Blame view

cpu-all.h 28.5 KB
bellard authored
1
2
/*
 * defines common to all virtual CPUs
3
 *
bellard authored
4
5
6
7
8
9
10
11
12
13
14
15
16
17
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA  02110-1301 USA
bellard authored
19
20
21
22
 */
#ifndef CPU_ALL_H
#define CPU_ALL_H
23
24
#include "qemu-common.h"
aurel32 authored
25
#if defined(__arm__) || defined(__sparc__) || defined(__mips__) || defined(__hppa__)
bellard authored
26
27
28
#define WORDS_ALIGNED
#endif
29
30
/* some important defines:
 *
bellard authored
31
32
 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
 * memory accesses.
33
 *
bellard authored
34
35
 * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
 * otherwise little endian.
36
 *
bellard authored
37
 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
38
 *
bellard authored
39
40
41
 * TARGET_WORDS_BIGENDIAN : same for target cpu
 */
42
#include "bswap.h"
43
#include "softfloat.h"
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

#if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
#define BSWAP_NEEDED
#endif

#ifdef BSWAP_NEEDED

static inline uint16_t tswap16(uint16_t s)
{
    return bswap16(s);
}

static inline uint32_t tswap32(uint32_t s)
{
    return bswap32(s);
}

static inline uint64_t tswap64(uint64_t s)
{
    return bswap64(s);
}

static inline void tswap16s(uint16_t *s)
{
    *s = bswap16(*s);
}

static inline void tswap32s(uint32_t *s)
{
    *s = bswap32(*s);
}

static inline void tswap64s(uint64_t *s)
{
    *s = bswap64(*s);
}

#else

static inline uint16_t tswap16(uint16_t s)
{
    return s;
}

static inline uint32_t tswap32(uint32_t s)
{
    return s;
}

static inline uint64_t tswap64(uint64_t s)
{
    return s;
}

static inline void tswap16s(uint16_t *s)
{
}

static inline void tswap32s(uint32_t *s)
{
}

static inline void tswap64s(uint64_t *s)
{
}

#endif

#if TARGET_LONG_SIZE == 4
#define tswapl(s) tswap32(s)
#define tswapls(s) tswap32s((uint32_t *)(s))
bellard authored
115
#define bswaptls(s) bswap32s(s)
116
117
118
#else
#define tswapl(s) tswap64(s)
#define tswapls(s) tswap64s((uint64_t *)(s))
bellard authored
119
#define bswaptls(s) bswap64s(s)
120
121
#endif
122
123
124
125
126
typedef union {
    float32 f;
    uint32_t l;
} CPU_FloatU;
bellard authored
127
128
/* NOTE: arm FPA is horrible as double 32 bit words are stored in big
   endian ! */
bellard authored
129
typedef union {
bellard authored
130
    float64 d;
131
132
#if defined(WORDS_BIGENDIAN) \
    || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
bellard authored
133
134
    struct {
        uint32_t upper;
bellard authored
135
        uint32_t lower;
bellard authored
136
137
138
139
    } l;
#else
    struct {
        uint32_t lower;
bellard authored
140
        uint32_t upper;
bellard authored
141
142
143
144
145
    } l;
#endif
    uint64_t ll;
} CPU_DoubleU;
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
#ifdef TARGET_SPARC
typedef union {
    float128 q;
#if defined(WORDS_BIGENDIAN) \
    || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
    struct {
        uint32_t upmost;
        uint32_t upper;
        uint32_t lower;
        uint32_t lowest;
    } l;
    struct {
        uint64_t upper;
        uint64_t lower;
    } ll;
#else
    struct {
        uint32_t lowest;
        uint32_t lower;
        uint32_t upper;
        uint32_t upmost;
    } l;
    struct {
        uint64_t lower;
        uint64_t upper;
    } ll;
#endif
} CPU_QuadU;
#endif
bellard authored
176
177
/* CPU memory access without any memory or io remapping */
178
179
180
181
182
183
184
185
186
187
/*
 * the generic syntax for the memory accesses is:
 *
 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
 *
 * store: st{type}{size}{endian}_{access_type}(ptr, val)
 *
 * type is:
 * (empty): integer access
 *   f    : float access
188
 *
189
190
191
192
193
194
195
196
197
198
 * sign is:
 * (empty): for floats or 32 bit size
 *   u    : unsigned
 *   s    : signed
 *
 * size is:
 *   b: 8 bits
 *   w: 16 bits
 *   l: 32 bits
 *   q: 64 bits
199
 *
200
201
202
203
204
205
206
207
208
209
210
 * endian is:
 * (empty): target cpu endianness or 8 bit access
 *   r    : reversed target cpu endianness (not implemented yet)
 *   be   : big endian (not implemented yet)
 *   le   : little endian (not implemented yet)
 *
 * access_type is:
 *   raw    : host memory access
 *   user   : user mode access using soft MMU
 *   kernel : kernel mode access using soft MMU
 */
211
static inline int ldub_p(const void *ptr)
bellard authored
212
213
214
215
{
    return *(uint8_t *)ptr;
}
216
static inline int ldsb_p(const void *ptr)
bellard authored
217
218
219
220
{
    return *(int8_t *)ptr;
}
bellard authored
221
static inline void stb_p(void *ptr, int v)
bellard authored
222
223
224
225
226
227
228
{
    *(uint8_t *)ptr = v;
}

/* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
   kernel handles unaligned load/stores may give better results, but
   it is a system wide setting : bad */
229
#if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
bellard authored
230
231

/* conservative code for little endian unaligned accesses */
232
static inline int lduw_le_p(const void *ptr)
bellard authored
233
{
234
#ifdef _ARCH_PPC
bellard authored
235
236
237
238
    int val;
    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
    return val;
#else
239
    const uint8_t *p = ptr;
bellard authored
240
241
242
243
    return p[0] | (p[1] << 8);
#endif
}
244
static inline int ldsw_le_p(const void *ptr)
bellard authored
245
{
246
#ifdef _ARCH_PPC
bellard authored
247
248
249
250
    int val;
    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
    return (int16_t)val;
#else
251
    const uint8_t *p = ptr;
bellard authored
252
253
254
255
    return (int16_t)(p[0] | (p[1] << 8));
#endif
}
256
static inline int ldl_le_p(const void *ptr)
bellard authored
257
{
258
#ifdef _ARCH_PPC
bellard authored
259
260
261
262
    int val;
    __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
    return val;
#else
263
    const uint8_t *p = ptr;
bellard authored
264
265
266
267
    return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
#endif
}
268
static inline uint64_t ldq_le_p(const void *ptr)
bellard authored
269
{
270
    const uint8_t *p = ptr;
bellard authored
271
    uint32_t v1, v2;
272
273
    v1 = ldl_le_p(p);
    v2 = ldl_le_p(p + 4);
bellard authored
274
275
276
    return v1 | ((uint64_t)v2 << 32);
}
277
static inline void stw_le_p(void *ptr, int v)
bellard authored
278
{
279
#ifdef _ARCH_PPC
bellard authored
280
281
282
283
284
285
286
287
    __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
#else
    uint8_t *p = ptr;
    p[0] = v;
    p[1] = v >> 8;
#endif
}
288
static inline void stl_le_p(void *ptr, int v)
bellard authored
289
{
290
#ifdef _ARCH_PPC
bellard authored
291
292
293
294
295
296
297
298
299
300
    __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
#else
    uint8_t *p = ptr;
    p[0] = v;
    p[1] = v >> 8;
    p[2] = v >> 16;
    p[3] = v >> 24;
#endif
}
301
static inline void stq_le_p(void *ptr, uint64_t v)
bellard authored
302
303
{
    uint8_t *p = ptr;
304
305
    stl_le_p(p, (uint32_t)v);
    stl_le_p(p + 4, v >> 32);
bellard authored
306
307
308
309
}

/* float access */
310
static inline float32 ldfl_le_p(const void *ptr)
bellard authored
311
312
{
    union {
bellard authored
313
        float32 f;
bellard authored
314
315
        uint32_t i;
    } u;
316
    u.i = ldl_le_p(ptr);
bellard authored
317
318
319
    return u.f;
}
320
static inline void stfl_le_p(void *ptr, float32 v)
bellard authored
321
322
{
    union {
bellard authored
323
        float32 f;
bellard authored
324
325
326
        uint32_t i;
    } u;
    u.f = v;
327
    stl_le_p(ptr, u.i);
bellard authored
328
329
}
330
static inline float64 ldfq_le_p(const void *ptr)
bellard authored
331
{
bellard authored
332
    CPU_DoubleU u;
333
334
    u.l.lower = ldl_le_p(ptr);
    u.l.upper = ldl_le_p(ptr + 4);
bellard authored
335
336
337
    return u.d;
}
338
static inline void stfq_le_p(void *ptr, float64 v)
bellard authored
339
{
bellard authored
340
    CPU_DoubleU u;
bellard authored
341
    u.d = v;
342
343
    stl_le_p(ptr, u.l.lower);
    stl_le_p(ptr + 4, u.l.upper);
bellard authored
344
345
}
346
347
#else
348
static inline int lduw_le_p(const void *ptr)
349
350
351
352
{
    return *(uint16_t *)ptr;
}
353
static inline int ldsw_le_p(const void *ptr)
354
355
356
{
    return *(int16_t *)ptr;
}
357
358
static inline int ldl_le_p(const void *ptr)
359
360
361
362
{
    return *(uint32_t *)ptr;
}
363
static inline uint64_t ldq_le_p(const void *ptr)
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
{
    return *(uint64_t *)ptr;
}

static inline void stw_le_p(void *ptr, int v)
{
    *(uint16_t *)ptr = v;
}

static inline void stl_le_p(void *ptr, int v)
{
    *(uint32_t *)ptr = v;
}

static inline void stq_le_p(void *ptr, uint64_t v)
{
    *(uint64_t *)ptr = v;
}

/* float access */
385
static inline float32 ldfl_le_p(const void *ptr)
386
387
388
389
{
    return *(float32 *)ptr;
}
390
static inline float64 ldfq_le_p(const void *ptr)
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
{
    return *(float64 *)ptr;
}

static inline void stfl_le_p(void *ptr, float32 v)
{
    *(float32 *)ptr = v;
}

static inline void stfq_le_p(void *ptr, float64 v)
{
    *(float64 *)ptr = v;
}
#endif

#if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
408
static inline int lduw_be_p(const void *ptr)
409
{
410
411
412
413
414
415
416
417
#if defined(__i386__)
    int val;
    asm volatile ("movzwl %1, %0\n"
                  "xchgb %b0, %h0\n"
                  : "=q" (val)
                  : "m" (*(uint16_t *)ptr));
    return val;
#else
418
    const uint8_t *b = ptr;
419
420
    return ((b[0] << 8) | b[1]);
#endif
421
422
}
423
static inline int ldsw_be_p(const void *ptr)
424
{
425
426
427
428
429
430
431
432
#if defined(__i386__)
    int val;
    asm volatile ("movzwl %1, %0\n"
                  "xchgb %b0, %h0\n"
                  : "=q" (val)
                  : "m" (*(uint16_t *)ptr));
    return (int16_t)val;
#else
433
    const uint8_t *b = ptr;
434
435
    return (int16_t)((b[0] << 8) | b[1]);
#endif
436
437
}
438
static inline int ldl_be_p(const void *ptr)
439
{
bellard authored
440
#if defined(__i386__) || defined(__x86_64__)
441
442
443
444
445
446
447
    int val;
    asm volatile ("movl %1, %0\n"
                  "bswap %0\n"
                  : "=r" (val)
                  : "m" (*(uint32_t *)ptr));
    return val;
#else
448
    const uint8_t *b = ptr;
449
450
    return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
#endif
451
452
}
453
static inline uint64_t ldq_be_p(const void *ptr)
454
455
{
    uint32_t a,b;
456
    a = ldl_be_p(ptr);
457
    b = ldl_be_p((uint8_t *)ptr + 4);
458
459
460
    return (((uint64_t)a<<32)|b);
}
461
static inline void stw_be_p(void *ptr, int v)
462
{
463
464
465
466
467
468
#if defined(__i386__)
    asm volatile ("xchgb %b0, %h0\n"
                  "movw %w0, %1\n"
                  : "=q" (v)
                  : "m" (*(uint16_t *)ptr), "0" (v));
#else
469
470
471
    uint8_t *d = (uint8_t *) ptr;
    d[0] = v >> 8;
    d[1] = v;
472
#endif
473
474
}
475
static inline void stl_be_p(void *ptr, int v)
476
{
bellard authored
477
#if defined(__i386__) || defined(__x86_64__)
478
479
480
481
482
    asm volatile ("bswap %0\n"
                  "movl %0, %1\n"
                  : "=r" (v)
                  : "m" (*(uint32_t *)ptr), "0" (v));
#else
483
484
485
486
487
    uint8_t *d = (uint8_t *) ptr;
    d[0] = v >> 24;
    d[1] = v >> 16;
    d[2] = v >> 8;
    d[3] = v;
488
#endif
489
490
}
491
static inline void stq_be_p(void *ptr, uint64_t v)
492
{
493
    stl_be_p(ptr, v >> 32);
494
    stl_be_p((uint8_t *)ptr + 4, v);
bellard authored
495
496
497
498
}

/* float access */
499
static inline float32 ldfl_be_p(const void *ptr)
bellard authored
500
501
{
    union {
bellard authored
502
        float32 f;
bellard authored
503
504
        uint32_t i;
    } u;
505
    u.i = ldl_be_p(ptr);
bellard authored
506
507
508
    return u.f;
}
509
static inline void stfl_be_p(void *ptr, float32 v)
bellard authored
510
511
{
    union {
bellard authored
512
        float32 f;
bellard authored
513
514
515
        uint32_t i;
    } u;
    u.f = v;
516
    stl_be_p(ptr, u.i);
bellard authored
517
518
}
519
static inline float64 ldfq_be_p(const void *ptr)
bellard authored
520
521
{
    CPU_DoubleU u;
522
    u.l.upper = ldl_be_p(ptr);
523
    u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
bellard authored
524
525
526
    return u.d;
}
527
static inline void stfq_be_p(void *ptr, float64 v)
bellard authored
528
529
530
{
    CPU_DoubleU u;
    u.d = v;
531
    stl_be_p(ptr, u.l.upper);
532
    stl_be_p((uint8_t *)ptr + 4, u.l.lower);
533
534
}
bellard authored
535
536
#else
537
static inline int lduw_be_p(const void *ptr)
bellard authored
538
539
540
541
{
    return *(uint16_t *)ptr;
}
542
static inline int ldsw_be_p(const void *ptr)
bellard authored
543
544
545
546
{
    return *(int16_t *)ptr;
}
547
static inline int ldl_be_p(const void *ptr)
bellard authored
548
549
550
551
{
    return *(uint32_t *)ptr;
}
552
static inline uint64_t ldq_be_p(const void *ptr)
bellard authored
553
554
555
556
{
    return *(uint64_t *)ptr;
}
557
static inline void stw_be_p(void *ptr, int v)
bellard authored
558
559
560
561
{
    *(uint16_t *)ptr = v;
}
562
static inline void stl_be_p(void *ptr, int v)
bellard authored
563
564
565
566
{
    *(uint32_t *)ptr = v;
}
567
static inline void stq_be_p(void *ptr, uint64_t v)
bellard authored
568
569
570
571
572
573
{
    *(uint64_t *)ptr = v;
}

/* float access */
574
static inline float32 ldfl_be_p(const void *ptr)
bellard authored
575
{
bellard authored
576
    return *(float32 *)ptr;
bellard authored
577
578
}
579
static inline float64 ldfq_be_p(const void *ptr)
bellard authored
580
{
bellard authored
581
    return *(float64 *)ptr;
bellard authored
582
583
}
584
static inline void stfl_be_p(void *ptr, float32 v)
bellard authored
585
{
bellard authored
586
    *(float32 *)ptr = v;
bellard authored
587
588
}
589
static inline void stfq_be_p(void *ptr, float64 v)
bellard authored
590
{
bellard authored
591
    *(float64 *)ptr = v;
bellard authored
592
}
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620

#endif

/* target CPU memory access functions */
#if defined(TARGET_WORDS_BIGENDIAN)
#define lduw_p(p) lduw_be_p(p)
#define ldsw_p(p) ldsw_be_p(p)
#define ldl_p(p) ldl_be_p(p)
#define ldq_p(p) ldq_be_p(p)
#define ldfl_p(p) ldfl_be_p(p)
#define ldfq_p(p) ldfq_be_p(p)
#define stw_p(p, v) stw_be_p(p, v)
#define stl_p(p, v) stl_be_p(p, v)
#define stq_p(p, v) stq_be_p(p, v)
#define stfl_p(p, v) stfl_be_p(p, v)
#define stfq_p(p, v) stfq_be_p(p, v)
#else
#define lduw_p(p) lduw_le_p(p)
#define ldsw_p(p) ldsw_le_p(p)
#define ldl_p(p) ldl_le_p(p)
#define ldq_p(p) ldq_le_p(p)
#define ldfl_p(p) ldfl_le_p(p)
#define ldfq_p(p) ldfq_le_p(p)
#define stw_p(p, v) stw_le_p(p, v)
#define stl_p(p, v) stl_le_p(p, v)
#define stq_p(p, v) stq_le_p(p, v)
#define stfl_p(p, v) stfl_le_p(p, v)
#define stfq_p(p, v) stfq_le_p(p, v)
bellard authored
621
622
#endif
bellard authored
623
624
/* MMU memory access macros */
625
#if defined(CONFIG_USER_ONLY)
626
627
628
#include <assert.h>
#include "qemu-types.h"
629
630
631
632
633
634
635
636
/* On some host systems the guest address space is reserved on the host.
 * This allows the guest address space to be offset to a convenient location.
 */
//#define GUEST_BASE 0x20000000
#define GUEST_BASE 0

/* All direct uses of g2h and h2g need to go away for usermode softmmu.  */
#define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
637
638
639
640
641
642
#define h2g(x) ({ \
    unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
    /* Check if given address fits target address space */ \
    assert(__ret == (abi_ulong)__ret); \
    (abi_ulong)__ret; \
})
643
644
645
646
#define h2g_valid(x) ({ \
    unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
    (__guest == (abi_ulong)__guest); \
})
647
648
649
650
651

#define saddr(x) g2h(x)
#define laddr(x) g2h(x)

#else /* !CONFIG_USER_ONLY */
bellard authored
652
653
/* NOTE: we use double casts if pointers and target_ulong have
   different sizes */
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
#define saddr(x) (uint8_t *)(long)(x)
#define laddr(x) (uint8_t *)(long)(x)
#endif

#define ldub_raw(p) ldub_p(laddr((p)))
#define ldsb_raw(p) ldsb_p(laddr((p)))
#define lduw_raw(p) lduw_p(laddr((p)))
#define ldsw_raw(p) ldsw_p(laddr((p)))
#define ldl_raw(p) ldl_p(laddr((p)))
#define ldq_raw(p) ldq_p(laddr((p)))
#define ldfl_raw(p) ldfl_p(laddr((p)))
#define ldfq_raw(p) ldfq_p(laddr((p)))
#define stb_raw(p, v) stb_p(saddr((p)), v)
#define stw_raw(p, v) stw_p(saddr((p)), v)
#define stl_raw(p, v) stl_p(saddr((p)), v)
#define stq_raw(p, v) stq_p(saddr((p)), v)
#define stfl_raw(p, v) stfl_p(saddr((p)), v)
#define stfq_raw(p, v) stfq_p(saddr((p)), v)
bellard authored
672
673
674
#if defined(CONFIG_USER_ONLY)
bellard authored
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696

/* if user mode, no other memory access functions */
#define ldub(p) ldub_raw(p)
#define ldsb(p) ldsb_raw(p)
#define lduw(p) lduw_raw(p)
#define ldsw(p) ldsw_raw(p)
#define ldl(p) ldl_raw(p)
#define ldq(p) ldq_raw(p)
#define ldfl(p) ldfl_raw(p)
#define ldfq(p) ldfq_raw(p)
#define stb(p, v) stb_raw(p, v)
#define stw(p, v) stw_raw(p, v)
#define stl(p, v) stl_raw(p, v)
#define stq(p, v) stq_raw(p, v)
#define stfl(p, v) stfl_raw(p, v)
#define stfq(p, v) stfq_raw(p, v)

#define ldub_code(p) ldub_raw(p)
#define ldsb_code(p) ldsb_raw(p)
#define lduw_code(p) lduw_raw(p)
#define ldsw_code(p) ldsw_raw(p)
#define ldl_code(p) ldl_raw(p)
697
#define ldq_code(p) ldq_raw(p)
bellard authored
698
699
700
701
702
703

#define ldub_kernel(p) ldub_raw(p)
#define ldsb_kernel(p) ldsb_raw(p)
#define lduw_kernel(p) lduw_raw(p)
#define ldsw_kernel(p) ldsw_raw(p)
#define ldl_kernel(p) ldl_raw(p)
704
#define ldq_kernel(p) ldq_raw(p)
bellard authored
705
706
#define ldfl_kernel(p) ldfl_raw(p)
#define ldfq_kernel(p) ldfq_raw(p)
bellard authored
707
708
709
710
#define stb_kernel(p, v) stb_raw(p, v)
#define stw_kernel(p, v) stw_raw(p, v)
#define stl_kernel(p, v) stl_raw(p, v)
#define stq_kernel(p, v) stq_raw(p, v)
bellard authored
711
712
#define stfl_kernel(p, v) stfl_raw(p, v)
#define stfq_kernel(p, vt) stfq_raw(p, v)
bellard authored
713
714
715

#endif /* defined(CONFIG_USER_ONLY) */
bellard authored
716
717
/* page related stuff */
718
#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
bellard authored
719
720
721
#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
722
/* ??? These should be the larger of unsigned long and target_ulong.  */
723
724
725
726
extern unsigned long qemu_real_host_page_size;
extern unsigned long qemu_host_page_bits;
extern unsigned long qemu_host_page_size;
extern unsigned long qemu_host_page_mask;
bellard authored
727
728
#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
bellard authored
729
730
731
732
733
734
735
736
737

/* same as PROT_xxx */
#define PAGE_READ      0x0001
#define PAGE_WRITE     0x0002
#define PAGE_EXEC      0x0004
#define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
#define PAGE_VALID     0x0008
/* original state of the write flag (used when tracking self-modifying
   code */
738
#define PAGE_WRITE_ORG 0x0010
739
#define PAGE_RESERVED  0x0020
bellard authored
740
741

void page_dump(FILE *f);
742
743
int page_get_flags(target_ulong address);
void page_set_flags(target_ulong start, target_ulong end, int flags);
744
int page_check_range(target_ulong start, target_ulong len, int flags);
bellard authored
745
746
void cpu_exec_init_all(unsigned long tb_size);
747
748
CPUState *cpu_copy(CPUState *env);
749
void cpu_dump_state(CPUState *env, FILE *f,
bellard authored
750
751
                    int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
                    int flags);
752
753
754
void cpu_dump_statistics (CPUState *env, FILE *f,
                          int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
                          int flags);
bellard authored
755
756
757
void noreturn cpu_abort(CPUState *env, const char *fmt, ...)
    __attribute__ ((__format__ (__printf__, 2, 3)));
758
extern CPUState *first_cpu;
bellard authored
759
extern CPUState *cpu_single_env;
pbrook authored
760
761
extern int64_t qemu_icount;
extern int use_icount;
bellard authored
762
763
764
765
#define CPU_INTERRUPT_EXIT   0x01 /* wants exit from main loop */
#define CPU_INTERRUPT_HARD   0x02 /* hardware interrupt pending */
#define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
bellard authored
766
#define CPU_INTERRUPT_TIMER  0x08 /* internal timer exception pending */
767
#define CPU_INTERRUPT_FIQ    0x10 /* Fast interrupt pending.  */
768
#define CPU_INTERRUPT_HALT   0x20 /* CPU halt wanted */
bellard authored
769
#define CPU_INTERRUPT_SMI    0x40 /* (x86 only) SMI interrupt pending */
770
#define CPU_INTERRUPT_DEBUG  0x80 /* Debug event occured.  */
ths authored
771
#define CPU_INTERRUPT_VIRQ   0x100 /* virtual interrupt pending.  */
772
#define CPU_INTERRUPT_NMI    0x200 /* NMI pending. */
773
bellard authored
774
void cpu_interrupt(CPUState *s, int mask);
775
void cpu_reset_interrupt(CPUState *env, int mask);
bellard authored
776
777
778
779
780
/* Breakpoint/watchpoint flags */
#define BP_MEM_READ           0x01
#define BP_MEM_WRITE          0x02
#define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
781
#define BP_STOP_BEFORE_ACCESS 0x04
782
#define BP_WATCHPOINT_HIT     0x08
783
#define BP_GDB                0x10
784
#define BP_CPU                0x20
785
786
787
788
789
790
791
792
793
794
795
796

int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
                          CPUBreakpoint **breakpoint);
int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
void cpu_breakpoint_remove_all(CPUState *env, int mask);
int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
                          int flags, CPUWatchpoint **watchpoint);
int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
                          target_ulong len, int flags);
void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
void cpu_watchpoint_remove_all(CPUState *env, int mask);
797
798
799
800
801

#define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
#define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
#define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
802
void cpu_single_step(CPUState *env, int enabled);
bellard authored
803
void cpu_reset(CPUState *s);
bellard authored
804
805
806
807
/* Return the physical page corresponding to a virtual one. Use it
   only for debugging because no protection checks are done. Return -1
   if no page found. */
808
target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
809
810
#define CPU_LOG_TB_OUT_ASM (1 << 0)
811
#define CPU_LOG_TB_IN_ASM  (1 << 1)
812
813
814
815
816
#define CPU_LOG_TB_OP      (1 << 2)
#define CPU_LOG_TB_OP_OPT  (1 << 3)
#define CPU_LOG_INT        (1 << 4)
#define CPU_LOG_EXEC       (1 << 5)
#define CPU_LOG_PCALL      (1 << 6)
817
#define CPU_LOG_IOPORT     (1 << 7)
818
#define CPU_LOG_TB_CPU     (1 << 8)
819
820
821
822
823
824
825
826

/* define log items */
typedef struct CPULogItem {
    int mask;
    const char *name;
    const char *help;
} CPULogItem;
827
extern const CPULogItem cpu_log_items[];
828
829
830
void cpu_set_log(int log_flags);
void cpu_set_log_filename(const char *filename);
831
int cpu_str_to_log_mask(const char *str);
832
833
834
835
836
837
838
839
840
841
842
843
844
845
/* IO ports API */

/* NOTE: as these functions may be even used when there is an isa
   brige on non x86 targets, we always defined them */
#ifndef NO_CPU_IO_DEFS
void cpu_outb(CPUState *env, int addr, int val);
void cpu_outw(CPUState *env, int addr, int val);
void cpu_outl(CPUState *env, int addr, int val);
int cpu_inb(CPUState *env, int addr);
int cpu_inw(CPUState *env, int addr);
int cpu_inl(CPUState *env, int addr);
#endif
846
847
848
849
850
851
852
/* address in the RAM (different from a physical address) */
#ifdef USE_KQEMU
typedef uint32_t ram_addr_t;
#else
typedef unsigned long ram_addr_t;
#endif
853
854
/* memory API */
855
extern ram_addr_t phys_ram_size;
bellard authored
856
857
extern int phys_ram_fd;
extern uint8_t *phys_ram_base;
858
extern uint8_t *phys_ram_dirty;
859
extern ram_addr_t ram_size;
bellard authored
860
861

/* physical memory access */
pbrook authored
862
863
864
865
866
867

/* MMIO pages are identified by a combination of an IO device index and
   3 flags.  The ROMD code stores the page ram offset in iotlb entry, 
   so only a limited number of ids are avaiable.  */

#define IO_MEM_SHIFT       3
868
#define IO_MEM_NB_ENTRIES  (1 << (TARGET_PAGE_BITS  - IO_MEM_SHIFT))
bellard authored
869
870
871
872

#define IO_MEM_RAM         (0 << IO_MEM_SHIFT) /* hardcoded offset */
#define IO_MEM_ROM         (1 << IO_MEM_SHIFT) /* hardcoded offset */
#define IO_MEM_UNASSIGNED  (2 << IO_MEM_SHIFT)
pbrook authored
873
874
875
#define IO_MEM_NOTDIRTY    (3 << IO_MEM_SHIFT)

/* Acts like a ROM when read and like a device when written.  */
876
#define IO_MEM_ROMD        (1)
877
#define IO_MEM_SUBPAGE     (2)
878
#define IO_MEM_SUBWIDTH    (4)
bellard authored
879
pbrook authored
880
881
882
883
884
885
886
887
888
889
/* Flags stored in the low bits of the TLB virtual address.  These are
   defined so that fast path ram access is all zeros.  */
/* Zero if TLB entry is valid.  */
#define TLB_INVALID_MASK   (1 << 3)
/* Set if TLB entry references a clean RAM page.  The iotlb entry will
   contain the page physical address.  */
#define TLB_NOTDIRTY    (1 << 4)
/* Set if TLB entry is an IO callback.  */
#define TLB_MMIO        (1 << 5)
890
891
typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value);
typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr);
892
893
894
895
896
897
898
899
900
901
902
903
void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
                                         ram_addr_t size,
                                         ram_addr_t phys_offset,
                                         ram_addr_t region_offset);
static inline void cpu_register_physical_memory(target_phys_addr_t start_addr,
                                                ram_addr_t size,
                                                ram_addr_t phys_offset)
{
    cpu_register_physical_memory_offset(start_addr, size, phys_offset, 0);
}
904
905
ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr);
ram_addr_t qemu_ram_alloc(ram_addr_t);
bellard authored
906
void qemu_ram_free(ram_addr_t addr);
907
908
int cpu_register_io_memory(int io_index,
                           CPUReadMemoryFunc **mem_read,
909
910
                           CPUWriteMemoryFunc **mem_write,
                           void *opaque);
911
912
CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index);
CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index);
913
914
void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
915
                            int len, int is_write);
916
static inline void cpu_physical_memory_read(target_phys_addr_t addr,
917
                                            uint8_t *buf, int len)
918
919
920
{
    cpu_physical_memory_rw(addr, buf, len, 0);
}
921
static inline void cpu_physical_memory_write(target_phys_addr_t addr,
922
                                             const uint8_t *buf, int len)
923
924
925
{
    cpu_physical_memory_rw(addr, (uint8_t *)buf, len, 1);
}
926
927
uint32_t ldub_phys(target_phys_addr_t addr);
uint32_t lduw_phys(target_phys_addr_t addr);
928
uint32_t ldl_phys(target_phys_addr_t addr);
929
uint64_t ldq_phys(target_phys_addr_t addr);
930
void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val);
931
void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val);
932
933
void stb_phys(target_phys_addr_t addr, uint32_t val);
void stw_phys(target_phys_addr_t addr, uint32_t val);
934
void stl_phys(target_phys_addr_t addr, uint32_t val);
935
void stq_phys(target_phys_addr_t addr, uint64_t val);
936
937
void cpu_physical_memory_write_rom(target_phys_addr_t addr,
938
                                   const uint8_t *buf, int len);
939
int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
940
                        uint8_t *buf, int len, int is_write);
941
942
943
944
945
#define VGA_DIRTY_FLAG       0x01
#define CODE_DIRTY_FLAG      0x02
#define KQEMU_DIRTY_FLAG     0x04
#define MIGRATION_DIRTY_FLAG 0x08
bellard authored
946
947
/* read dirty bit (return 0 or 1) */
bellard authored
948
static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
949
{
bellard authored
950
951
952
    return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
}
953
static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
bellard authored
954
955
956
                                                int dirty_flags)
{
    return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
957
958
}
bellard authored
959
static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
960
{
bellard authored
961
    phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
962
963
}
bellard authored
964
void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
bellard authored
965
                                     int dirty_flags);
bellard authored
966
void cpu_tlb_update_dirty(CPUState *env);
967
968
969
970
971
int cpu_physical_memory_set_dirty_tracking(int enable);

int cpu_physical_memory_get_dirty_tracking(void);
972
973
void cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr);
bellard authored
974
975
976
void dump_exec_info(FILE *f,
                    int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
aliguori authored
977
978
979
980
981
982
983
984
985
/* Coalesced MMIO regions are areas where write operations can be reordered.
 * This usually implies that write operations are side-effect free.  This allows
 * batching which can make a major impact on performance when using
 * virtualization.
 */
void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);

void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
bellard authored
986
987
988
/*******************************************/
/* host CPU ticks (if available) */
989
#if defined(_ARCH_PPC)
bellard authored
990
991
static inline uint32_t get_tbl(void)
bellard authored
992
993
994
995
996
997
{
    uint32_t tbl;
    asm volatile("mftb %0" : "=r" (tbl));
    return tbl;
}
998
static inline uint32_t get_tbu(void)
bellard authored
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
{
	uint32_t tbl;
	asm volatile("mftbu %0" : "=r" (tbl));
	return tbl;
}

static inline int64_t cpu_get_real_ticks(void)
{
    uint32_t l, h, h1;
    /* NOTE: we test if wrapping has occurred */
    do {
        h = get_tbu();
        l = get_tbl();
        h1 = get_tbu();
    } while (h != h1);
    return ((int64_t)h << 32) | l;
}

#elif defined(__i386__)

static inline int64_t cpu_get_real_ticks(void)
bellard authored
1020
1021
1022
1023
1024
1025
{
    int64_t val;
    asm volatile ("rdtsc" : "=A" (val));
    return val;
}
bellard authored
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
#elif defined(__x86_64__)

static inline int64_t cpu_get_real_ticks(void)
{
    uint32_t low,high;
    int64_t val;
    asm volatile("rdtsc" : "=a" (low), "=d" (high));
    val = high;
    val <<= 32;
    val |= low;
    return val;
}
aurel32 authored
1039
1040
1041
1042
1043
1044
1045
1046
1047
#elif defined(__hppa__)

static inline int64_t cpu_get_real_ticks(void)
{
    int val;
    asm volatile ("mfctl %%cr16, %0" : "=r"(val));
    return val;
}
bellard authored
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
#elif defined(__ia64)

static inline int64_t cpu_get_real_ticks(void)
{
	int64_t val;
	asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
	return val;
}

#elif defined(__s390__)

static inline int64_t cpu_get_real_ticks(void)
{
    int64_t val;
    asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
    return val;
}
1066
#elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
bellard authored
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086

static inline int64_t cpu_get_real_ticks (void)
{
#if     defined(_LP64)
        uint64_t        rval;
        asm volatile("rd %%tick,%0" : "=r"(rval));
        return rval;
#else
        union {
                uint64_t i64;
                struct {
                        uint32_t high;
                        uint32_t low;
                }       i32;
        } rval;
        asm volatile("rd %%tick,%1; srlx %1,32,%0"
                : "=r"(rval.i32.high), "=r"(rval.i32.low));
        return rval.i64;
#endif
}
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107

#elif defined(__mips__)

static inline int64_t cpu_get_real_ticks(void)
{
#if __mips_isa_rev >= 2
    uint32_t count;
    static uint32_t cyc_per_count = 0;

    if (!cyc_per_count)
        __asm__ __volatile__("rdhwr %0, $3" : "=r" (cyc_per_count));

    __asm__ __volatile__("rdhwr %1, $2" : "=r" (count));
    return (int64_t)(count * cyc_per_count);
#else
    /* FIXME */
    static int64_t ticks = 0;
    return ticks++;
#endif
}
pbrook authored
1108
1109
#else
/* The host CPU doesn't have an easily accessible cycle counter.
ths authored
1110
1111
   Just return a monotonically increasing value.  This will be
   totally wrong, but hopefully better than nothing.  */
pbrook authored
1112
1113
1114
1115
1116
static inline int64_t cpu_get_real_ticks (void)
{
    static int64_t ticks = 0;
    return ticks++;
}
bellard authored
1117
1118
1119
1120
1121
1122
1123
1124
1125
#endif

/* profiling */
#ifdef CONFIG_PROFILER
static inline int64_t profile_getclock(void)
{
    return cpu_get_real_ticks();
}
bellard authored
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
extern int64_t kqemu_time, kqemu_time_start;
extern int64_t qemu_time, qemu_time_start;
extern int64_t tlb_flush_time;
extern int64_t kqemu_exec_count;
extern int64_t dev_time;
extern int64_t kqemu_ret_int_count;
extern int64_t kqemu_ret_excp_count;
extern int64_t kqemu_ret_intr_count;
#endif
bellard authored
1136
#endif /* CPU_ALL_H */