1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
/*
* QEMU e1000 emulation
*
* Nir Peleg , Tutis Systems Ltd . for Qumranet Inc .
* Copyright ( c ) 2008 Qumranet
* Based on work done by :
* Copyright ( c ) 2007 Dan Aloni
* Copyright ( c ) 2004 Antony T Curtis
*
* This library is free software ; you can redistribute it and / or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation ; either
* version 2 of the License , or ( at your option ) any later version .
*
* This library is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the GNU
* Lesser General Public License for more details .
*
* You should have received a copy of the GNU Lesser General Public
21
* License along with this library ; if not , see < http :// www . gnu . org / licenses /> .
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
*/
# include "hw.h"
# include "pci.h"
# include "net.h"
# include "e1000_hw.h"
# define DEBUG
# ifdef DEBUG
enum {
DEBUG_GENERAL , DEBUG_IO , DEBUG_MMIO , DEBUG_INTERRUPT ,
DEBUG_RX , DEBUG_TX , DEBUG_MDIC , DEBUG_EEPROM ,
DEBUG_UNKNOWN , DEBUG_TXSUM , DEBUG_TXERR , DEBUG_RXERR ,
DEBUG_RXFILTER , DEBUG_NOTYET ,
};
# define DBGBIT ( x ) ( 1 << DEBUG_ ## x )
static int debugflags = DBGBIT ( TXERR ) | DBGBIT ( GENERAL );
43
# define DBGOUT ( what , fmt , ...) do { \
44
if ( debugflags & DBGBIT ( what )) \
45
fprintf ( stderr , "e1000: " fmt , ## __VA_ARGS__ ); \
46
47
} while ( 0 )
# else
48
# define DBGOUT ( what , fmt , ...) do {} while ( 0 )
49
50
51
# endif
# define IOPORT_SIZE 0x40
52
# define PNPMMIO_SIZE 0x20000
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
/*
* HW models :
* E1000_DEV_ID_82540EM works with Windows and Linux
* E1000_DEV_ID_82573L OK with windoze and Linux 2 . 6 . 22 ,
* appears to perform better than 82540 EM , but breaks with Linux 2 . 6 . 18
* E1000_DEV_ID_82544GC_COPPER appears to work ; not well tested
* Others never tested
*/
enum { E1000_DEVID = E1000_DEV_ID_82540EM };
/*
* May need to specify additional MAC - to - PHY entries --
* Intel ' s Windows driver refuses to initialize unless they match
*/
enum {
PHY_ID2_INIT = E1000_DEVID == E1000_DEV_ID_82573L ? 0xcc2 :
E1000_DEVID == E1000_DEV_ID_82544GC_COPPER ? 0xc30 :
/* default to E1000_DEV_ID_82540EM */ 0xc20
};
typedef struct E1000State_st {
PCIDevice dev ;
VLANClientState * vc ;
int mmio_index ;
uint32_t mac_reg [ 0x8000 ];
uint16_t phy_reg [ 0x20 ];
uint16_t eeprom_data [ 64 ];
uint32_t rxbuf_size ;
uint32_t rxbuf_min_shift ;
int check_rxov ;
struct e1000_tx {
unsigned char header [ 256 ];
88
89
unsigned char vlan_header [ 4 ];
unsigned char vlan [ 4 ];
90
91
92
unsigned char data [ 0x10000 ];
uint16_t size ;
unsigned char sum_needed ;
93
unsigned char vlan_needed ;
94
95
96
97
98
99
100
101
102
103
104
uint8_t ipcss ;
uint8_t ipcso ;
uint16_t ipcse ;
uint8_t tucss ;
uint8_t tucso ;
uint16_t tucse ;
uint8_t hdr_len ;
uint16_t mss ;
uint32_t paylen ;
uint16_t tso_frames ;
char tse ;
105
106
int8_t ip ;
int8_t tcp ;
107
char cptse ; // current packet tse bit
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
} tx ;
struct {
uint32_t val_in ; // shifted in from guest driver
uint16_t bitnum_in ;
uint16_t bitnum_out ;
uint16_t reading ;
uint32_t old_eecd ;
} eecd_state ;
} E1000State ;
# define defreg ( x ) x = ( E1000_ ## x >> 2 )
enum {
defreg ( CTRL ), defreg ( EECD ), defreg ( EERD ), defreg ( GPRC ),
defreg ( GPTC ), defreg ( ICR ), defreg ( ICS ), defreg ( IMC ),
defreg ( IMS ), defreg ( LEDCTL ), defreg ( MANC ), defreg ( MDIC ),
defreg ( MPC ), defreg ( PBA ), defreg ( RCTL ), defreg ( RDBAH ),
defreg ( RDBAL ), defreg ( RDH ), defreg ( RDLEN ), defreg ( RDT ),
defreg ( STATUS ), defreg ( SWSM ), defreg ( TCTL ), defreg ( TDBAH ),
defreg ( TDBAL ), defreg ( TDH ), defreg ( TDLEN ), defreg ( TDT ),
defreg ( TORH ), defreg ( TORL ), defreg ( TOTH ), defreg ( TOTL ),
defreg ( TPR ), defreg ( TPT ), defreg ( TXDCTL ), defreg ( WUFC ),
130
131
defreg ( RA ), defreg ( MTA ), defreg ( CRCERRS ), defreg ( VFTA ),
defreg ( VET ),
132
133
134
};
enum { PHY_R = 1 , PHY_W = 2 , PHY_RW = PHY_R | PHY_W };
135
static const char phy_regcap [ 0x20 ] = {
136
137
138
139
140
[ PHY_STATUS ] = PHY_R , [ M88E1000_EXT_PHY_SPEC_CTRL ] = PHY_RW ,
[ PHY_ID1 ] = PHY_R , [ M88E1000_PHY_SPEC_CTRL ] = PHY_RW ,
[ PHY_CTRL ] = PHY_RW , [ PHY_1000T_CTRL ] = PHY_RW ,
[ PHY_LP_ABILITY ] = PHY_R , [ PHY_1000T_STATUS ] = PHY_R ,
[ PHY_AUTONEG_ADV ] = PHY_RW , [ M88E1000_RX_ERR_CNTR ] = PHY_R ,
141
[ PHY_ID2 ] = PHY_R , [ M88E1000_PHY_SPEC_STATUS ] = PHY_R
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
};
static void
ioport_map ( PCIDevice * pci_dev , int region_num , uint32_t addr ,
uint32_t size , int type )
{
DBGOUT ( IO , "e1000_ioport_map addr=0x%04x size=0x%08x \n " , addr , size );
}
static void
set_interrupt_cause ( E1000State * s , int index , uint32_t val )
{
if ( val )
val |= E1000_ICR_INT_ASSERTED ;
s -> mac_reg [ ICR ] = val ;
157
qemu_set_irq ( s -> dev . irq [ 0 ], ( s -> mac_reg [ IMS ] & s -> mac_reg [ ICR ]) != 0 );
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
}
static void
set_ics ( E1000State * s , int index , uint32_t val )
{
DBGOUT ( INTERRUPT , "set_ics %x, ICR %x, IMR %x \n " , val , s -> mac_reg [ ICR ],
s -> mac_reg [ IMS ]);
set_interrupt_cause ( s , 0 , val | s -> mac_reg [ ICR ]);
}
static int
rxbufsize ( uint32_t v )
{
v &= E1000_RCTL_BSEX | E1000_RCTL_SZ_16384 | E1000_RCTL_SZ_8192 |
E1000_RCTL_SZ_4096 | E1000_RCTL_SZ_2048 | E1000_RCTL_SZ_1024 |
E1000_RCTL_SZ_512 | E1000_RCTL_SZ_256 ;
switch ( v ) {
case E1000_RCTL_BSEX | E1000_RCTL_SZ_16384 :
return 16384 ;
case E1000_RCTL_BSEX | E1000_RCTL_SZ_8192 :
return 8192 ;
case E1000_RCTL_BSEX | E1000_RCTL_SZ_4096 :
return 4096 ;
case E1000_RCTL_SZ_1024 :
return 1024 ;
case E1000_RCTL_SZ_512 :
return 512 ;
case E1000_RCTL_SZ_256 :
return 256 ;
}
return 2048 ;
}
static void
192
193
194
195
196
197
198
set_ctrl ( E1000State * s , int index , uint32_t val )
{
/* RST is self clearing */
s -> mac_reg [ CTRL ] = val & ~ E1000_CTRL_RST ;
}
static void
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
set_rx_control ( E1000State * s , int index , uint32_t val )
{
s -> mac_reg [ RCTL ] = val ;
s -> rxbuf_size = rxbufsize ( val );
s -> rxbuf_min_shift = (( val / E1000_RCTL_RDMTS_QUAT ) & 3 ) + 1 ;
DBGOUT ( RX , "RCTL: %d, mac_reg[RCTL] = 0x%x \n " , s -> mac_reg [ RDT ],
s -> mac_reg [ RCTL ]);
}
static void
set_mdic ( E1000State * s , int index , uint32_t val )
{
uint32_t data = val & E1000_MDIC_DATA_MASK ;
uint32_t addr = (( val & E1000_MDIC_REG_MASK ) >> E1000_MDIC_REG_SHIFT );
if (( val & E1000_MDIC_PHY_MASK ) >> E1000_MDIC_PHY_SHIFT != 1 ) // phy #
val = s -> mac_reg [ MDIC ] | E1000_MDIC_ERROR ;
else if ( val & E1000_MDIC_OP_READ ) {
DBGOUT ( MDIC , "MDIC read reg 0x%x \n " , addr );
if ( ! ( phy_regcap [ addr ] & PHY_R )) {
DBGOUT ( MDIC , "MDIC read reg %x unhandled \n " , addr );
val |= E1000_MDIC_ERROR ;
} else
val = ( val ^ data ) | s -> phy_reg [ addr ];
} else if ( val & E1000_MDIC_OP_WRITE ) {
DBGOUT ( MDIC , "MDIC write reg 0x%x, value 0x%x \n " , addr , data );
if ( ! ( phy_regcap [ addr ] & PHY_W )) {
DBGOUT ( MDIC , "MDIC write reg %x unhandled \n " , addr );
val |= E1000_MDIC_ERROR ;
} else
s -> phy_reg [ addr ] = data ;
}
s -> mac_reg [ MDIC ] = val | E1000_MDIC_READY ;
set_ics ( s , 0 , E1000_ICR_MDAC );
}
static uint32_t
get_eecd ( E1000State * s , int index )
{
uint32_t ret = E1000_EECD_PRES | E1000_EECD_GNT | s -> eecd_state . old_eecd ;
DBGOUT ( EEPROM , "reading eeprom bit %d (reading %d) \n " ,
s -> eecd_state . bitnum_out , s -> eecd_state . reading );
if ( ! s -> eecd_state . reading ||
(( s -> eeprom_data [( s -> eecd_state . bitnum_out >> 4 ) & 0x3f ] >>
(( s -> eecd_state . bitnum_out & 0xf ) ^ 0xf ))) & 1 )
ret |= E1000_EECD_DO ;
return ret ;
}
static void
set_eecd ( E1000State * s , int index , uint32_t val )
{
uint32_t oldval = s -> eecd_state . old_eecd ;
s -> eecd_state . old_eecd = val & ( E1000_EECD_SK | E1000_EECD_CS |
E1000_EECD_DI | E1000_EECD_FWE_MASK | E1000_EECD_REQ );
if ( ! ( E1000_EECD_SK & ( val ^ oldval ))) // no clock edge
return ;
if ( ! ( E1000_EECD_SK & val )) { // falling edge
s -> eecd_state . bitnum_out ++ ;
return ;
}
if ( ! ( val & E1000_EECD_CS )) { // rising , no CS ( EEPROM reset )
memset ( & s -> eecd_state , 0 , sizeof s -> eecd_state );
264
265
266
267
268
/*
* restore old_eecd ' s E1000_EECD_SK ( known to be on )
* to avoid false detection of a clock edge
*/
s -> eecd_state . old_eecd = E1000_EECD_SK ;
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
return ;
}
s -> eecd_state . val_in <<= 1 ;
if ( val & E1000_EECD_DI )
s -> eecd_state . val_in |= 1 ;
if ( ++ s -> eecd_state . bitnum_in == 9 && ! s -> eecd_state . reading ) {
s -> eecd_state . bitnum_out = (( s -> eecd_state . val_in & 0x3f ) << 4 ) - 1 ;
s -> eecd_state . reading = ((( s -> eecd_state . val_in >> 6 ) & 7 ) ==
EEPROM_READ_OPCODE_MICROWIRE );
}
DBGOUT ( EEPROM , "eeprom bitnum in %d out %d, reading %d \n " ,
s -> eecd_state . bitnum_in , s -> eecd_state . bitnum_out ,
s -> eecd_state . reading );
}
static uint32_t
flash_eerd_read ( E1000State * s , int x )
{
unsigned int index , r = s -> mac_reg [ EERD ] & ~ E1000_EEPROM_RW_REG_START ;
if (( index = r >> E1000_EEPROM_RW_ADDR_SHIFT ) > EEPROM_CHECKSUM_REG )
return 0 ;
return ( s -> eeprom_data [ index ] << E1000_EEPROM_RW_REG_DATA ) |
E1000_EEPROM_RW_REG_DONE | r ;
}
static void
putsum ( uint8_t * data , uint32_t n , uint32_t sloc , uint32_t css , uint32_t cse )
{
298
299
uint32_t sum ;
300
301
if ( cse && cse < n )
n = cse + 1 ;
302
303
if ( sloc < n - 1 ) {
sum = net_checksum_add ( n - css , data + css );
304
cpu_to_be16wu (( uint16_t * )( data + sloc ),
305
306
net_checksum_finish ( sum ));
}
307
308
}
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
static inline int
vlan_enabled ( E1000State * s )
{
return (( s -> mac_reg [ CTRL ] & E1000_CTRL_VME ) != 0 );
}
static inline int
vlan_rx_filter_enabled ( E1000State * s )
{
return (( s -> mac_reg [ RCTL ] & E1000_RCTL_VFE ) != 0 );
}
static inline int
is_vlan_packet ( E1000State * s , const uint8_t * buf )
{
return ( be16_to_cpup (( uint16_t * )( buf + 12 )) ==
le16_to_cpup (( uint16_t * )( s -> mac_reg + VET )));
}
static inline int
is_vlan_txd ( uint32_t txd_lower )
{
return (( txd_lower & E1000_TXD_CMD_VLE ) != 0 );
}
334
335
336
337
338
339
340
static void
xmit_seg ( E1000State * s )
{
uint16_t len , * sp ;
unsigned int frames = s -> tx . tso_frames , css , sofar , n ;
struct e1000_tx * tp = & s -> tx ;
341
if ( tp -> tse && tp -> cptse ) {
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
css = tp -> ipcss ;
DBGOUT ( TXSUM , "frames %d size %d ipcss %d \n " ,
frames , tp -> size , css );
if ( tp -> ip ) { // IPv4
cpu_to_be16wu (( uint16_t * )( tp -> data + css + 2 ),
tp -> size - css );
cpu_to_be16wu (( uint16_t * )( tp -> data + css + 4 ),
be16_to_cpup (( uint16_t * )( tp -> data + css + 4 )) + frames );
} else // IPv6
cpu_to_be16wu (( uint16_t * )( tp -> data + css + 4 ),
tp -> size - css );
css = tp -> tucss ;
len = tp -> size - css ;
DBGOUT ( TXSUM , "tcp %d tucss %d len %d \n " , tp -> tcp , css , len );
if ( tp -> tcp ) {
sofar = frames * tp -> mss ;
cpu_to_be32wu (( uint32_t * )( tp -> data + css + 4 ), // seq
359
be32_to_cpupu (( uint32_t * )( tp -> data + css + 4 )) + sofar );
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
if ( tp -> paylen - sofar > tp -> mss )
tp -> data [ css + 13 ] &= ~ 9 ; // PSH , FIN
} else // UDP
cpu_to_be16wu (( uint16_t * )( tp -> data + css + 4 ), len );
if ( tp -> sum_needed & E1000_TXD_POPTS_TXSM ) {
// add pseudo - header length before checksum calculation
sp = ( uint16_t * )( tp -> data + tp -> tucso );
cpu_to_be16wu ( sp , be16_to_cpup ( sp ) + len );
}
tp -> tso_frames ++ ;
}
if ( tp -> sum_needed & E1000_TXD_POPTS_TXSM )
putsum ( tp -> data , tp -> size , tp -> tucso , tp -> tucss , tp -> tucse );
if ( tp -> sum_needed & E1000_TXD_POPTS_IXSM )
putsum ( tp -> data , tp -> size , tp -> ipcso , tp -> ipcss , tp -> ipcse );
376
377
378
379
380
381
if ( tp -> vlan_needed ) {
memmove ( tp -> vlan , tp -> data , 12 );
memcpy ( tp -> data + 8 , tp -> vlan_header , 4 );
qemu_send_packet ( s -> vc , tp -> vlan , tp -> size + 4 );
} else
qemu_send_packet ( s -> vc , tp -> data , tp -> size );
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
s -> mac_reg [ TPT ] ++ ;
s -> mac_reg [ GPTC ] ++ ;
n = s -> mac_reg [ TOTL ];
if (( s -> mac_reg [ TOTL ] += s -> tx . size ) < n )
s -> mac_reg [ TOTH ] ++ ;
}
static void
process_tx_desc ( E1000State * s , struct e1000_tx_desc * dp )
{
uint32_t txd_lower = le32_to_cpu ( dp -> lower . data );
uint32_t dtype = txd_lower & ( E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D );
unsigned int split_size = txd_lower & 0xffff , bytes , sz , op ;
unsigned int msh = 0xfffff , hdr = 0 ;
uint64_t addr ;
struct e1000_context_desc * xp = ( struct e1000_context_desc * ) dp ;
struct e1000_tx * tp = & s -> tx ;
if ( dtype == E1000_TXD_CMD_DEXT ) { // context descriptor
op = le32_to_cpu ( xp -> cmd_and_length );
tp -> ipcss = xp -> lower_setup . ip_fields . ipcss ;
tp -> ipcso = xp -> lower_setup . ip_fields . ipcso ;
tp -> ipcse = le16_to_cpu ( xp -> lower_setup . ip_fields . ipcse );
tp -> tucss = xp -> upper_setup . tcp_fields . tucss ;
tp -> tucso = xp -> upper_setup . tcp_fields . tucso ;
tp -> tucse = le16_to_cpu ( xp -> upper_setup . tcp_fields . tucse );
tp -> paylen = op & 0xfffff ;
tp -> hdr_len = xp -> tcp_seg_setup . fields . hdr_len ;
tp -> mss = le16_to_cpu ( xp -> tcp_seg_setup . fields . mss );
tp -> ip = ( op & E1000_TXD_CMD_IP ) ? 1 : 0 ;
tp -> tcp = ( op & E1000_TXD_CMD_TCP ) ? 1 : 0 ;
tp -> tse = ( op & E1000_TXD_CMD_TSE ) ? 1 : 0 ;
tp -> tso_frames = 0 ;
if ( tp -> tucso == 0 ) { // this is probably wrong
DBGOUT ( TXSUM , "TCP/UDP: cso 0! \n " );
tp -> tucso = tp -> tucss + ( tp -> tcp ? 16 : 6 );
}
return ;
420
421
} else if ( dtype == ( E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D )) {
// data descriptor
422
tp -> sum_needed = le32_to_cpu ( dp -> upper . data ) >> 8 ;
423
424
425
426
tp -> cptse = ( txd_lower & E1000_TXD_CMD_TSE ) ? 1 : 0 ;
} else
// legacy descriptor
tp -> cptse = 0 ;
427
428
429
430
431
432
433
434
435
436
if ( vlan_enabled ( s ) && is_vlan_txd ( txd_lower ) &&
( tp -> cptse || txd_lower & E1000_TXD_CMD_EOP )) {
tp -> vlan_needed = 1 ;
cpu_to_be16wu (( uint16_t * )( tp -> vlan_header ),
le16_to_cpup (( uint16_t * )( s -> mac_reg + VET )));
cpu_to_be16wu (( uint16_t * )( tp -> vlan_header + 2 ),
le16_to_cpu ( dp -> upper . fields . special ));
}
437
addr = le64_to_cpu ( dp -> buffer_addr );
438
if ( tp -> tse && tp -> cptse ) {
439
440
hdr = tp -> hdr_len ;
msh = hdr + tp -> mss ;
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
do {
bytes = split_size ;
if ( tp -> size + bytes > msh )
bytes = msh - tp -> size ;
cpu_physical_memory_read ( addr , tp -> data + tp -> size , bytes );
if (( sz = tp -> size + bytes ) >= hdr && tp -> size < hdr )
memmove ( tp -> header , tp -> data , hdr );
tp -> size = sz ;
addr += bytes ;
if ( sz == msh ) {
xmit_seg ( s );
memmove ( tp -> data , tp -> header , hdr );
tp -> size = hdr ;
}
} while ( split_size -= bytes );
} else if ( ! tp -> tse && tp -> cptse ) {
// context descriptor TSE is not set , while data descriptor TSE is set
DBGOUT ( TXERR , "TCP segmentaion Error \n " );
} else {
cpu_physical_memory_read ( addr , tp -> data + tp -> size , split_size );
tp -> size += split_size ;
462
463
464
465
}
if ( ! ( txd_lower & E1000_TXD_CMD_EOP ))
return ;
466
if ( ! ( tp -> tse && tp -> cptse && tp -> size < hdr ))
467
468
469
xmit_seg ( s );
tp -> tso_frames = 0 ;
tp -> sum_needed = 0 ;
470
tp -> vlan_needed = 0 ;
471
tp -> size = 0 ;
472
tp -> cptse = 0 ;
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
}
static uint32_t
txdesc_writeback ( target_phys_addr_t base , struct e1000_tx_desc * dp )
{
uint32_t txd_upper , txd_lower = le32_to_cpu ( dp -> lower . data );
if ( ! ( txd_lower & ( E1000_TXD_CMD_RS | E1000_TXD_CMD_RPS )))
return 0 ;
txd_upper = ( le32_to_cpu ( dp -> upper . data ) | E1000_TXD_STAT_DD ) &
~ ( E1000_TXD_STAT_EC | E1000_TXD_STAT_LC | E1000_TXD_STAT_TU );
dp -> upper . data = cpu_to_le32 ( txd_upper );
cpu_physical_memory_write ( base + (( char * ) & dp -> upper - ( char * ) dp ),
( void * ) & dp -> upper , sizeof ( dp -> upper ));
return E1000_ICR_TXDW ;
}
static void
start_xmit ( E1000State * s )
{
target_phys_addr_t base ;
struct e1000_tx_desc desc ;
uint32_t tdh_start = s -> mac_reg [ TDH ], cause = E1000_ICS_TXQE ;
if ( ! ( s -> mac_reg [ TCTL ] & E1000_TCTL_EN )) {
DBGOUT ( TX , "tx disabled \n " );
return ;
}
while ( s -> mac_reg [ TDH ] != s -> mac_reg [ TDT ]) {
base = (( uint64_t ) s -> mac_reg [ TDBAH ] << 32 ) + s -> mac_reg [ TDBAL ] +
sizeof ( struct e1000_tx_desc ) * s -> mac_reg [ TDH ];
cpu_physical_memory_read ( base , ( void * ) & desc , sizeof ( desc ));
DBGOUT ( TX , "index %d: %p : %x %x \n " , s -> mac_reg [ TDH ],
ths
authored
17 years ago
508
( void * )( intptr_t ) desc . buffer_addr , desc . lower . data ,
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
desc . upper . data );
process_tx_desc ( s , & desc );
cause |= txdesc_writeback ( base , & desc );
if ( ++ s -> mac_reg [ TDH ] * sizeof ( desc ) >= s -> mac_reg [ TDLEN ])
s -> mac_reg [ TDH ] = 0 ;
/*
* the following could happen only if guest sw assigns
* bogus values to TDT / TDLEN .
* there ' s nothing too intelligent we could do about this .
*/
if ( s -> mac_reg [ TDH ] == tdh_start ) {
DBGOUT ( TXERR , "TDH wraparound @%x, TDT %x, TDLEN %x \n " ,
tdh_start , s -> mac_reg [ TDT ], s -> mac_reg [ TDLEN ]);
break ;
}
}
set_ics ( s , 0 , cause );
}
static int
receive_filter ( E1000State * s , const uint8_t * buf , int size )
{
static uint8_t bcast [] = { 0xff , 0xff , 0xff , 0xff , 0xff , 0xff };
static int mta_shift [] = { 4 , 3 , 2 , 0 };
uint32_t f , rctl = s -> mac_reg [ RCTL ], ra [ 2 ], * rp ;
537
538
539
540
541
542
543
544
if ( is_vlan_packet ( s , buf ) && vlan_rx_filter_enabled ( s )) {
uint16_t vid = be16_to_cpup (( uint16_t * )( buf + 14 ));
uint32_t vfta = le32_to_cpup (( uint32_t * )( s -> mac_reg + VFTA ) +
(( vid >> 5 ) & 0x7f ));
if (( vfta & ( 1 << ( vid & 0x1f ))) == 0 )
return 0 ;
}
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
if ( rctl & E1000_RCTL_UPE ) // promiscuous
return 1 ;
if (( buf [ 0 ] & 1 ) && ( rctl & E1000_RCTL_MPE )) // promiscuous mcast
return 1 ;
if (( rctl & E1000_RCTL_BAM ) && ! memcmp ( buf , bcast , sizeof bcast ))
return 1 ;
for ( rp = s -> mac_reg + RA ; rp < s -> mac_reg + RA + 32 ; rp += 2 ) {
if ( ! ( rp [ 1 ] & E1000_RAH_AV ))
continue ;
ra [ 0 ] = cpu_to_le32 ( rp [ 0 ]);
ra [ 1 ] = cpu_to_le32 ( rp [ 1 ]);
if ( ! memcmp ( buf , ( uint8_t * ) ra , 6 )) {
DBGOUT ( RXFILTER ,
"unicast match[%d]: %02x:%02x:%02x:%02x:%02x:%02x \n " ,
( int )( rp - s -> mac_reg - RA ) / 2 ,
buf [ 0 ], buf [ 1 ], buf [ 2 ], buf [ 3 ], buf [ 4 ], buf [ 5 ]);
return 1 ;
}
}
DBGOUT ( RXFILTER , "unicast mismatch: %02x:%02x:%02x:%02x:%02x:%02x \n " ,
buf [ 0 ], buf [ 1 ], buf [ 2 ], buf [ 3 ], buf [ 4 ], buf [ 5 ]);
f = mta_shift [( rctl >> E1000_RCTL_MO_SHIFT ) & 3 ];
f = ((( buf [ 5 ] << 8 ) | buf [ 4 ]) >> f ) & 0xfff ;
if ( s -> mac_reg [ MTA + ( f >> 5 )] & ( 1 << ( f & 0x1f )))
return 1 ;
DBGOUT ( RXFILTER ,
"dropping, inexact filter mismatch: %02x:%02x:%02x:%02x:%02x:%02x MO %d MTA[%d] %x \n " ,
buf [ 0 ], buf [ 1 ], buf [ 2 ], buf [ 3 ], buf [ 4 ], buf [ 5 ],
( rctl >> E1000_RCTL_MO_SHIFT ) & 3 , f >> 5 ,
s -> mac_reg [ MTA + ( f >> 5 )]);
return 0 ;
}
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
static void
e1000_set_link_status ( VLANClientState * vc )
{
E1000State * s = vc -> opaque ;
uint32_t old_status = s -> mac_reg [ STATUS ];
if ( vc -> link_down )
s -> mac_reg [ STATUS ] &= ~ E1000_STATUS_LU ;
else
s -> mac_reg [ STATUS ] |= E1000_STATUS_LU ;
if ( s -> mac_reg [ STATUS ] != old_status )
set_ics ( s , 0 , E1000_ICR_LSC );
}
598
static int
599
e1000_can_receive ( VLANClientState * vc )
600
{
601
E1000State * s = vc -> opaque ;
602
603
return ( s -> mac_reg [ RCTL ] & E1000_RCTL_EN );
604
605
}
606
static ssize_t
607
e1000_receive ( VLANClientState * vc , const uint8_t * buf , size_t size )
608
{
609
E1000State * s = vc -> opaque ;
610
611
612
613
struct e1000_rx_desc desc ;
target_phys_addr_t base ;
unsigned int n , rdt ;
uint32_t rdh_start ;
614
615
uint16_t vlan_special = 0 ;
uint8_t vlan_status = 0 , vlan_offset = 0 ;
616
617
if ( ! ( s -> mac_reg [ RCTL ] & E1000_RCTL_EN ))
618
return - 1 ;
619
620
if ( size > s -> rxbuf_size ) {
621
622
DBGOUT ( RX , "packet too large for buffers (%lu > %d) \n " ,
( unsigned long ) size , s -> rxbuf_size );
623
return - 1 ;
624
625
626
}
if ( ! receive_filter ( s , buf , size ))
627
return size ;
628
629
630
631
632
633
634
635
636
if ( vlan_enabled ( s ) && is_vlan_packet ( s , buf )) {
vlan_special = cpu_to_le16 ( be16_to_cpup (( uint16_t * )( buf + 14 )));
memmove (( void * )( buf + 4 ), buf , 12 );
vlan_status = E1000_RXD_STAT_VP ;
vlan_offset = 4 ;
size -= 4 ;
}
637
638
639
640
641
rdh_start = s -> mac_reg [ RDH ];
size += 4 ; // for the header
do {
if ( s -> mac_reg [ RDH ] == s -> mac_reg [ RDT ] && s -> check_rxov ) {
set_ics ( s , 0 , E1000_ICS_RXO );
642
return - 1 ;
643
644
645
646
}
base = (( uint64_t ) s -> mac_reg [ RDBAH ] << 32 ) + s -> mac_reg [ RDBAL ] +
sizeof ( desc ) * s -> mac_reg [ RDH ];
cpu_physical_memory_read ( base , ( void * ) & desc , sizeof ( desc ));
647
648
desc . special = vlan_special ;
desc . status |= ( vlan_status | E1000_RXD_STAT_DD );
649
650
if ( desc . buffer_addr ) {
cpu_physical_memory_write ( le64_to_cpu ( desc . buffer_addr ),
651
( void * )( buf + vlan_offset ), size );
652
653
654
655
656
657
658
659
660
661
662
663
664
665
desc . length = cpu_to_le16 ( size );
desc . status |= E1000_RXD_STAT_EOP | E1000_RXD_STAT_IXSM ;
} else // as per intel docs ; skip descriptors with null buf addr
DBGOUT ( RX , "Null RX descriptor!! \n " );
cpu_physical_memory_write ( base , ( void * ) & desc , sizeof ( desc ));
if ( ++ s -> mac_reg [ RDH ] * sizeof ( desc ) >= s -> mac_reg [ RDLEN ])
s -> mac_reg [ RDH ] = 0 ;
s -> check_rxov = 1 ;
/* see comment in start_xmit; same here */
if ( s -> mac_reg [ RDH ] == rdh_start ) {
DBGOUT ( RXERR , "RDH wraparound @%x, RDT %x, RDLEN %x \n " ,
rdh_start , s -> mac_reg [ RDT ], s -> mac_reg [ RDLEN ]);
set_ics ( s , 0 , E1000_ICS_RXO );
666
return - 1 ;
667
668
669
670
671
672
673
674
675
676
677
678
}
} while ( desc . buffer_addr == 0 );
s -> mac_reg [ GPRC ] ++ ;
s -> mac_reg [ TPR ] ++ ;
n = s -> mac_reg [ TORL ];
if (( s -> mac_reg [ TORL ] += size ) < n )
s -> mac_reg [ TORH ] ++ ;
n = E1000_ICS_RXT0 ;
if (( rdt = s -> mac_reg [ RDT ]) < s -> mac_reg [ RDH ])
rdt += s -> mac_reg [ RDLEN ] / sizeof ( desc );
679
680
if ((( rdt - s -> mac_reg [ RDH ]) * sizeof ( desc )) <= s -> mac_reg [ RDLEN ] >>
s -> rxbuf_min_shift )
681
682
683
n |= E1000_ICS_RXDMT0 ;
set_ics ( s , 0 , n );
684
685
return size ;
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
}
static uint32_t
mac_readreg ( E1000State * s , int index )
{
return s -> mac_reg [ index ];
}
static uint32_t
mac_icr_read ( E1000State * s , int index )
{
uint32_t ret = s -> mac_reg [ ICR ];
DBGOUT ( INTERRUPT , "ICR read: %x \n " , ret );
set_interrupt_cause ( s , 0 , 0 );
return ret ;
}
static uint32_t
mac_read_clr4 ( E1000State * s , int index )
{
uint32_t ret = s -> mac_reg [ index ];
s -> mac_reg [ index ] = 0 ;
return ret ;
}
static uint32_t
mac_read_clr8 ( E1000State * s , int index )
{
uint32_t ret = s -> mac_reg [ index ];
s -> mac_reg [ index ] = 0 ;
s -> mac_reg [ index - 1 ] = 0 ;
return ret ;
}
static void
mac_writereg ( E1000State * s , int index , uint32_t val )
{
s -> mac_reg [ index ] = val ;
}
static void
set_rdt ( E1000State * s , int index , uint32_t val )
{
s -> check_rxov = 0 ;
s -> mac_reg [ index ] = val & 0xffff ;
}
static void
set_16bit ( E1000State * s , int index , uint32_t val )
{
s -> mac_reg [ index ] = val & 0xffff ;
}
static void
set_dlen ( E1000State * s , int index , uint32_t val )
{
s -> mac_reg [ index ] = val & 0xfff80 ;
}
static void
set_tctl ( E1000State * s , int index , uint32_t val )
{
s -> mac_reg [ index ] = val ;
s -> mac_reg [ TDT ] &= 0xffff ;
start_xmit ( s );
}
static void
set_icr ( E1000State * s , int index , uint32_t val )
{
DBGOUT ( INTERRUPT , "set_icr %x \n " , val );
set_interrupt_cause ( s , 0 , s -> mac_reg [ ICR ] & ~ val );
}
static void
set_imc ( E1000State * s , int index , uint32_t val )
{
s -> mac_reg [ IMS ] &= ~ val ;
set_ics ( s , 0 , 0 );
}
static void
set_ims ( E1000State * s , int index , uint32_t val )
{
s -> mac_reg [ IMS ] |= val ;
set_ics ( s , 0 , 0 );
}
# define getreg ( x ) [ x ] = mac_readreg
static uint32_t ( * macreg_readops [])( E1000State * , int ) = {
getreg ( PBA ), getreg ( RCTL ), getreg ( TDH ), getreg ( TXDCTL ),
getreg ( WUFC ), getreg ( TDT ), getreg ( CTRL ), getreg ( LEDCTL ),
getreg ( MANC ), getreg ( MDIC ), getreg ( SWSM ), getreg ( STATUS ),
getreg ( TORL ), getreg ( TOTL ), getreg ( IMS ), getreg ( TCTL ),
783
getreg ( RDH ), getreg ( RDT ), getreg ( VET ),
784
785
786
787
788
789
790
[ TOTH ] = mac_read_clr8 , [ TORH ] = mac_read_clr8 , [ GPRC ] = mac_read_clr4 ,
[ GPTC ] = mac_read_clr4 , [ TPR ] = mac_read_clr4 , [ TPT ] = mac_read_clr4 ,
[ ICR ] = mac_icr_read , [ EECD ] = get_eecd , [ EERD ] = flash_eerd_read ,
[ CRCERRS ... MPC ] = & mac_readreg ,
[ RA ... RA + 31 ] = & mac_readreg ,
[ MTA ... MTA + 127 ] = & mac_readreg ,
791
[ VFTA ... VFTA + 127 ] = & mac_readreg ,
792
};
malc
authored
16 years ago
793
enum { NREADOPS = ARRAY_SIZE ( macreg_readops ) };
794
795
796
797
798
# define putreg ( x ) [ x ] = mac_writereg
static void ( * macreg_writeops [])( E1000State * , int , uint32_t ) = {
putreg ( PBA ), putreg ( EERD ), putreg ( SWSM ), putreg ( WUFC ),
putreg ( TDBAL ), putreg ( TDBAH ), putreg ( TXDCTL ), putreg ( RDBAH ),
799
putreg ( RDBAL ), putreg ( LEDCTL ), putreg ( VET ),
800
801
802
803
[ TDLEN ] = set_dlen , [ RDLEN ] = set_dlen , [ TCTL ] = set_tctl ,
[ TDT ] = set_tctl , [ MDIC ] = set_mdic , [ ICS ] = set_ics ,
[ TDH ] = set_16bit , [ RDH ] = set_16bit , [ RDT ] = set_rdt ,
[ IMC ] = set_imc , [ IMS ] = set_ims , [ ICR ] = set_icr ,
804
[ EECD ] = set_eecd , [ RCTL ] = set_rx_control , [ CTRL ] = set_ctrl ,
805
806
[ RA ... RA + 31 ] = & mac_writereg ,
[ MTA ... MTA + 127 ] = & mac_writereg ,
807
[ VFTA ... VFTA + 127 ] = & mac_writereg ,
808
};
malc
authored
16 years ago
809
enum { NWRITEOPS = ARRAY_SIZE ( macreg_writeops ) };
810
811
812
813
814
static void
e1000_mmio_writel ( void * opaque , target_phys_addr_t addr , uint32_t val )
{
E1000State * s = opaque ;
815
unsigned int index = ( addr & 0x1ffff ) >> 2 ;
816
817
818
819
# ifdef TARGET_WORDS_BIGENDIAN
val = bswap32 ( val );
# endif
820
if ( index < NWRITEOPS && macreg_writeops [ index ])
821
macreg_writeops [ index ]( s , index , val );
822
823
824
825
826
827
828
829
830
831
832
833
else if ( index < NREADOPS && macreg_readops [ index ])
DBGOUT ( MMIO , "e1000_mmio_writel RO %x: 0x%04x \n " , index << 2 , val );
else
DBGOUT ( UNKNOWN , "MMIO unknown write addr=0x%08x,val=0x%08x \n " ,
index << 2 , val );
}
static void
e1000_mmio_writew ( void * opaque , target_phys_addr_t addr , uint32_t val )
{
// emulate hw without byte enables : no RMW
e1000_mmio_writel ( opaque , addr & ~ 3 ,
834
( val & 0xffff ) << ( 8 * ( addr & 3 )));
835
836
837
838
839
840
841
}
static void
e1000_mmio_writeb ( void * opaque , target_phys_addr_t addr , uint32_t val )
{
// emulate hw without byte enables : no RMW
e1000_mmio_writel ( opaque , addr & ~ 3 ,
842
( val & 0xff ) << ( 8 * ( addr & 3 )));
843
844
845
846
847
848
}
static uint32_t
e1000_mmio_readl ( void * opaque , target_phys_addr_t addr )
{
E1000State * s = opaque ;
849
unsigned int index = ( addr & 0x1ffff ) >> 2 ;
850
851
if ( index < NREADOPS && macreg_readops [ index ])
852
853
854
855
856
857
858
{
uint32_t val = macreg_readops [ index ]( s , index );
# ifdef TARGET_WORDS_BIGENDIAN
val = bswap32 ( val );
# endif
return val ;
}
859
860
861
862
863
864
865
DBGOUT ( UNKNOWN , "MMIO unknown read addr=0x%08x \n " , index << 2 );
return 0 ;
}
static uint32_t
e1000_mmio_readb ( void * opaque , target_phys_addr_t addr )
{
866
return (( e1000_mmio_readl ( opaque , addr & ~ 3 )) >>
867
868
869
870
871
872
( 8 * ( addr & 3 ))) & 0xff ;
}
static uint32_t
e1000_mmio_readw ( void * opaque , target_phys_addr_t addr )
{
873
874
return (( e1000_mmio_readl ( opaque , addr & ~ 3 )) >>
( 8 * ( addr & 3 ))) & 0xffff ;
875
876
}
877
static const int mac_regtosave [] = {
878
879
880
881
CTRL , EECD , EERD , GPRC , GPTC , ICR , ICS , IMC , IMS ,
LEDCTL , MANC , MDIC , MPC , PBA , RCTL , RDBAH , RDBAL , RDH ,
RDLEN , RDT , STATUS , SWSM , TCTL , TDBAH , TDBAL , TDH , TDLEN ,
TDT , TORH , TORL , TOTH , TOTL , TPR , TPT , TXDCTL , WUFC ,
882
VET ,
883
};
malc
authored
16 years ago
884
enum { MAC_NSAVE = ARRAY_SIZE ( mac_regtosave ) };
885
886
static const struct {
887
888
int size ;
int array0 ;
889
} mac_regarraystosave [] = { { 32 , RA }, { 128 , MTA }, { 128 , VFTA } };
malc
authored
16 years ago
890
enum { MAC_NARRAYS = ARRAY_SIZE ( mac_regarraystosave ) };
891
892
893
894
895
896
897
898
static void
nic_save ( QEMUFile * f , void * opaque )
{
E1000State * s = ( E1000State * ) opaque ;
int i , j ;
pci_device_save ( & s -> dev , f );
899
qemu_put_be32 ( f , 0 );
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
qemu_put_be32s ( f , & s -> rxbuf_size );
qemu_put_be32s ( f , & s -> rxbuf_min_shift );
qemu_put_be32s ( f , & s -> eecd_state . val_in );
qemu_put_be16s ( f , & s -> eecd_state . bitnum_in );
qemu_put_be16s ( f , & s -> eecd_state . bitnum_out );
qemu_put_be16s ( f , & s -> eecd_state . reading );
qemu_put_be32s ( f , & s -> eecd_state . old_eecd );
qemu_put_8s ( f , & s -> tx . ipcss );
qemu_put_8s ( f , & s -> tx . ipcso );
qemu_put_be16s ( f , & s -> tx . ipcse );
qemu_put_8s ( f , & s -> tx . tucss );
qemu_put_8s ( f , & s -> tx . tucso );
qemu_put_be16s ( f , & s -> tx . tucse );
qemu_put_be32s ( f , & s -> tx . paylen );
qemu_put_8s ( f , & s -> tx . hdr_len );
qemu_put_be16s ( f , & s -> tx . mss );
qemu_put_be16s ( f , & s -> tx . size );
qemu_put_be16s ( f , & s -> tx . tso_frames );
qemu_put_8s ( f , & s -> tx . sum_needed );
919
920
qemu_put_s8s ( f , & s -> tx . ip );
qemu_put_s8s ( f , & s -> tx . tcp );
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
qemu_put_buffer ( f , s -> tx . header , sizeof s -> tx . header );
qemu_put_buffer ( f , s -> tx . data , sizeof s -> tx . data );
for ( i = 0 ; i < 64 ; i ++ )
qemu_put_be16s ( f , s -> eeprom_data + i );
for ( i = 0 ; i < 0x20 ; i ++ )
qemu_put_be16s ( f , s -> phy_reg + i );
for ( i = 0 ; i < MAC_NSAVE ; i ++ )
qemu_put_be32s ( f , s -> mac_reg + mac_regtosave [ i ]);
for ( i = 0 ; i < MAC_NARRAYS ; i ++ )
for ( j = 0 ; j < mac_regarraystosave [ i ]. size ; j ++ )
qemu_put_be32s ( f ,
s -> mac_reg + mac_regarraystosave [ i ]. array0 + j );
}
static int
nic_load ( QEMUFile * f , void * opaque , int version_id )
{
E1000State * s = ( E1000State * ) opaque ;
int i , j , ret ;
if (( ret = pci_device_load ( & s -> dev , f )) < 0 )
return ret ;
ths
authored
17 years ago
943
if ( version_id == 1 )
944
qemu_get_sbe32s ( f , & i ); /* once some unused instance id */
945
qemu_get_be32 ( f ); /* Ignored. Was mmio_base. */
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
qemu_get_be32s ( f , & s -> rxbuf_size );
qemu_get_be32s ( f , & s -> rxbuf_min_shift );
qemu_get_be32s ( f , & s -> eecd_state . val_in );
qemu_get_be16s ( f , & s -> eecd_state . bitnum_in );
qemu_get_be16s ( f , & s -> eecd_state . bitnum_out );
qemu_get_be16s ( f , & s -> eecd_state . reading );
qemu_get_be32s ( f , & s -> eecd_state . old_eecd );
qemu_get_8s ( f , & s -> tx . ipcss );
qemu_get_8s ( f , & s -> tx . ipcso );
qemu_get_be16s ( f , & s -> tx . ipcse );
qemu_get_8s ( f , & s -> tx . tucss );
qemu_get_8s ( f , & s -> tx . tucso );
qemu_get_be16s ( f , & s -> tx . tucse );
qemu_get_be32s ( f , & s -> tx . paylen );
qemu_get_8s ( f , & s -> tx . hdr_len );
qemu_get_be16s ( f , & s -> tx . mss );
qemu_get_be16s ( f , & s -> tx . size );
qemu_get_be16s ( f , & s -> tx . tso_frames );
qemu_get_8s ( f , & s -> tx . sum_needed );
965
966
qemu_get_s8s ( f , & s -> tx . ip );
qemu_get_s8s ( f , & s -> tx . tcp );
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
qemu_get_buffer ( f , s -> tx . header , sizeof s -> tx . header );
qemu_get_buffer ( f , s -> tx . data , sizeof s -> tx . data );
for ( i = 0 ; i < 64 ; i ++ )
qemu_get_be16s ( f , s -> eeprom_data + i );
for ( i = 0 ; i < 0x20 ; i ++ )
qemu_get_be16s ( f , s -> phy_reg + i );
for ( i = 0 ; i < MAC_NSAVE ; i ++ )
qemu_get_be32s ( f , s -> mac_reg + mac_regtosave [ i ]);
for ( i = 0 ; i < MAC_NARRAYS ; i ++ )
for ( j = 0 ; j < mac_regarraystosave [ i ]. size ; j ++ )
qemu_get_be32s ( f ,
s -> mac_reg + mac_regarraystosave [ i ]. array0 + j );
return 0 ;
}
982
static const uint16_t e1000_eeprom_template [ 64 ] = {
983
984
985
986
987
988
989
990
991
992
0x0000 , 0x0000 , 0x0000 , 0x0000 , 0xffff , 0x0000 , 0x0000 , 0x0000 ,
0x3000 , 0x1000 , 0x6403 , E1000_DEVID , 0x8086 , E1000_DEVID , 0x8086 , 0x3040 ,
0x0008 , 0x2000 , 0x7e14 , 0x0048 , 0x1000 , 0x00d8 , 0x0000 , 0x2700 ,
0x6cc9 , 0x3150 , 0x0722 , 0x040b , 0x0984 , 0x0000 , 0xc000 , 0x0706 ,
0x1008 , 0x0000 , 0x0f04 , 0x7fff , 0x4d01 , 0xffff , 0xffff , 0xffff ,
0xffff , 0xffff , 0xffff , 0xffff , 0xffff , 0xffff , 0xffff , 0xffff ,
0x0100 , 0x4000 , 0x121c , 0xffff , 0xffff , 0xffff , 0xffff , 0xffff ,
0xffff , 0xffff , 0xffff , 0xffff , 0xffff , 0xffff , 0xffff , 0x0000 ,
};
993
static const uint16_t phy_reg_init [] = {
994
995
996
997
998
[ PHY_CTRL ] = 0x1140 , [ PHY_STATUS ] = 0x796d , // link initially up
[ PHY_ID1 ] = 0x141 , [ PHY_ID2 ] = PHY_ID2_INIT ,
[ PHY_1000T_CTRL ] = 0x0e00 , [ M88E1000_PHY_SPEC_CTRL ] = 0x360 ,
[ M88E1000_EXT_PHY_SPEC_CTRL ] = 0x0d60 , [ PHY_AUTONEG_ADV ] = 0xde1 ,
[ PHY_LP_ABILITY ] = 0x1e0 , [ PHY_1000T_STATUS ] = 0x3c00 ,
999
[ M88E1000_PHY_SPEC_STATUS ] = 0xac00 ,
1000
1001
};
1002
static const uint32_t mac_reg_init [] = {
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
[ PBA ] = 0x00100030 ,
[ LEDCTL ] = 0x602 ,
[ CTRL ] = E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 |
E1000_CTRL_SPD_1000 | E1000_CTRL_SLU ,
[ STATUS ] = 0x80000000 | E1000_STATUS_GIO_MASTER_ENABLE |
E1000_STATUS_ASDV | E1000_STATUS_MTXCKOK |
E1000_STATUS_SPEED_1000 | E1000_STATUS_FD |
E1000_STATUS_LU ,
[ MANC ] = E1000_MANC_EN_MNG2HOST | E1000_MANC_RCV_TCO_EN |
E1000_MANC_ARP_EN | E1000_MANC_0298_EN |
E1000_MANC_RMCP_EN ,
};
/* PCI interface */
static CPUWriteMemoryFunc * e1000_mmio_write [] = {
e1000_mmio_writeb , e1000_mmio_writew , e1000_mmio_writel
};
static CPUReadMemoryFunc * e1000_mmio_read [] = {
e1000_mmio_readb , e1000_mmio_readw , e1000_mmio_readl
};
static void
e1000_mmio_map ( PCIDevice * pci_dev , int region_num ,
uint32_t addr , uint32_t size , int type )
{
E1000State * d = ( E1000State * ) pci_dev ;
1031
1032
1033
1034
1035
1036
int i ;
const uint32_t excluded_regs [] = {
E1000_MDIC , E1000_ICR , E1000_ICS , E1000_IMS ,
E1000_IMC , E1000_TCTL , E1000_TDT , PNPMMIO_SIZE
};
1037
1038
1039
1040
DBGOUT ( MMIO , "e1000_mmio_map addr=0x%08x 0x%08x \n " , addr , size );
cpu_register_physical_memory ( addr , PNPMMIO_SIZE , d -> mmio_index );
1041
1042
1043
1044
1045
1046
qemu_register_coalesced_mmio ( addr , excluded_regs [ 0 ]);
for ( i = 0 ; excluded_regs [ i ] != PNPMMIO_SIZE ; i ++ )
qemu_register_coalesced_mmio ( addr + excluded_regs [ i ] + 4 ,
excluded_regs [ i + 1 ] -
excluded_regs [ i ] - 4 );
1047
1048
}
1049
1050
1051
1052
1053
1054
1055
1056
static void
e1000_cleanup ( VLANClientState * vc )
{
E1000State * d = vc -> opaque ;
unregister_savevm ( "e1000" , d );
}
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
static int
pci_e1000_uninit ( PCIDevice * dev )
{
E1000State * d = ( E1000State * ) dev ;
cpu_unregister_io_memory ( d -> mmio_index );
return 0 ;
}
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
static void e1000_reset ( void * opaque )
{
E1000State * d = opaque ;
memset ( d -> phy_reg , 0 , sizeof d -> phy_reg );
memmove ( d -> phy_reg , phy_reg_init , sizeof phy_reg_init );
memset ( d -> mac_reg , 0 , sizeof d -> mac_reg );
memmove ( d -> mac_reg , mac_reg_init , sizeof mac_reg_init );
d -> rxbuf_min_shift = 1 ;
memset ( & d -> tx , 0 , sizeof d -> tx );
}
1079
static void pci_e1000_init ( PCIDevice * pci_dev )
1080
{
1081
E1000State * d = ( E1000State * ) pci_dev ;
1082
1083
uint8_t * pci_conf ;
uint16_t checksum = 0 ;
1084
static const char info_str [] = "e1000" ;
1085
int i ;
1086
uint8_t macaddr [ 6 ];
1087
1088
1089
pci_conf = d -> dev . config ;
1090
1091
pci_config_set_vendor_id ( pci_conf , PCI_VENDOR_ID_INTEL );
pci_config_set_device_id ( pci_conf , E1000_DEVID );
1092
1093
1094
* ( uint16_t * )( pci_conf + 0x04 ) = cpu_to_le16 ( 0x0407 );
* ( uint16_t * )( pci_conf + 0x06 ) = cpu_to_le16 ( 0x0010 );
pci_conf [ 0x08 ] = 0x03 ;
1095
pci_config_set_class ( pci_conf , PCI_CLASS_NETWORK_ETHERNET );
1096
1097
1098
1099
pci_conf [ 0x0c ] = 0x10 ;
pci_conf [ 0x3d ] = 1 ; // interrupt pin 0
1100
d -> mmio_index = cpu_register_io_memory ( e1000_mmio_read ,
1101
1102
e1000_mmio_write , d );
1103
pci_register_bar (( PCIDevice * ) d , 0 , PNPMMIO_SIZE ,
1104
1105
PCI_ADDRESS_SPACE_MEM , e1000_mmio_map );
1106
pci_register_bar (( PCIDevice * ) d , 1 , IOPORT_SIZE ,
1107
1108
1109
1110
PCI_ADDRESS_SPACE_IO , ioport_map );
memmove ( d -> eeprom_data , e1000_eeprom_template ,
sizeof e1000_eeprom_template );
1111
qdev_get_macaddr ( & d -> dev . qdev , macaddr );
1112
for ( i = 0 ; i < 3 ; i ++ )
1113
d -> eeprom_data [ i ] = ( macaddr [ 2 * i + 1 ] << 8 ) | macaddr [ 2 * i ];
1114
1115
1116
1117
1118
for ( i = 0 ; i < EEPROM_CHECKSUM_REG ; i ++ )
checksum += d -> eeprom_data [ i ];
checksum = ( uint16_t ) EEPROM_SUM - checksum ;
d -> eeprom_data [ EEPROM_CHECKSUM_REG ] = checksum ;
1119
d -> vc = qdev_get_vlan_client ( & d -> dev . qdev ,
1120
1121
e1000_can_receive , e1000_receive ,
NULL , e1000_cleanup , d );
1122
d -> vc -> link_status_changed = e1000_set_link_status ;
1123
1124
qemu_format_nic_info_str ( d -> vc , macaddr );
1125
ths
authored
17 years ago
1126
register_savevm ( info_str , - 1 , 2 , nic_save , nic_load , d );
1127
d -> dev . unregister = pci_e1000_uninit ;
1128
qemu_register_reset ( e1000_reset , d );
1129
e1000_reset ( d );
1130
}
1131
1132
1133
1134
1135
1136
1137
static PCIDeviceInfo e1000_info = {
. qdev . name = "e1000" ,
. qdev . size = sizeof ( E1000State ),
. init = pci_e1000_init ,
};
1138
1139
static void e1000_register_devices ( void )
{
1140
pci_qdev_register ( & e1000_info );
1141
}
1142
1143
device_init ( e1000_register_devices )