asm volatile ("xchgb %b0, %h0\n"
                  "movw %w0, %1\n"
                  : "=q" (v)
                  : "m" (*(uint16_t *)ptr), "0" (v));
#else
461
462
463
    uint8_t *d = (uint8_t *) ptr;
    d[0] = v >> 8;
    d[1] = v;
464
#endif
465
466
}
467
static inline void stl_be_p(void *ptr, int v)
468
{
bellard authored
469
#if defined(__i386__) || defined(__x86_64__)
470
471
472
473
474
    asm volatile ("bswap %0\n"
                  "movl %0, %1\n"
                  : "=r" (v)
                  : "m" (*(uint32_t *)ptr), "0" (v));
#else
475
476
477
478
479
    uint8_t *d = (uint8_t *) ptr;
    d[0] = v >> 24;
    d[1] = v >> 16;
    d[2] = v >> 8;
    d[3] = v;
480
#endif
481
482
}
483
static inline void stq_be_p(void *ptr, uint64_t v)
484
{
485
486
    stl_be_p(ptr, v >> 32);
    stl_be_p(ptr + 4, v);
bellard authored
487
488
489
490
}

/* float access */
491
static inline float32 ldfl_be_p(void *ptr)
bellard authored
492
493
{
    union {
bellard authored
494
        float32 f;
bellard authored
495
496
        uint32_t i;
    } u;
497
    u.i = ldl_be_p(ptr);
bellard authored
498
499
500
    return u.f;
}
501
static inline void stfl_be_p(void *ptr, float32 v)
bellard authored
502
503
{
    union {
bellard authored
504
        float32 f;
bellard authored
505
506
507
        uint32_t i;
    } u;
    u.f = v;
508
    stl_be_p(ptr, u.i);
bellard authored
509
510
}
511
static inline float64 ldfq_be_p(void *ptr)
bellard authored
512
513
{
    CPU_DoubleU u;
514
515
    u.l.upper = ldl_be_p(ptr);
    u.l.lower = ldl_be_p(ptr + 4);
bellard authored
516
517
518
    return u.d;
}
519
static inline void stfq_be_p(void *ptr, float64 v)
bellard authored
520
521
522
{
    CPU_DoubleU u;
    u.d = v;
523
524
    stl_be_p(ptr, u.l.upper);
    stl_be_p(ptr + 4, u.l.lower);
525
526
}
bellard authored
527
528
#else
529
static inline int lduw_be_p(void *ptr)
bellard authored
530
531
532
533
{
    return *(uint16_t *)ptr;
}
534
static inline int ldsw_be_p(void *ptr)
bellard authored
535
536
537
538
{
    return *(int16_t *)ptr;
}
539
static inline int ldl_be_p(void *ptr)
bellard authored
540
541
542
543
{
    return *(uint32_t *)ptr;
}
544
static inline uint64_t ldq_be_p(void *ptr)
bellard authored
545
546
547
548
{
    return *(uint64_t *)ptr;
}
549
static inline void stw_be_p(void *ptr, int v)
bellard authored
550
551
552
553
{
    *(uint16_t *)ptr = v;
}
554
static inline void stl_be_p(void *ptr, int v)
bellard authored
555
556
557
558
{
    *(uint32_t *)ptr = v;
}
559
static inline void stq_be_p(void *ptr, uint64_t v)
bellard authored
560
561
562
563
564
565
{
    *(uint64_t *)ptr = v;
}

/* float access */
566
static inline float32 ldfl_be_p(void *ptr)
bellard authored
567
{
bellard authored
568
    return *(float32 *)ptr;
bellard authored
569
570
}
571
static inline float64 ldfq_be_p(void *ptr)
bellard authored
572
{
bellard authored
573
    return *(float64 *)ptr;
bellard authored
574
575
}
576
static inline void stfl_be_p(void *ptr, float32 v)
bellard authored
577
{
bellard authored
578
    *(float32 *)ptr = v;
bellard authored
579
580
}
581
static inline void stfq_be_p(void *ptr, float64 v)
bellard authored
582
{
bellard authored
583
    *(float64 *)ptr = v;
bellard authored
584
}
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612

#endif

/* target CPU memory access functions */
#if defined(TARGET_WORDS_BIGENDIAN)
#define lduw_p(p) lduw_be_p(p)
#define ldsw_p(p) ldsw_be_p(p)
#define ldl_p(p) ldl_be_p(p)
#define ldq_p(p) ldq_be_p(p)
#define ldfl_p(p) ldfl_be_p(p)
#define ldfq_p(p) ldfq_be_p(p)
#define stw_p(p, v) stw_be_p(p, v)
#define stl_p(p, v) stl_be_p(p, v)
#define stq_p(p, v) stq_be_p(p, v)
#define stfl_p(p, v) stfl_be_p(p, v)
#define stfq_p(p, v) stfq_be_p(p, v)
#else
#define lduw_p(p) lduw_le_p(p)
#define ldsw_p(p) ldsw_le_p(p)
#define ldl_p(p) ldl_le_p(p)
#define ldq_p(p) ldq_le_p(p)
#define ldfl_p(p) ldfl_le_p(p)
#define ldfq_p(p) ldfq_le_p(p)
#define stw_p(p, v) stw_le_p(p, v)
#define stl_p(p, v) stl_le_p(p, v)
#define stq_p(p, v) stq_le_p(p, v)
#define stfl_p(p, v) stfl_le_p(p, v)
#define stfq_p(p, v) stfq_le_p(p, v)
bellard authored
613
614
#endif
bellard authored
615
616
/* MMU memory access macros */
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
#if defined(CONFIG_USER_ONLY)
/* On some host systems the guest address space is reserved on the host.
 * This allows the guest address space to be offset to a convenient location.
 */
//#define GUEST_BASE 0x20000000
#define GUEST_BASE 0

/* All direct uses of g2h and h2g need to go away for usermode softmmu.  */
#define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
#define h2g(x) ((target_ulong)(x - GUEST_BASE))

#define saddr(x) g2h(x)
#define laddr(x) g2h(x)

#else /* !CONFIG_USER_ONLY */
bellard authored
632
633
/* NOTE: we use double casts if pointers and target_ulong have
   different sizes */
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
#define saddr(x) (uint8_t *)(long)(x)
#define laddr(x) (uint8_t *)(long)(x)
#endif

#define ldub_raw(p) ldub_p(laddr((p)))
#define ldsb_raw(p) ldsb_p(laddr((p)))
#define lduw_raw(p) lduw_p(laddr((p)))
#define ldsw_raw(p) ldsw_p(laddr((p)))
#define ldl_raw(p) ldl_p(laddr((p)))
#define ldq_raw(p) ldq_p(laddr((p)))
#define ldfl_raw(p) ldfl_p(laddr((p)))
#define ldfq_raw(p) ldfq_p(laddr((p)))
#define stb_raw(p, v) stb_p(saddr((p)), v)
#define stw_raw(p, v) stw_p(saddr((p)), v)
#define stl_raw(p, v) stl_p(saddr((p)), v)
#define stq_raw(p, v) stq_p(saddr((p)), v)
#define stfl_raw(p, v) stfl_p(saddr((p)), v)
#define stfq_raw(p, v) stfq_p(saddr((p)), v)
bellard authored
652
653
654
#if defined(CONFIG_USER_ONLY)
bellard authored
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676

/* if user mode, no other memory access functions */
#define ldub(p) ldub_raw(p)
#define ldsb(p) ldsb_raw(p)
#define lduw(p) lduw_raw(p)
#define ldsw(p) ldsw_raw(p)
#define ldl(p) ldl_raw(p)
#define ldq(p) ldq_raw(p)
#define ldfl(p) ldfl_raw(p)
#define ldfq(p) ldfq_raw(p)
#define stb(p, v) stb_raw(p, v)
#define stw(p, v) stw_raw(p, v)
#define stl(p, v) stl_raw(p, v)
#define stq(p, v) stq_raw(p, v)
#define stfl(p, v) stfl_raw(p, v)
#define stfq(p, v) stfq_raw(p, v)

#define ldub_code(p) ldub_raw(p)
#define ldsb_code(p) ldsb_raw(p)
#define lduw_code(p) lduw_raw(p)
#define ldsw_code(p) ldsw_raw(p)
#define ldl_code(p) ldl_raw(p)
677
#define ldq_code(p) ldq_raw(p)
bellard authored
678
679
680
681
682
683

#define ldub_kernel(p) ldub_raw(p)
#define ldsb_kernel(p) ldsb_raw(p)
#define lduw_kernel(p) lduw_raw(p)
#define ldsw_kernel(p) ldsw_raw(p)
#define ldl_kernel(p) ldl_raw(p)
684
#define ldq_kernel(p) ldq_raw(p)
bellard authored
685
686
#define ldfl_kernel(p) ldfl_raw(p)
#define ldfq_kernel(p) ldfq_raw(p)
bellard authored
687
688
689
690
#define stb_kernel(p, v) stb_raw(p, v)
#define stw_kernel(p, v) stw_raw(p, v)
#define stl_kernel(p, v) stl_raw(p, v)
#define stq_kernel(p, v) stq_raw(p, v)
bellard authored
691
692
#define stfl_kernel(p, v) stfl_raw(p, v)
#define stfq_kernel(p, vt) stfq_raw(p, v)
bellard authored
693
694
695

#endif /* defined(CONFIG_USER_ONLY) */
bellard authored
696
697
698
699
700
701
/* page related stuff */

#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
702
/* ??? These should be the larger of unsigned long and target_ulong.  */
703
704
705
706
extern unsigned long qemu_real_host_page_size;
extern unsigned long qemu_host_page_bits;
extern unsigned long qemu_host_page_size;
extern unsigned long qemu_host_page_mask;
bellard authored
707
708
#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
bellard authored
709
710
711
712
713
714
715
716
717

/* same as PROT_xxx */
#define PAGE_READ      0x0001
#define PAGE_WRITE     0x0002
#define PAGE_EXEC      0x0004
#define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
#define PAGE_VALID     0x0008
/* original state of the write flag (used when tracking self-modifying
   code */
718
#define PAGE_WRITE_ORG 0x0010
bellard authored
719
720

void page_dump(FILE *f);
721
722
int page_get_flags(target_ulong address);
void page_set_flags(target_ulong start, target_ulong end, int flags);
723
int page_check_range(target_ulong start, target_ulong len, int flags);
bellard authored
724
725
726
CPUState *cpu_copy(CPUState *env);
727
void cpu_dump_state(CPUState *env, FILE *f,
bellard authored
728
729
                    int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
                    int flags);
730
731
732
void cpu_dump_statistics (CPUState *env, FILE *f,
                          int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
                          int flags);
bellard authored
733
734
void cpu_abort(CPUState *env, const char *fmt, ...)
735
736
    __attribute__ ((__format__ (__printf__, 2, 3)))
    __attribute__ ((__noreturn__));
737
extern CPUState *first_cpu;
bellard authored
738
extern CPUState *cpu_single_env;
739
extern int code_copy_enabled;
bellard authored
740
741
742
743
#define CPU_INTERRUPT_EXIT   0x01 /* wants exit from main loop */
#define CPU_INTERRUPT_HARD   0x02 /* hardware interrupt pending */
#define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
bellard authored
744
#define CPU_INTERRUPT_TIMER  0x08 /* internal timer exception pending */
745
#define CPU_INTERRUPT_FIQ    0x10 /* Fast interrupt pending.  */
746
#define CPU_INTERRUPT_HALT   0x20 /* CPU halt wanted */
bellard authored
747
#define CPU_INTERRUPT_SMI    0x40 /* (x86 only) SMI interrupt pending */
748
#define CPU_INTERRUPT_DEBUG  0x80 /* Debug event occured.  */
ths authored
749
#define CPU_INTERRUPT_VIRQ   0x100 /* virtual interrupt pending.  */
750
bellard authored
751
void cpu_interrupt(CPUState *s, int mask);
752
void cpu_reset_interrupt(CPUState *env, int mask);
bellard authored
753
754
755
int cpu_watchpoint_insert(CPUState *env, target_ulong addr);
int cpu_watchpoint_remove(CPUState *env, target_ulong addr);
756
757
int cpu_breakpoint_insert(CPUState *env, target_ulong pc);
int cpu_breakpoint_remove(CPUState *env, target_ulong pc);
758
void cpu_single_step(CPUState *env, int enabled);
bellard authored
759
void cpu_reset(CPUState *s);
bellard authored
760
761
762
763
/* Return the physical page corresponding to a virtual one. Use it
   only for debugging because no protection checks are done. Return -1
   if no page found. */
764
target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
765
766
#define CPU_LOG_TB_OUT_ASM (1 << 0)
767
#define CPU_LOG_TB_IN_ASM  (1 << 1)
768
769
770
771
772
#define CPU_LOG_TB_OP      (1 << 2)
#define CPU_LOG_TB_OP_OPT  (1 << 3)
#define CPU_LOG_INT        (1 << 4)
#define CPU_LOG_EXEC       (1 << 5)
#define CPU_LOG_PCALL      (1 << 6)
773
#define CPU_LOG_IOPORT     (1 << 7)
774
#define CPU_LOG_TB_CPU     (1 << 8)
775
776
777
778
779
780
781
782
783
784

/* define log items */
typedef struct CPULogItem {
    int mask;
    const char *name;
    const char *help;
} CPULogItem;

extern CPULogItem cpu_log_items[];
785
786
void cpu_set_log(int log_flags);
void cpu_set_log_filename(const char *filename);
787
int cpu_str_to_log_mask(const char *str);
788
789
790
791
792
793
794
795
796
797
798
799
800
801
/* IO ports API */

/* NOTE: as these functions may be even used when there is an isa
   brige on non x86 targets, we always defined them */
#ifndef NO_CPU_IO_DEFS
void cpu_outb(CPUState *env, int addr, int val);
void cpu_outw(CPUState *env, int addr, int val);
void cpu_outl(CPUState *env, int addr, int val);
int cpu_inb(CPUState *env, int addr);
int cpu_inw(CPUState *env, int addr);
int cpu_inl(CPUState *env, int addr);
#endif
802
803
/* memory API */
bellard authored
804
805
806
extern int phys_ram_size;
extern int phys_ram_fd;
extern uint8_t *phys_ram_base;
807
extern uint8_t *phys_ram_dirty;
bellard authored
808
809
810
811

/* physical memory access */
#define TLB_INVALID_MASK   (1 << 3)
#define IO_MEM_SHIFT       4
812
#define IO_MEM_NB_ENTRIES  (1 << (TARGET_PAGE_BITS  - IO_MEM_SHIFT))
bellard authored
813
814
815
816

#define IO_MEM_RAM         (0 << IO_MEM_SHIFT) /* hardcoded offset */
#define IO_MEM_ROM         (1 << IO_MEM_SHIFT) /* hardcoded offset */
#define IO_MEM_UNASSIGNED  (2 << IO_MEM_SHIFT)
817
#define IO_MEM_NOTDIRTY    (4 << IO_MEM_SHIFT) /* used internally, never use directly */
818
819
820
821
/* acts like a ROM when read and like a device when written. As an
   exception, the write memory callback gets the ram offset instead of
   the physical address */
#define IO_MEM_ROMD        (1)
822
#define IO_MEM_SUBPAGE     (2)
bellard authored
823
824
825
typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value);
typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr);
826
827
void cpu_register_physical_memory(target_phys_addr_t start_addr,
828
829
                                  unsigned long size,
                                  unsigned long phys_offset);
bellard authored
830
uint32_t cpu_get_physical_page_desc(target_phys_addr_t addr);
bellard authored
831
832
ram_addr_t qemu_ram_alloc(unsigned int size);
void qemu_ram_free(ram_addr_t addr);
833
834
int cpu_register_io_memory(int io_index,
                           CPUReadMemoryFunc **mem_read,
835
836
                           CPUWriteMemoryFunc **mem_write,
                           void *opaque);
837
838
CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index);
CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index);
839
840
void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
841
                            int len, int is_write);
842
static inline void cpu_physical_memory_read(target_phys_addr_t addr,
843
                                            uint8_t *buf, int len)
844
845
846
{
    cpu_physical_memory_rw(addr, buf, len, 0);
}
847
static inline void cpu_physical_memory_write(target_phys_addr_t addr,
848
                                             const uint8_t *buf, int len)
849
850
851
{
    cpu_physical_memory_rw(addr, (uint8_t *)buf, len, 1);
}
852
853
uint32_t ldub_phys(target_phys_addr_t addr);
uint32_t lduw_phys(target_phys_addr_t addr);
854
uint32_t ldl_phys(target_phys_addr_t addr);
855
uint64_t ldq_phys(target_phys_addr_t addr);
856
void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val);
857
void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val);
858
859
void stb_phys(target_phys_addr_t addr, uint32_t val);
void stw_phys(target_phys_addr_t addr, uint32_t val);
860
void stl_phys(target_phys_addr_t addr, uint32_t val);
861
void stq_phys(target_phys_addr_t addr, uint64_t val);
862
863
void cpu_physical_memory_write_rom(target_phys_addr_t addr,
864
                                   const uint8_t *buf, int len);
865
int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
866
                        uint8_t *buf, int len, int is_write);
867
bellard authored
868
869
#define VGA_DIRTY_FLAG  0x01
#define CODE_DIRTY_FLAG 0x02
bellard authored
870
871
/* read dirty bit (return 0 or 1) */
bellard authored
872
static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
873
{
bellard authored
874
875
876
    return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
}
877
static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
bellard authored
878
879
880
                                                int dirty_flags)
{
    return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
881
882
}
bellard authored
883
static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
884
{
bellard authored
885
    phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
886
887
}
bellard authored
888
void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
bellard authored
889
                                     int dirty_flags);
bellard authored
890
void cpu_tlb_update_dirty(CPUState *env);
891
bellard authored
892
893
894
void dump_exec_info(FILE *f,
                    int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
bellard authored
895
896
897
898
899
/*******************************************/
/* host CPU ticks (if available) */

#if defined(__powerpc__)
900
static inline uint32_t get_tbl(void)
bellard authored
901
902
903
904
905
906
{
    uint32_t tbl;
    asm volatile("mftb %0" : "=r" (tbl));
    return tbl;
}
907
static inline uint32_t get_tbu(void)
bellard authored
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
{
	uint32_t tbl;
	asm volatile("mftbu %0" : "=r" (tbl));
	return tbl;
}

static inline int64_t cpu_get_real_ticks(void)
{
    uint32_t l, h, h1;
    /* NOTE: we test if wrapping has occurred */
    do {
        h = get_tbu();
        l = get_tbl();
        h1 = get_tbu();
    } while (h != h1);
    return ((int64_t)h << 32) | l;
}

#elif defined(__i386__)

static inline int64_t cpu_get_real_ticks(void)
bellard authored
929
930
931
932
933
934
{
    int64_t val;
    asm volatile ("rdtsc" : "=A" (val));
    return val;
}
bellard authored
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
#elif defined(__x86_64__)

static inline int64_t cpu_get_real_ticks(void)
{
    uint32_t low,high;
    int64_t val;
    asm volatile("rdtsc" : "=a" (low), "=d" (high));
    val = high;
    val <<= 32;
    val |= low;
    return val;
}

#elif defined(__ia64)

static inline int64_t cpu_get_real_ticks(void)
{
	int64_t val;
	asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
	return val;
}

#elif defined(__s390__)

static inline int64_t cpu_get_real_ticks(void)
{
    int64_t val;
    asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
    return val;
}
966
#elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
bellard authored
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986

static inline int64_t cpu_get_real_ticks (void)
{
#if     defined(_LP64)
        uint64_t        rval;
        asm volatile("rd %%tick,%0" : "=r"(rval));
        return rval;
#else
        union {
                uint64_t i64;
                struct {
                        uint32_t high;
                        uint32_t low;
                }       i32;
        } rval;
        asm volatile("rd %%tick,%1; srlx %1,32,%0"
                : "=r"(rval.i32.high), "=r"(rval.i32.low));
        return rval.i64;
#endif
}
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007

#elif defined(__mips__)

static inline int64_t cpu_get_real_ticks(void)
{
#if __mips_isa_rev >= 2
    uint32_t count;
    static uint32_t cyc_per_count = 0;

    if (!cyc_per_count)
        __asm__ __volatile__("rdhwr %0, $3" : "=r" (cyc_per_count));

    __asm__ __volatile__("rdhwr %1, $2" : "=r" (count));
    return (int64_t)(count * cyc_per_count);
#else
    /* FIXME */
    static int64_t ticks = 0;
    return ticks++;
#endif
}
pbrook authored
1008
1009
#else
/* The host CPU doesn't have an easily accessible cycle counter.
ths authored
1010
1011
   Just return a monotonically increasing value.  This will be
   totally wrong, but hopefully better than nothing.  */
pbrook authored
1012
1013
1014
1015
1016
static inline int64_t cpu_get_real_ticks (void)
{
    static int64_t ticks = 0;
    return ticks++;
}
bellard authored
1017
1018
1019
1020
1021
1022
1023
1024
1025
#endif

/* profiling */
#ifdef CONFIG_PROFILER
static inline int64_t profile_getclock(void)
{
    return cpu_get_real_ticks();
}
bellard authored
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
extern int64_t kqemu_time, kqemu_time_start;
extern int64_t qemu_time, qemu_time_start;
extern int64_t tlb_flush_time;
extern int64_t kqemu_exec_count;
extern int64_t dev_time;
extern int64_t kqemu_ret_int_count;
extern int64_t kqemu_ret_excp_count;
extern int64_t kqemu_ret_intr_count;

#endif
bellard authored
1037
#endif /* CPU_ALL_H */