Blame view

hw/escc.c 25.4 KB
bellard authored
1
/*
2
 * QEMU ESCC (Z8030/Z8530/Z85C30/SCC/ESCC) serial port emulation
3
 *
4
 * Copyright (c) 2003-2005 Fabrice Bellard
5
 *
bellard authored
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
pbrook authored
24
#include "hw.h"
25
#include "escc.h"
pbrook authored
26
27
28
#include "qemu-char.h"
#include "console.h"
29
/* debug serial */
bellard authored
30
31
32
33
34
//#define DEBUG_SERIAL

/* debug keyboard */
//#define DEBUG_KBD
35
/* debug mouse */
bellard authored
36
37
38
//#define DEBUG_MOUSE

/*
39
 * On Sparc32 this is the serial port, mouse and keyboard part of chip STP2001
bellard authored
40
41
 * (Slave I/O), also produced as NCR89C105. See
 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
42
 *
bellard authored
43
44
45
46
 * The serial ports implement full AMD AM8530 or Zilog Z8530 chips,
 * mouse and keyboard ports don't implement all functions and they are
 * only asynchronous. There is no DMA.
 *
47
48
49
50
51
52
53
54
 * Z85C30 is also used on PowerMacs. There are some small differences
 * between Sparc version (sunzilog) and PowerMac (pmac):
 *  Offset between control and data registers
 *  There is some kind of lockup bug, but we can ignore it
 *  CTS is inverted
 *  DMA on pmac using DBDMA chip
 *  pmac can do IRDA and faster rates, sunzilog can only do 38400
 *  pmac baud rate generator clock is 3.6864 MHz, sunzilog 4.9152 MHz
bellard authored
55
56
 */
57
58
59
60
61
62
63
/*
 * Modifications:
 *  2006-Aug-10  Igor Kovalenko :   Renamed KBDQueue to SERIOQueue, implemented
 *                                  serial mouse queue.
 *                                  Implemented serial mouse protocol.
 */
64
#ifdef DEBUG_SERIAL
65
66
#define SER_DPRINTF(fmt, ...)                                   \
    do { printf("SER: " fmt , ## __VA_ARGS__); } while (0)
67
#else
68
#define SER_DPRINTF(fmt, ...)
69
70
#endif
#ifdef DEBUG_KBD
71
72
#define KBD_DPRINTF(fmt, ...)                                   \
    do { printf("KBD: " fmt , ## __VA_ARGS__); } while (0)
73
#else
74
#define KBD_DPRINTF(fmt, ...)
75
76
#endif
#ifdef DEBUG_MOUSE
77
78
#define MS_DPRINTF(fmt, ...)                                    \
    do { printf("MSC: " fmt , ## __VA_ARGS__); } while (0)
79
#else
80
#define MS_DPRINTF(fmt, ...)
81
82
83
84
85
86
#endif

typedef enum {
    chn_a, chn_b,
} chn_id_t;
87
88
#define CHN_C(s) ((s)->chn == chn_b? 'b' : 'a')
89
90
91
92
typedef enum {
    ser, kbd, mouse,
} chn_type_t;
93
#define SERIO_QUEUE_SIZE 256
94
95

typedef struct {
96
    uint8_t data[SERIO_QUEUE_SIZE];
97
    int rptr, wptr, count;
98
} SERIOQueue;
99
100
#define SERIAL_REGS 16
bellard authored
101
typedef struct ChannelState {
pbrook authored
102
    qemu_irq irq;
blueswir1 authored
103
104
    uint32_t reg;
    uint32_t rxint, txint, rxint_under_svc, txint_under_svc;
105
106
107
    chn_id_t chn; // this channel, A (base+4) or B (base+0)
    chn_type_t type;
    struct ChannelState *otherchn;
108
    uint8_t rx, tx, wregs[SERIAL_REGS], rregs[SERIAL_REGS];
109
    SERIOQueue queue;
bellard authored
110
    CharDriverState *chr;
111
    int e0_mode, led_mode, caps_lock_mode, num_lock_mode;
112
    int disabled;
113
    int clock;
bellard authored
114
115
116
117
} ChannelState;

struct SerialState {
    struct ChannelState chn[2];
118
    int it_shift;
bellard authored
119
120
};
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
#define SERIAL_CTRL 0
#define SERIAL_DATA 1

#define W_CMD     0
#define CMD_PTR_MASK   0x07
#define CMD_CMD_MASK   0x38
#define CMD_HI         0x08
#define CMD_CLR_TXINT  0x28
#define CMD_CLR_IUS    0x38
#define W_INTR    1
#define INTR_INTALL    0x01
#define INTR_TXINT     0x02
#define INTR_RXMODEMSK 0x18
#define INTR_RXINT1ST  0x08
#define INTR_RXINTALL  0x10
#define W_IVEC    2
#define W_RXCTRL  3
#define RXCTRL_RXEN    0x01
#define W_TXCTRL1 4
#define TXCTRL1_PAREN  0x01
#define TXCTRL1_PAREV  0x02
#define TXCTRL1_1STOP  0x04
#define TXCTRL1_1HSTOP 0x08
#define TXCTRL1_2STOP  0x0c
#define TXCTRL1_STPMSK 0x0c
#define TXCTRL1_CLK1X  0x00
#define TXCTRL1_CLK16X 0x40
#define TXCTRL1_CLK32X 0x80
#define TXCTRL1_CLK64X 0xc0
#define TXCTRL1_CLKMSK 0xc0
#define W_TXCTRL2 5
#define TXCTRL2_TXEN   0x08
#define TXCTRL2_BITMSK 0x60
#define TXCTRL2_5BITS  0x00
#define TXCTRL2_7BITS  0x20
#define TXCTRL2_6BITS  0x40
#define TXCTRL2_8BITS  0x60
#define W_SYNC1   6
#define W_SYNC2   7
#define W_TXBUF   8
#define W_MINTR   9
#define MINTR_STATUSHI 0x10
#define MINTR_RST_MASK 0xc0
#define MINTR_RST_B    0x40
#define MINTR_RST_A    0x80
#define MINTR_RST_ALL  0xc0
#define W_MISC1  10
#define W_CLOCK  11
#define CLOCK_TRXC     0x08
#define W_BRGLO  12
#define W_BRGHI  13
#define W_MISC2  14
#define MISC2_PLLDIS   0x30
#define W_EXTINT 15
#define EXTINT_DCD     0x08
#define EXTINT_SYNCINT 0x10
#define EXTINT_CTSINT  0x20
#define EXTINT_TXUNDRN 0x40
#define EXTINT_BRKINT  0x80

#define R_STATUS  0
#define STATUS_RXAV    0x01
#define STATUS_ZERO    0x02
#define STATUS_TXEMPTY 0x04
#define STATUS_DCD     0x08
#define STATUS_SYNC    0x10
#define STATUS_CTS     0x20
#define STATUS_TXUNDRN 0x40
#define STATUS_BRK     0x80
#define R_SPEC    1
#define SPEC_ALLSENT   0x01
#define SPEC_BITS8     0x06
#define R_IVEC    2
#define IVEC_TXINTB    0x00
#define IVEC_LONOINT   0x06
#define IVEC_LORXINTA  0x0c
#define IVEC_LORXINTB  0x04
#define IVEC_LOTXINTA  0x08
#define IVEC_HINOINT   0x60
#define IVEC_HIRXINTA  0x30
#define IVEC_HIRXINTB  0x20
#define IVEC_HITXINTA  0x10
#define R_INTR    3
#define INTR_EXTINTB   0x01
#define INTR_TXINTB    0x02
#define INTR_RXINTB    0x04
#define INTR_EXTINTA   0x08
#define INTR_TXINTA    0x10
#define INTR_RXINTA    0x20
#define R_IPEN    4
#define R_TXCTRL1 5
#define R_TXCTRL2 6
#define R_BC      7
#define R_RXBUF   8
#define R_RXCTRL  9
#define R_MISC   10
#define R_MISC1  11
#define R_BRGLO  12
#define R_BRGHI  13
#define R_MISC1I 14
#define R_EXTINT 15
bellard authored
222
223
224
225
226
static void handle_kbd_command(ChannelState *s, int val);
static int serial_can_receive(void *opaque);
static void serial_receive_byte(ChannelState *s, int ch);
227
228
229
230
231
232
233
static void clear_queue(void *opaque)
{
    ChannelState *s = opaque;
    SERIOQueue *q = &s->queue;
    q->rptr = q->wptr = q->count = 0;
}
234
235
236
static void put_queue(void *opaque, int b)
{
    ChannelState *s = opaque;
237
    SERIOQueue *q = &s->queue;
238
239
    SER_DPRINTF("channel %c put: 0x%02x\n", CHN_C(s), b);
240
    if (q->count >= SERIO_QUEUE_SIZE)
241
242
        return;
    q->data[q->wptr] = b;
243
    if (++q->wptr == SERIO_QUEUE_SIZE)
244
245
246
247
248
249
250
251
        q->wptr = 0;
    q->count++;
    serial_receive_byte(s, 0);
}

static uint32_t get_queue(void *opaque)
{
    ChannelState *s = opaque;
252
    SERIOQueue *q = &s->queue;
253
    int val;
254
255
    if (q->count == 0) {
blueswir1 authored
256
        return 0;
257
258
    } else {
        val = q->data[q->rptr];
259
        if (++q->rptr == SERIO_QUEUE_SIZE)
260
261
262
            q->rptr = 0;
        q->count--;
    }
263
    SER_DPRINTF("channel %c get 0x%02x\n", CHN_C(s), val);
264
    if (q->count > 0)
blueswir1 authored
265
        serial_receive_byte(s, 0);
266
267
268
    return val;
}
269
static int escc_update_irq_chn(ChannelState *s)
bellard authored
270
{
271
    if ((((s->wregs[W_INTR] & INTR_TXINT) && s->txint == 1) ||
272
273
274
         // tx ints enabled, pending
         ((((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINT1ST) ||
           ((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINTALL)) &&
blueswir1 authored
275
          s->rxint == 1) || // rx ints enabled, pending
276
277
         ((s->wregs[W_EXTINT] & EXTINT_BRKINT) &&
          (s->rregs[R_STATUS] & STATUS_BRK)))) { // break int e&p
278
        return 1;
bellard authored
279
    }
280
281
282
    return 0;
}
283
static void escc_update_irq(ChannelState *s)
284
285
286
{
    int irq;
287
288
    irq = escc_update_irq_chn(s);
    irq |= escc_update_irq_chn(s->otherchn);
289
pbrook authored
290
291
    SER_DPRINTF("IRQ = %d\n", irq);
    qemu_set_irq(s->irq, irq);
bellard authored
292
293
}
294
static void escc_reset_chn(ChannelState *s)
bellard authored
295
296
297
298
{
    int i;

    s->reg = 0;
blueswir1 authored
299
    for (i = 0; i < SERIAL_REGS; i++) {
blueswir1 authored
300
301
        s->rregs[i] = 0;
        s->wregs[i] = 0;
bellard authored
302
    }
303
304
305
306
307
308
    s->wregs[W_TXCTRL1] = TXCTRL1_1STOP; // 1X divisor, 1 stop bit, no parity
    s->wregs[W_MINTR] = MINTR_RST_ALL;
    s->wregs[W_CLOCK] = CLOCK_TRXC; // Synch mode tx clock = TRxC
    s->wregs[W_MISC2] = MISC2_PLLDIS; // PLL disabled
    s->wregs[W_EXTINT] = EXTINT_DCD | EXTINT_SYNCINT | EXTINT_CTSINT |
        EXTINT_TXUNDRN | EXTINT_BRKINT; // Enable most interrupts
309
    if (s->disabled)
310
311
        s->rregs[R_STATUS] = STATUS_TXEMPTY | STATUS_DCD | STATUS_SYNC |
            STATUS_CTS | STATUS_TXUNDRN;
312
    else
313
        s->rregs[R_STATUS] = STATUS_TXEMPTY | STATUS_TXUNDRN;
314
    s->rregs[R_SPEC] = SPEC_BITS8 | SPEC_ALLSENT;
bellard authored
315
316
317

    s->rx = s->tx = 0;
    s->rxint = s->txint = 0;
318
    s->rxint_under_svc = s->txint_under_svc = 0;
319
    s->e0_mode = s->led_mode = s->caps_lock_mode = s->num_lock_mode = 0;
320
    clear_queue(s);
bellard authored
321
322
}
323
static void escc_reset(void *opaque)
bellard authored
324
325
{
    SerialState *s = opaque;
326
327
    escc_reset_chn(&s->chn[0]);
    escc_reset_chn(&s->chn[1]);
bellard authored
328
329
}
330
331
332
static inline void set_rxint(ChannelState *s)
{
    s->rxint = 1;
333
334
    if (!s->txint_under_svc) {
        s->rxint_under_svc = 1;
335
        if (s->chn == chn_a) {
336
337
            if (s->wregs[W_MINTR] & MINTR_STATUSHI)
                s->otherchn->rregs[R_IVEC] = IVEC_HIRXINTA;
338
            else
339
                s->otherchn->rregs[R_IVEC] = IVEC_LORXINTA;
340
        } else {
341
342
            if (s->wregs[W_MINTR] & MINTR_STATUSHI)
                s->rregs[R_IVEC] = IVEC_HIRXINTB;
343
            else
344
                s->rregs[R_IVEC] = IVEC_LORXINTB;
345
        }
346
    }
347
    if (s->chn == chn_a)
348
        s->rregs[R_INTR] |= INTR_RXINTA;
349
    else
350
        s->otherchn->rregs[R_INTR] |= INTR_RXINTB;
351
    escc_update_irq(s);
352
353
}
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
static inline void set_txint(ChannelState *s)
{
    s->txint = 1;
    if (!s->rxint_under_svc) {
        s->txint_under_svc = 1;
        if (s->chn == chn_a) {
            if (s->wregs[W_MINTR] & MINTR_STATUSHI)
                s->otherchn->rregs[R_IVEC] = IVEC_HITXINTA;
            else
                s->otherchn->rregs[R_IVEC] = IVEC_LOTXINTA;
        } else {
            s->rregs[R_IVEC] = IVEC_TXINTB;
        }
    }
    if (s->chn == chn_a)
        s->rregs[R_INTR] |= INTR_TXINTA;
    else
        s->otherchn->rregs[R_INTR] |= INTR_TXINTB;
372
    escc_update_irq(s);
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
}

static inline void clr_rxint(ChannelState *s)
{
    s->rxint = 0;
    s->rxint_under_svc = 0;
    if (s->chn == chn_a) {
        if (s->wregs[W_MINTR] & MINTR_STATUSHI)
            s->otherchn->rregs[R_IVEC] = IVEC_HINOINT;
        else
            s->otherchn->rregs[R_IVEC] = IVEC_LONOINT;
        s->rregs[R_INTR] &= ~INTR_RXINTA;
    } else {
        if (s->wregs[W_MINTR] & MINTR_STATUSHI)
            s->rregs[R_IVEC] = IVEC_HINOINT;
        else
            s->rregs[R_IVEC] = IVEC_LONOINT;
        s->otherchn->rregs[R_INTR] &= ~INTR_RXINTB;
    }
    if (s->txint)
        set_txint(s);
394
    escc_update_irq(s);
395
396
}
397
398
399
static inline void clr_txint(ChannelState *s)
{
    s->txint = 0;
400
    s->txint_under_svc = 0;
401
    if (s->chn == chn_a) {
402
403
        if (s->wregs[W_MINTR] & MINTR_STATUSHI)
            s->otherchn->rregs[R_IVEC] = IVEC_HINOINT;
404
        else
405
406
            s->otherchn->rregs[R_IVEC] = IVEC_LONOINT;
        s->rregs[R_INTR] &= ~INTR_TXINTA;
407
    } else {
408
409
        if (s->wregs[W_MINTR] & MINTR_STATUSHI)
            s->rregs[R_IVEC] = IVEC_HINOINT;
410
        else
411
412
            s->rregs[R_IVEC] = IVEC_LONOINT;
        s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB;
413
    }
414
415
    if (s->rxint)
        set_rxint(s);
416
    escc_update_irq(s);
417
418
}
419
static void escc_update_parameters(ChannelState *s)
420
421
422
423
424
425
426
{
    int speed, parity, data_bits, stop_bits;
    QEMUSerialSetParams ssp;

    if (!s->chr || s->type != ser)
        return;
427
428
    if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREN) {
        if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREV)
429
430
431
432
433
434
            parity = 'E';
        else
            parity = 'O';
    } else {
        parity = 'N';
    }
435
    if ((s->wregs[W_TXCTRL1] & TXCTRL1_STPMSK) == TXCTRL1_2STOP)
436
437
438
        stop_bits = 2;
    else
        stop_bits = 1;
439
440
    switch (s->wregs[W_TXCTRL2] & TXCTRL2_BITMSK) {
    case TXCTRL2_5BITS:
441
442
        data_bits = 5;
        break;
443
    case TXCTRL2_7BITS:
444
445
        data_bits = 7;
        break;
446
    case TXCTRL2_6BITS:
447
448
449
        data_bits = 6;
        break;
    default:
450
    case TXCTRL2_8BITS:
451
452
453
        data_bits = 8;
        break;
    }
454
    speed = s->clock / ((s->wregs[W_BRGLO] | (s->wregs[W_BRGHI] << 8)) + 2);
455
456
    switch (s->wregs[W_TXCTRL1] & TXCTRL1_CLKMSK) {
    case TXCTRL1_CLK1X:
457
        break;
458
    case TXCTRL1_CLK16X:
459
460
        speed /= 16;
        break;
461
    case TXCTRL1_CLK32X:
462
463
464
        speed /= 32;
        break;
    default:
465
    case TXCTRL1_CLK64X:
466
467
468
469
470
471
472
473
474
475
476
477
        speed /= 64;
        break;
    }
    ssp.speed = speed;
    ssp.parity = parity;
    ssp.data_bits = data_bits;
    ssp.stop_bits = stop_bits;
    SER_DPRINTF("channel %c: speed=%d parity=%c data=%d stop=%d\n", CHN_C(s),
                speed, parity, data_bits, stop_bits);
    qemu_chr_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
}
478
static void escc_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
bellard authored
479
{
480
    SerialState *serial = opaque;
bellard authored
481
482
483
484
485
    ChannelState *s;
    uint32_t saddr;
    int newreg, channel;

    val &= 0xff;
486
487
    saddr = (addr >> serial->it_shift) & 1;
    channel = (addr >> (serial->it_shift + 1)) & 1;
488
    s = &serial->chn[channel];
bellard authored
489
    switch (saddr) {
490
491
492
    case SERIAL_CTRL:
        SER_DPRINTF("Write channel %c, reg[%d] = %2.2x\n", CHN_C(s), s->reg,
                    val & 0xff);
blueswir1 authored
493
494
        newreg = 0;
        switch (s->reg) {
495
496
497
        case W_CMD:
            newreg = val & CMD_PTR_MASK;
            val &= CMD_CMD_MASK;
blueswir1 authored
498
            switch (val) {
499
500
            case CMD_HI:
                newreg |= CMD_HI;
blueswir1 authored
501
                break;
502
            case CMD_CLR_TXINT:
503
                clr_txint(s);
blueswir1 authored
504
                break;
505
            case CMD_CLR_IUS:
506
507
508
509
                if (s->rxint_under_svc)
                    clr_rxint(s);
                else if (s->txint_under_svc)
                    clr_txint(s);
blueswir1 authored
510
511
512
513
514
                break;
            default:
                break;
            }
            break;
515
516
517
518
        case W_INTR ... W_RXCTRL:
        case W_SYNC1 ... W_TXBUF:
        case W_MISC1 ... W_CLOCK:
        case W_MISC2 ... W_EXTINT:
blueswir1 authored
519
520
            s->wregs[s->reg] = val;
            break;
521
522
        case W_TXCTRL1:
        case W_TXCTRL2:
523
            s->wregs[s->reg] = val;
524
            escc_update_parameters(s);
525
            break;
526
527
        case W_BRGLO:
        case W_BRGHI:
blueswir1 authored
528
            s->wregs[s->reg] = val;
529
            s->rregs[s->reg] = val;
530
            escc_update_parameters(s);
blueswir1 authored
531
            break;
532
533
        case W_MINTR:
            switch (val & MINTR_RST_MASK) {
blueswir1 authored
534
535
536
            case 0:
            default:
                break;
537
            case MINTR_RST_B:
538
                escc_reset_chn(&serial->chn[0]);
blueswir1 authored
539
                return;
540
            case MINTR_RST_A:
541
                escc_reset_chn(&serial->chn[1]);
blueswir1 authored
542
                return;
543
            case MINTR_RST_ALL:
544
                escc_reset(serial);
blueswir1 authored
545
546
547
548
549
550
551
552
553
554
555
                return;
            }
            break;
        default:
            break;
        }
        if (s->reg == 0)
            s->reg = newreg;
        else
            s->reg = 0;
        break;
556
    case SERIAL_DATA:
blueswir1 authored
557
        SER_DPRINTF("Write channel %c, ch %d\n", CHN_C(s), val);
558
        s->tx = val;
559
        if (s->wregs[W_TXCTRL2] & TXCTRL2_TXEN) { // tx enabled
blueswir1 authored
560
561
            if (s->chr)
                qemu_chr_write(s->chr, &s->tx, 1);
562
            else if (s->type == kbd && !s->disabled) {
blueswir1 authored
563
564
565
                handle_kbd_command(s, val);
            }
        }
566
567
        s->rregs[R_STATUS] |= STATUS_TXEMPTY; // Tx buffer empty
        s->rregs[R_SPEC] |= SPEC_ALLSENT; // All sent
568
        set_txint(s);
blueswir1 authored
569
        break;
bellard authored
570
    default:
blueswir1 authored
571
        break;
bellard authored
572
573
574
    }
}
575
static uint32_t escc_mem_readb(void *opaque, target_phys_addr_t addr)
bellard authored
576
{
577
    SerialState *serial = opaque;
bellard authored
578
579
580
581
582
    ChannelState *s;
    uint32_t saddr;
    uint32_t ret;
    int channel;
583
584
    saddr = (addr >> serial->it_shift) & 1;
    channel = (addr >> (serial->it_shift + 1)) & 1;
585
    s = &serial->chn[channel];
bellard authored
586
    switch (saddr) {
587
588
589
    case SERIAL_CTRL:
        SER_DPRINTF("Read channel %c, reg[%d] = %2.2x\n", CHN_C(s), s->reg,
                    s->rregs[s->reg]);
blueswir1 authored
590
591
592
        ret = s->rregs[s->reg];
        s->reg = 0;
        return ret;
593
594
    case SERIAL_DATA:
        s->rregs[R_STATUS] &= ~STATUS_RXAV;
595
        clr_rxint(s);
blueswir1 authored
596
597
598
599
600
        if (s->type == kbd || s->type == mouse)
            ret = get_queue(s);
        else
            ret = s->rx;
        SER_DPRINTF("Read channel %c, ch %d\n", CHN_C(s), ret);
601
602
        if (s->chr)
            qemu_chr_accept_input(s->chr);
blueswir1 authored
603
        return ret;
bellard authored
604
    default:
blueswir1 authored
605
        break;
bellard authored
606
607
608
609
610
611
612
    }
    return 0;
}

static int serial_can_receive(void *opaque)
{
    ChannelState *s = opaque;
613
614
    int ret;
615
616
617
    if (((s->wregs[W_RXCTRL] & RXCTRL_RXEN) == 0) // Rx not enabled
        || ((s->rregs[R_STATUS] & STATUS_RXAV) == STATUS_RXAV))
        // char already available
blueswir1 authored
618
        ret = 0;
bellard authored
619
    else
blueswir1 authored
620
        ret = 1;
621
    return ret;
bellard authored
622
623
624
625
}

static void serial_receive_byte(ChannelState *s, int ch)
{
626
    SER_DPRINTF("channel %c put ch %d\n", CHN_C(s), ch);
627
    s->rregs[R_STATUS] |= STATUS_RXAV;
bellard authored
628
    s->rx = ch;
629
    set_rxint(s);
bellard authored
630
631
632
633
}

static void serial_receive_break(ChannelState *s)
{
634
    s->rregs[R_STATUS] |= STATUS_BRK;
635
    escc_update_irq(s);
bellard authored
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
}

static void serial_receive1(void *opaque, const uint8_t *buf, int size)
{
    ChannelState *s = opaque;
    serial_receive_byte(s, buf[0]);
}

static void serial_event(void *opaque, int event)
{
    ChannelState *s = opaque;
    if (event == CHR_EVENT_BREAK)
        serial_receive_break(s);
}
651
652
static CPUReadMemoryFunc *escc_mem_read[3] = {
    escc_mem_readb,
653
654
    NULL,
    NULL,
bellard authored
655
656
};
657
658
static CPUWriteMemoryFunc *escc_mem_write[3] = {
    escc_mem_writeb,
659
660
    NULL,
    NULL,
bellard authored
661
662
};
663
static void escc_save_chn(QEMUFile *f, ChannelState *s)
bellard authored
664
{
blueswir1 authored
665
666
    uint32_t tmp = 0;
pbrook authored
667
    qemu_put_be32s(f, &tmp); /* unused, was IRQ.  */
bellard authored
668
669
670
    qemu_put_be32s(f, &s->reg);
    qemu_put_be32s(f, &s->rxint);
    qemu_put_be32s(f, &s->txint);
671
672
    qemu_put_be32s(f, &s->rxint_under_svc);
    qemu_put_be32s(f, &s->txint_under_svc);
bellard authored
673
674
    qemu_put_8s(f, &s->rx);
    qemu_put_8s(f, &s->tx);
675
676
    qemu_put_buffer(f, s->wregs, SERIAL_REGS);
    qemu_put_buffer(f, s->rregs, SERIAL_REGS);
bellard authored
677
678
}
679
static void escc_save(QEMUFile *f, void *opaque)
bellard authored
680
681
682
{
    SerialState *s = opaque;
683
684
    escc_save_chn(f, &s->chn[0]);
    escc_save_chn(f, &s->chn[1]);
bellard authored
685
686
}
687
static int escc_load_chn(QEMUFile *f, ChannelState *s, int version_id)
bellard authored
688
{
blueswir1 authored
689
    uint32_t tmp;
pbrook authored
690
691
    if (version_id > 2)
bellard authored
692
693
        return -EINVAL;
pbrook authored
694
    qemu_get_be32s(f, &tmp); /* unused */
bellard authored
695
696
697
    qemu_get_be32s(f, &s->reg);
    qemu_get_be32s(f, &s->rxint);
    qemu_get_be32s(f, &s->txint);
698
699
700
701
    if (version_id >= 2) {
        qemu_get_be32s(f, &s->rxint_under_svc);
        qemu_get_be32s(f, &s->txint_under_svc);
    }
bellard authored
702
703
    qemu_get_8s(f, &s->rx);
    qemu_get_8s(f, &s->tx);
704
705
    qemu_get_buffer(f, s->wregs, SERIAL_REGS);
    qemu_get_buffer(f, s->rregs, SERIAL_REGS);
bellard authored
706
707
708
    return 0;
}
709
static int escc_load(QEMUFile *f, void *opaque, int version_id)
bellard authored
710
711
712
713
{
    SerialState *s = opaque;
    int ret;
714
    ret = escc_load_chn(f, &s->chn[0], version_id);
bellard authored
715
    if (ret != 0)
blueswir1 authored
716
        return ret;
717
    ret = escc_load_chn(f, &s->chn[1], version_id);
bellard authored
718
719
720
721
    return ret;

}
722
723
724
int escc_init(target_phys_addr_t base, qemu_irq irqA, qemu_irq irqB,
              CharDriverState *chrA, CharDriverState *chrB,
              int clock, int it_shift)
bellard authored
725
{
726
    int escc_io_memory, i;
bellard authored
727
728
729
730
    SerialState *s;

    s = qemu_mallocz(sizeof(SerialState));
731
732
733
734
735
736
    escc_io_memory = cpu_register_io_memory(0, escc_mem_read,
                                            escc_mem_write,
                                            s);
    if (base)
        cpu_register_physical_memory(base, ESCC_SIZE << it_shift,
                                     escc_io_memory);
bellard authored
737
738
    s->it_shift = it_shift;
739
740
    s->chn[0].chr = chrB;
    s->chn[1].chr = chrA;
741
742
    s->chn[0].disabled = 0;
    s->chn[1].disabled = 0;
743
744
    s->chn[0].irq = irqB;
    s->chn[1].irq = irqA;
745
746

    for (i = 0; i < 2; i++) {
blueswir1 authored
747
748
        s->chn[i].chn = 1 - i;
        s->chn[i].type = ser;
749
        s->chn[i].clock = clock / 2;
blueswir1 authored
750
751
        if (s->chn[i].chr) {
            qemu_chr_add_handlers(s->chn[i].chr, serial_can_receive,
752
                                  serial_receive1, serial_event, &s->chn[i]);
blueswir1 authored
753
        }
bellard authored
754
    }
755
756
    s->chn[0].otherchn = &s->chn[1];
    s->chn[1].otherchn = &s->chn[0];
757
758
759
760
761
762
763
    if (base)
        register_savevm("escc", base, 2, escc_save, escc_load, s);
    else
        register_savevm("escc", -1, 2, escc_save, escc_load, s);
    qemu_register_reset(escc_reset, s);
    escc_reset(s);
    return escc_io_memory;
bellard authored
764
765
}
766
767
768
769
770
771
772
773
774
775
776
static const uint8_t keycodes[128] = {
    127, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 53,
    54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 89, 76, 77, 78,
    79, 80, 81, 82, 83, 84, 85, 86, 87, 42, 99, 88, 100, 101, 102, 103,
    104, 105, 106, 107, 108, 109, 110, 47, 19, 121, 119, 5, 6, 8, 10, 12,
    14, 16, 17, 18, 7, 98, 23, 68, 69, 70, 71, 91, 92, 93, 125, 112,
    113, 114, 94, 50, 0, 0, 124, 9, 11, 0, 0, 0, 0, 0, 0, 0,
    90, 0, 46, 22, 13, 111, 52, 20, 96, 24, 28, 74, 27, 123, 44, 66,
    0, 45, 2, 4, 48, 0, 0, 21, 0, 0, 0, 0, 0, 120, 122, 67,
};
777
778
779
780
781
782
783
784
static const uint8_t e0_keycodes[128] = {
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 90, 76, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 109, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 68, 69, 70, 0, 91, 0, 93, 0, 112,
    113, 114, 94, 50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
785
    1, 3, 25, 26, 49, 52, 72, 73, 97, 99, 111, 118, 120, 122, 67, 0,
786
787
};
bellard authored
788
789
790
static void sunkbd_event(void *opaque, int ch)
{
    ChannelState *s = opaque;
791
792
    int release = ch & 0x80;
793
794
    KBD_DPRINTF("Untranslated keycode %2.2x (%s)\n", ch, release? "release" :
                "press");
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
    switch (ch) {
    case 58: // Caps lock press
        s->caps_lock_mode ^= 1;
        if (s->caps_lock_mode == 2)
            return; // Drop second press
        break;
    case 69: // Num lock press
        s->num_lock_mode ^= 1;
        if (s->num_lock_mode == 2)
            return; // Drop second press
        break;
    case 186: // Caps lock release
        s->caps_lock_mode ^= 2;
        if (s->caps_lock_mode == 3)
            return; // Drop first release
        break;
    case 197: // Num lock release
        s->num_lock_mode ^= 2;
        if (s->num_lock_mode == 3)
            return; // Drop first release
        break;
    case 0xe0:
817
818
        s->e0_mode = 1;
        return;
819
820
    default:
        break;
821
822
823
824
825
826
827
828
    }
    if (s->e0_mode) {
        s->e0_mode = 0;
        ch = e0_keycodes[ch & 0x7f];
    } else {
        ch = keycodes[ch & 0x7f];
    }
    KBD_DPRINTF("Translated keycode %2.2x\n", ch);
829
830
831
832
833
834
    put_queue(s, ch | release);
}

static void handle_kbd_command(ChannelState *s, int val)
{
    KBD_DPRINTF("Command %d\n", val);
835
836
837
838
    if (s->led_mode) { // Ignore led byte
        s->led_mode = 0;
        return;
    }
839
840
    switch (val) {
    case 1: // Reset, return type code
841
        clear_queue(s);
blueswir1 authored
842
843
844
845
        put_queue(s, 0xff);
        put_queue(s, 4); // Type 4
        put_queue(s, 0x7f);
        break;
846
847
848
    case 0xe: // Set leds
        s->led_mode = 1;
        break;
849
    case 7: // Query layout
850
851
    case 0xf:
        clear_queue(s);
blueswir1 authored
852
853
854
        put_queue(s, 0xfe);
        put_queue(s, 0); // XXX, layout?
        break;
855
    default:
blueswir1 authored
856
        break;
857
    }
bellard authored
858
859
}
860
static void sunmouse_event(void *opaque,
bellard authored
861
862
863
864
865
                               int dx, int dy, int dz, int buttons_state)
{
    ChannelState *s = opaque;
    int ch;
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
    MS_DPRINTF("dx=%d dy=%d buttons=%01x\n", dx, dy, buttons_state);

    ch = 0x80 | 0x7; /* protocol start byte, no buttons pressed */

    if (buttons_state & MOUSE_EVENT_LBUTTON)
        ch ^= 0x4;
    if (buttons_state & MOUSE_EVENT_MBUTTON)
        ch ^= 0x2;
    if (buttons_state & MOUSE_EVENT_RBUTTON)
        ch ^= 0x1;

    put_queue(s, ch);

    ch = dx;

    if (ch > 127)
        ch=127;
    else if (ch < -127)
        ch=-127;

    put_queue(s, ch & 0xff);

    ch = -dy;

    if (ch > 127)
        ch=127;
    else if (ch < -127)
        ch=-127;

    put_queue(s, ch & 0xff);

    // MSC protocol specify two extra motion bytes

    put_queue(s, 0);
    put_queue(s, 0);
bellard authored
901
902
}
903
void slavio_serial_ms_kbd_init(target_phys_addr_t base, qemu_irq irq,
904
                               int disabled, int clock, int it_shift)
bellard authored
905
{
906
    int slavio_serial_io_memory, i;
bellard authored
907
908
909
    SerialState *s;

    s = qemu_mallocz(sizeof(SerialState));
910
911

    s->it_shift = it_shift;
912
    for (i = 0; i < 2; i++) {
blueswir1 authored
913
914
915
        s->chn[i].irq = irq;
        s->chn[i].chn = 1 - i;
        s->chn[i].chr = NULL;
916
        s->chn[i].clock = clock / 2;
917
918
919
920
921
    }
    s->chn[0].otherchn = &s->chn[1];
    s->chn[1].otherchn = &s->chn[0];
    s->chn[0].type = mouse;
    s->chn[1].type = kbd;
922
923
    s->chn[0].disabled = disabled;
    s->chn[1].disabled = disabled;
bellard authored
924
925
926
    slavio_serial_io_memory = cpu_register_io_memory(0, escc_mem_read,
                                                     escc_mem_write,
927
                                                     s);
928
929
    cpu_register_physical_memory(base, ESCC_SIZE << it_shift,
                                 slavio_serial_io_memory);
bellard authored
930
931
932
    qemu_add_mouse_event_handler(sunmouse_event, &s->chn[0], 0,
                                 "QEMU Sun Mouse");
933
    qemu_add_kbd_event_handler(sunkbd_event, &s->chn[1]);
934
935
936
    register_savevm("slavio_serial_mouse", base, 2, escc_save, escc_load, s);
    qemu_register_reset(escc_reset, s);
    escc_reset(s);
bellard authored
937
}