sched.c
7.43 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
/*
* QEMU interrupt controller emulation
*
* Copyright (c) 2003-2004 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "vl.h"
//#define DEBUG_IRQ_COUNT
/* These registers are used for sending/receiving irqs from/to
* different cpu's.
*/
struct sun4m_intreg_percpu {
unsigned int tbt; /* Intrs pending for this cpu, by PIL. */
/* These next two registers are WRITE-ONLY and are only
* "on bit" sensitive, "off bits" written have NO affect.
*/
unsigned int clear; /* Clear this cpus irqs here. */
unsigned int set; /* Set this cpus irqs here. */
};
/*
* djhr
* Actually the clear and set fields in this struct are misleading..
* according to the SLAVIO manual (and the same applies for the SEC)
* the clear field clears bits in the mask which will ENABLE that IRQ
* the set field sets bits in the mask to DISABLE the IRQ.
*
* Also the undirected_xx address in the SLAVIO is defined as
* RESERVED and write only..
*
* DAVEM_NOTE: The SLAVIO only specifies behavior on uniprocessor
* sun4m machines, for MP the layout makes more sense.
*/
struct sun4m_intreg_master {
unsigned int tbt; /* IRQ's that are pending, see sun4m masks. */
unsigned int irqs; /* Master IRQ bits. */
/* Again, like the above, two these registers are WRITE-ONLY. */
unsigned int clear; /* Clear master IRQ's by setting bits here. */
unsigned int set; /* Set master IRQ's by setting bits here. */
/* This register is both READ and WRITE. */
unsigned int undirected_target; /* Which cpu gets undirected irqs. */
};
#define SUN4M_INT_ENABLE 0x80000000
#define SUN4M_INT_E14 0x00000080
#define SUN4M_INT_E10 0x00080000
#define SUN4M_HARD_INT(x) (0x000000001 << (x))
#define SUN4M_SOFT_INT(x) (0x000010000 << (x))
#define SUN4M_INT_MASKALL 0x80000000 /* mask all interrupts */
#define SUN4M_INT_MODULE_ERR 0x40000000 /* module error */
#define SUN4M_INT_M2S_WRITE 0x20000000 /* write buffer error */
#define SUN4M_INT_ECC 0x10000000 /* ecc memory error */
#define SUN4M_INT_FLOPPY 0x00400000 /* floppy disk */
#define SUN4M_INT_MODULE 0x00200000 /* module interrupt */
#define SUN4M_INT_VIDEO 0x00100000 /* onboard video */
#define SUN4M_INT_REALTIME 0x00080000 /* system timer */
#define SUN4M_INT_SCSI 0x00040000 /* onboard scsi */
#define SUN4M_INT_AUDIO 0x00020000 /* audio/isdn */
#define SUN4M_INT_ETHERNET 0x00010000 /* onboard ethernet */
#define SUN4M_INT_SERIAL 0x00008000 /* serial ports */
#define SUN4M_INT_SBUSBITS 0x00003F80 /* sbus int bits */
#define SUN4M_INT_SBUS(x) (1 << (x+7))
#define SUN4M_INT_VME(x) (1 << (x))
typedef struct SCHEDState {
uint32_t addr, addrg;
uint32_t intreg_pending;
uint32_t intreg_enabled;
uint32_t intregm_pending;
uint32_t intregm_enabled;
} SCHEDState;
static SCHEDState *ps;
#ifdef DEBUG_IRQ_COUNT
static uint64_t irq_count[32];
#endif
static uint32_t intreg_mem_readl(void *opaque, target_phys_addr_t addr)
{
SCHEDState *s = opaque;
uint32_t saddr;
saddr = (addr - s->addr) >> 2;
switch (saddr) {
case 0:
return s->intreg_pending;
break;
default:
break;
}
return 0;
}
static void intreg_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
SCHEDState *s = opaque;
uint32_t saddr;
saddr = (addr - s->addr) >> 2;
switch (saddr) {
case 0:
s->intreg_pending = val;
break;
case 1: // clear
s->intreg_enabled &= ~val;
break;
case 2: // set
s->intreg_enabled |= val;
break;
default:
break;
}
}
static CPUReadMemoryFunc *intreg_mem_read[3] = {
intreg_mem_readl,
intreg_mem_readl,
intreg_mem_readl,
};
static CPUWriteMemoryFunc *intreg_mem_write[3] = {
intreg_mem_writel,
intreg_mem_writel,
intreg_mem_writel,
};
static uint32_t intregm_mem_readl(void *opaque, target_phys_addr_t addr)
{
SCHEDState *s = opaque;
uint32_t saddr;
saddr = (addr - s->addrg) >> 2;
switch (saddr) {
case 0:
return s->intregm_pending;
break;
case 1:
return s->intregm_enabled;
break;
default:
break;
}
return 0;
}
static void intregm_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
SCHEDState *s = opaque;
uint32_t saddr;
saddr = (addr - s->addrg) >> 2;
switch (saddr) {
case 0:
s->intregm_pending = val;
break;
case 1:
s->intregm_enabled = val;
break;
case 2: // clear
s->intregm_enabled &= ~val;
break;
case 3: // set
s->intregm_enabled |= val;
break;
default:
break;
}
}
static CPUReadMemoryFunc *intregm_mem_read[3] = {
intregm_mem_readl,
intregm_mem_readl,
intregm_mem_readl,
};
static CPUWriteMemoryFunc *intregm_mem_write[3] = {
intregm_mem_writel,
intregm_mem_writel,
intregm_mem_writel,
};
void pic_info(void)
{
term_printf("per-cpu: pending 0x%08x, enabled 0x%08x\n", ps->intreg_pending, ps->intreg_enabled);
term_printf("master: pending 0x%08x, enabled 0x%08x\n", ps->intregm_pending, ps->intregm_enabled);
}
void irq_info(void)
{
#ifndef DEBUG_IRQ_COUNT
term_printf("irq statistic code not compiled.\n");
#else
int i;
int64_t count;
term_printf("IRQ statistics:\n");
for (i = 0; i < 32; i++) {
count = irq_count[i];
if (count > 0)
term_printf("%2d: %lld\n", i, count);
}
#endif
}
static const unsigned int intr_to_mask[16] = {
0, 0, 0, 0, 0, 0, SUN4M_INT_ETHERNET, 0,
0, 0, 0, 0, 0, 0, 0, 0,
};
void pic_set_irq(int irq, int level)
{
if (irq < 16) {
unsigned int mask = intr_to_mask[irq];
ps->intreg_pending |= 1 << irq;
if (ps->intregm_enabled & mask) {
cpu_single_env->interrupt_index = irq;
cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
}
}
#ifdef DEBUG_IRQ_COUNT
if (level == 1)
irq_count[irq]++;
#endif
}
void sched_init(uint32_t addr, uint32_t addrg)
{
int intreg_io_memory, intregm_io_memory;
SCHEDState *s;
s = qemu_mallocz(sizeof(SCHEDState));
if (!s)
return;
s->addr = addr;
s->addrg = addrg;
intreg_io_memory = cpu_register_io_memory(0, intreg_mem_read, intreg_mem_write, s);
cpu_register_physical_memory(addr, 3, intreg_io_memory);
intregm_io_memory = cpu_register_io_memory(0, intregm_mem_read, intregm_mem_write, s);
cpu_register_physical_memory(addrg, 5, intregm_io_memory);
ps = s;
}