|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
/*
* gdb server stub
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
|
|
20
21
22
23
24
25
26
27
28
29
|
#ifdef CONFIG_USER_ONLY
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include "qemu.h"
#else
|
|
30
|
#include "vl.h"
|
|
31
|
#endif
|
|
32
|
|
|
33
34
35
36
37
|
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <signal.h>
|
|
38
|
//#define DEBUG_GDB
|
|
39
|
|
|
40
41
42
43
44
45
|
enum RSState {
RS_IDLE,
RS_GETLINE,
RS_CHKSUM1,
RS_CHKSUM2,
};
|
|
46
47
|
/* XXX: This is not thread safe. Do we care? */
static int gdbserver_fd = -1;
|
|
48
|
|
|
49
|
typedef struct GDBState {
|
|
50
|
enum RSState state; /* parsing state */
|
|
51
52
53
54
|
int fd;
char line_buf[4096];
int line_buf_index;
int line_csum;
|
|
55
56
57
|
#ifdef CONFIG_USER_ONLY
int running_state;
#endif
|
|
58
|
} GDBState;
|
|
59
|
|
|
60
61
62
63
64
|
#ifdef CONFIG_USER_ONLY
/* XXX: remove this hack. */
static GDBState gdbserver_state;
#endif
|
|
65
|
static int get_char(GDBState *s)
|
|
66
67
68
69
70
|
{
uint8_t ch;
int ret;
for(;;) {
|
|
71
|
ret = read(s->fd, &ch, 1);
|
|
72
73
74
75
76
77
78
79
80
81
82
83
|
if (ret < 0) {
if (errno != EINTR && errno != EAGAIN)
return -1;
} else if (ret == 0) {
return -1;
} else {
break;
}
}
return ch;
}
|
|
84
|
static void put_buffer(GDBState *s, const uint8_t *buf, int len)
|
|
85
86
87
88
|
{
int ret;
while (len > 0) {
|
|
89
|
ret = write(s->fd, buf, len);
|
|
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
|
if (ret < 0) {
if (errno != EINTR && errno != EAGAIN)
return;
} else {
buf += ret;
len -= ret;
}
}
}
static inline int fromhex(int v)
{
if (v >= '0' && v <= '9')
return v - '0';
else if (v >= 'A' && v <= 'F')
return v - 'A' + 10;
else if (v >= 'a' && v <= 'f')
return v - 'a' + 10;
else
return 0;
}
static inline int tohex(int v)
{
if (v < 10)
return v + '0';
else
return v - 10 + 'a';
}
static void memtohex(char *buf, const uint8_t *mem, int len)
{
int i, c;
char *q;
q = buf;
for(i = 0; i < len; i++) {
c = mem[i];
*q++ = tohex(c >> 4);
*q++ = tohex(c & 0xf);
}
*q = '\0';
}
static void hextomem(uint8_t *mem, const char *buf, int len)
{
int i;
for(i = 0; i < len; i++) {
mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
buf += 2;
}
}
/* return -1 if error, 0 if OK */
|
|
144
|
static int put_packet(GDBState *s, char *buf)
|
|
145
146
147
148
149
150
151
152
153
154
|
{
char buf1[3];
int len, csum, ch, i;
#ifdef DEBUG_GDB
printf("reply='%s'\n", buf);
#endif
for(;;) {
buf1[0] = '$';
|
|
155
|
put_buffer(s, buf1, 1);
|
|
156
|
len = strlen(buf);
|
|
157
|
put_buffer(s, buf, len);
|
|
158
159
160
161
162
163
164
165
|
csum = 0;
for(i = 0; i < len; i++) {
csum += buf[i];
}
buf1[0] = '#';
buf1[1] = tohex((csum >> 4) & 0xf);
buf1[2] = tohex((csum) & 0xf);
|
|
166
|
put_buffer(s, buf1, 3);
|
|
167
|
|
|
168
|
ch = get_char(s);
|
|
169
170
171
172
173
174
175
176
|
if (ch < 0)
return -1;
if (ch == '+')
break;
}
return 0;
}
|
|
177
178
179
180
|
#if defined(TARGET_I386)
static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
{
|
|
181
|
uint32_t *registers = (uint32_t *)mem_buf;
|
|
182
183
184
|
int i, fpus;
for(i = 0; i < 8; i++) {
|
|
185
|
registers[i] = env->regs[i];
|
|
186
|
}
|
|
187
188
189
190
191
192
193
194
|
registers[8] = env->eip;
registers[9] = env->eflags;
registers[10] = env->segs[R_CS].selector;
registers[11] = env->segs[R_SS].selector;
registers[12] = env->segs[R_DS].selector;
registers[13] = env->segs[R_ES].selector;
registers[14] = env->segs[R_FS].selector;
registers[15] = env->segs[R_GS].selector;
|
|
195
196
197
198
|
/* XXX: convert floats */
for(i = 0; i < 8; i++) {
memcpy(mem_buf + 16 * 4 + i * 10, &env->fpregs[i], 10);
}
|
|
199
|
registers[36] = env->fpuc;
|
|
200
|
fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
|
|
201
202
203
204
205
206
207
208
209
210
211
212
|
registers[37] = fpus;
registers[38] = 0; /* XXX: convert tags */
registers[39] = 0; /* fiseg */
registers[40] = 0; /* fioff */
registers[41] = 0; /* foseg */
registers[42] = 0; /* fooff */
registers[43] = 0; /* fop */
for(i = 0; i < 16; i++)
tswapls(®isters[i]);
for(i = 36; i < 44; i++)
tswapls(®isters[i]);
|
|
213
214
215
216
217
218
219
220
221
222
223
|
return 44 * 4;
}
static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
{
uint32_t *registers = (uint32_t *)mem_buf;
int i;
for(i = 0; i < 8; i++) {
env->regs[i] = tswapl(registers[i]);
}
|
|
224
225
|
env->eip = tswapl(registers[8]);
env->eflags = tswapl(registers[9]);
|
|
226
227
228
229
230
231
232
233
234
235
236
237
238
|
#if defined(CONFIG_USER_ONLY)
#define LOAD_SEG(index, sreg)\
if (tswapl(registers[index]) != env->segs[sreg].selector)\
cpu_x86_load_seg(env, sreg, tswapl(registers[index]));
LOAD_SEG(10, R_CS);
LOAD_SEG(11, R_SS);
LOAD_SEG(12, R_DS);
LOAD_SEG(13, R_ES);
LOAD_SEG(14, R_FS);
LOAD_SEG(15, R_GS);
#endif
}
|
|
239
240
241
|
#elif defined (TARGET_PPC)
static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
{
|
|
242
|
uint32_t *registers = (uint32_t *)mem_buf, tmp;
|
|
243
244
245
|
int i;
/* fill in gprs */
|
|
246
|
for(i = 0; i < 32; i++) {
|
|
247
|
registers[i] = tswapl(env->gpr[i]);
|
|
248
249
250
|
}
/* fill in fprs */
for (i = 0; i < 32; i++) {
|
|
251
252
|
registers[(i * 2) + 32] = tswapl(*((uint32_t *)&env->fpr[i]));
registers[(i * 2) + 33] = tswapl(*((uint32_t *)&env->fpr[i] + 1));
|
|
253
254
|
}
/* nip, msr, ccr, lnk, ctr, xer, mq */
|
|
255
256
|
registers[96] = tswapl(env->nip);
registers[97] = tswapl(_load_msr(env));
|
|
257
258
|
tmp = 0;
for (i = 0; i < 8; i++)
|
|
259
|
tmp |= env->crf[i] << (32 - ((i + 1) * 4));
|
|
260
261
262
263
264
|
registers[98] = tswapl(tmp);
registers[99] = tswapl(env->lr);
registers[100] = tswapl(env->ctr);
registers[101] = tswapl(_load_xer(env));
registers[102] = 0;
|
|
265
266
|
return 103 * 4;
|
|
267
268
269
270
271
272
273
274
275
|
}
static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
{
uint32_t *registers = (uint32_t *)mem_buf;
int i;
/* fill in gprs */
for (i = 0; i < 32; i++) {
|
|
276
|
env->gpr[i] = tswapl(registers[i]);
|
|
277
278
279
|
}
/* fill in fprs */
for (i = 0; i < 32; i++) {
|
|
280
281
|
*((uint32_t *)&env->fpr[i]) = tswapl(registers[(i * 2) + 32]);
*((uint32_t *)&env->fpr[i] + 1) = tswapl(registers[(i * 2) + 33]);
|
|
282
283
|
}
/* nip, msr, ccr, lnk, ctr, xer, mq */
|
|
284
285
286
|
env->nip = tswapl(registers[96]);
_store_msr(env, tswapl(registers[97]));
registers[98] = tswapl(registers[98]);
|
|
287
|
for (i = 0; i < 8; i++)
|
|
288
|
env->crf[i] = (registers[98] >> (32 - ((i + 1) * 4))) & 0xF;
|
|
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
|
env->lr = tswapl(registers[99]);
env->ctr = tswapl(registers[100]);
_store_xer(env, tswapl(registers[101]));
}
#elif defined (TARGET_SPARC)
static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
{
uint32_t *registers = (uint32_t *)mem_buf, tmp;
int i;
/* fill in g0..g7 */
for(i = 0; i < 7; i++) {
registers[i] = tswapl(env->gregs[i]);
}
/* fill in register window */
for(i = 0; i < 24; i++) {
registers[i + 8] = tswapl(env->regwptr[i]);
}
/* fill in fprs */
for (i = 0; i < 32; i++) {
registers[i + 32] = tswapl(*((uint32_t *)&env->fpr[i]));
}
/* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
registers[64] = tswapl(env->y);
|
|
313
|
tmp = GET_PSR(env);
|
|
314
315
316
317
318
319
320
321
322
323
324
325
326
327
|
registers[65] = tswapl(tmp);
registers[66] = tswapl(env->wim);
registers[67] = tswapl(env->tbr);
registers[68] = tswapl(env->pc);
registers[69] = tswapl(env->npc);
registers[70] = tswapl(env->fsr);
registers[71] = 0; /* csr */
registers[72] = 0;
return 73 * 4;
}
static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
{
|
|
328
|
uint32_t *registers = (uint32_t *)mem_buf;
|
|
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
|
int i;
/* fill in g0..g7 */
for(i = 0; i < 7; i++) {
env->gregs[i] = tswapl(registers[i]);
}
/* fill in register window */
for(i = 0; i < 24; i++) {
env->regwptr[i] = tswapl(registers[i]);
}
/* fill in fprs */
for (i = 0; i < 32; i++) {
*((uint32_t *)&env->fpr[i]) = tswapl(registers[i + 32]);
}
/* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
env->y = tswapl(registers[64]);
|
|
345
|
PUT_PSR(env, tswapl(registers[65]));
|
|
346
347
348
349
350
|
env->wim = tswapl(registers[66]);
env->tbr = tswapl(registers[67]);
env->pc = tswapl(registers[68]);
env->npc = tswapl(registers[69]);
env->fsr = tswapl(registers[70]);
|
|
351
|
}
|
|
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
|
#elif defined (TARGET_ARM)
static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
{
int i;
uint8_t *ptr;
ptr = mem_buf;
/* 16 core integer registers (4 bytes each). */
for (i = 0; i < 16; i++)
{
*(uint32_t *)ptr = tswapl(env->regs[i]);
ptr += 4;
}
/* 8 FPA registers (12 bytes each), FPS (4 bytes).
Not yet implemented. */
memset (ptr, 0, 8 * 12 + 4);
ptr += 8 * 12 + 4;
/* CPSR (4 bytes). */
*(uint32_t *)ptr = tswapl (env->cpsr);
ptr += 4;
return ptr - mem_buf;
}
|
|
375
|
|
|
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
|
static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
{
int i;
uint8_t *ptr;
ptr = mem_buf;
/* Core integer registers. */
for (i = 0; i < 16; i++)
{
env->regs[i] = tswapl(*(uint32_t *)ptr);
ptr += 4;
}
/* Ignore FPA regs and scr. */
ptr += 8 * 12 + 4;
env->cpsr = tswapl(*(uint32_t *)ptr);
}
#else
|
|
393
394
395
396
397
398
399
400
401
402
|
static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
{
return 0;
}
static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
{
}
#endif
|
|
403
|
|
|
404
|
static int gdb_handle_packet(GDBState *s, CPUState *env, const char *line_buf)
|
|
405
406
|
{
const char *p;
|
|
407
|
int ch, reg_size, type;
|
|
408
409
410
411
412
|
char buf[4096];
uint8_t mem_buf[2000];
uint32_t *registers;
uint32_t addr, len;
|
|
413
414
415
416
417
418
419
|
#ifdef DEBUG_GDB
printf("command='%s'\n", line_buf);
#endif
p = line_buf;
ch = *p++;
switch(ch) {
case '?':
|
|
420
|
/* TODO: Make this return the correct value for user-mode. */
|
|
421
422
423
424
425
426
|
snprintf(buf, sizeof(buf), "S%02x", SIGTRAP);
put_packet(s, buf);
break;
case 'c':
if (*p != '\0') {
addr = strtoul(p, (char **)&p, 16);
|
|
427
|
#if defined(TARGET_I386)
|
|
428
|
env->eip = addr;
|
|
429
|
#elif defined (TARGET_PPC)
|
|
430
|
env->nip = addr;
|
|
431
432
433
|
#elif defined (TARGET_SPARC)
env->pc = addr;
env->npc = addr + 4;
|
|
434
|
#endif
|
|
435
|
}
|
|
436
437
438
439
440
441
|
#ifdef CONFIG_USER_ONLY
s->running_state = 1;
#else
vm_start();
#endif
return RS_IDLE;
|
|
442
443
444
|
case 's':
if (*p != '\0') {
addr = strtoul(p, (char **)&p, 16);
|
|
445
|
#if defined(TARGET_I386)
|
|
446
|
env->eip = addr;
|
|
447
|
#elif defined (TARGET_PPC)
|
|
448
|
env->nip = addr;
|
|
449
450
451
|
#elif defined (TARGET_SPARC)
env->pc = addr;
env->npc = addr + 4;
|
|
452
|
#endif
|
|
453
454
|
}
cpu_single_step(env, 1);
|
|
455
456
457
458
459
460
|
#ifdef CONFIG_USER_ONLY
s->running_state = 1;
#else
vm_start();
#endif
return RS_IDLE;
|
|
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
|
case 'g':
reg_size = cpu_gdb_read_registers(env, mem_buf);
memtohex(buf, mem_buf, reg_size);
put_packet(s, buf);
break;
case 'G':
registers = (void *)mem_buf;
len = strlen(p) / 2;
hextomem((uint8_t *)registers, p, len);
cpu_gdb_write_registers(env, mem_buf, len);
put_packet(s, "OK");
break;
case 'm':
addr = strtoul(p, (char **)&p, 16);
if (*p == ',')
p++;
len = strtoul(p, NULL, 16);
if (cpu_memory_rw_debug(env, addr, mem_buf, len, 0) != 0)
memset(mem_buf, 0, len);
memtohex(buf, mem_buf, len);
put_packet(s, buf);
break;
case 'M':
addr = strtoul(p, (char **)&p, 16);
if (*p == ',')
p++;
len = strtoul(p, (char **)&p, 16);
|
|
488
|
if (*p == ':')
|
|
489
490
491
|
p++;
hextomem(mem_buf, p, len);
if (cpu_memory_rw_debug(env, addr, mem_buf, len, 1) != 0)
|
|
492
|
put_packet(s, "E14");
|
|
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
|
else
put_packet(s, "OK");
break;
case 'Z':
type = strtoul(p, (char **)&p, 16);
if (*p == ',')
p++;
addr = strtoul(p, (char **)&p, 16);
if (*p == ',')
p++;
len = strtoul(p, (char **)&p, 16);
if (type == 0 || type == 1) {
if (cpu_breakpoint_insert(env, addr) < 0)
goto breakpoint_error;
put_packet(s, "OK");
} else {
breakpoint_error:
|
|
510
|
put_packet(s, "E22");
|
|
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
|
}
break;
case 'z':
type = strtoul(p, (char **)&p, 16);
if (*p == ',')
p++;
addr = strtoul(p, (char **)&p, 16);
if (*p == ',')
p++;
len = strtoul(p, (char **)&p, 16);
if (type == 0 || type == 1) {
cpu_breakpoint_remove(env, addr);
put_packet(s, "OK");
} else {
goto breakpoint_error;
}
break;
default:
// unknown_command:
/* put empty packet */
buf[0] = '\0';
put_packet(s, buf);
break;
}
return RS_IDLE;
}
|
|
538
539
|
extern void tb_flush(CPUState *env);
|
|
540
|
#ifndef CONFIG_USER_ONLY
|
|
541
542
543
544
545
546
547
548
549
|
static void gdb_vm_stopped(void *opaque, int reason)
{
GDBState *s = opaque;
char buf[256];
int ret;
/* disable single step if it was enable */
cpu_single_step(cpu_single_env, 0);
|
|
550
551
|
if (reason == EXCP_DEBUG) {
tb_flush(cpu_single_env);
|
|
552
|
ret = SIGTRAP;
|
|
553
|
}
|
|
554
555
556
557
558
|
else
ret = 0;
snprintf(buf, sizeof(buf), "S%02x", ret);
put_packet(s, buf);
}
|
|
559
|
#endif
|
|
560
|
|
|
561
|
static void gdb_read_byte(GDBState *s, CPUState *env, int ch)
|
|
562
563
564
565
|
{
int i, csum;
char reply[1];
|
|
566
|
#ifndef CONFIG_USER_ONLY
|
|
567
568
569
570
|
if (vm_running) {
/* when the CPU is running, we cannot do anything except stop
it when receiving a char */
vm_stop(EXCP_INTERRUPT);
|
|
571
|
} else
|
|
572
|
#endif
|
|
573
|
{
|
|
574
575
576
577
578
|
switch(s->state) {
case RS_IDLE:
if (ch == '$') {
s->line_buf_index = 0;
s->state = RS_GETLINE;
|
|
579
|
}
|
|
580
|
break;
|
|
581
582
583
584
585
|
case RS_GETLINE:
if (ch == '#') {
s->state = RS_CHKSUM1;
} else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
s->state = RS_IDLE;
|
|
586
|
} else {
|
|
587
|
s->line_buf[s->line_buf_index++] = ch;
|
|
588
589
|
}
break;
|
|
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
|
case RS_CHKSUM1:
s->line_buf[s->line_buf_index] = '\0';
s->line_csum = fromhex(ch) << 4;
s->state = RS_CHKSUM2;
break;
case RS_CHKSUM2:
s->line_csum |= fromhex(ch);
csum = 0;
for(i = 0; i < s->line_buf_index; i++) {
csum += s->line_buf[i];
}
if (s->line_csum != (csum & 0xff)) {
reply[0] = '-';
put_buffer(s, reply, 1);
s->state = RS_IDLE;
|
|
605
|
} else {
|
|
606
607
|
reply[0] = '+';
put_buffer(s, reply, 1);
|
|
608
|
s->state = gdb_handle_packet(s, env, s->line_buf);
|
|
609
610
|
}
break;
|
|
611
612
613
614
|
}
}
}
|
|
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
|
#ifdef CONFIG_USER_ONLY
int
gdb_handlesig (CPUState *env, int sig)
{
GDBState *s;
char buf[256];
int n;
if (gdbserver_fd < 0)
return sig;
s = &gdbserver_state;
/* disable single step if it was enabled */
cpu_single_step(env, 0);
tb_flush(env);
if (sig != 0)
{
snprintf(buf, sizeof(buf), "S%02x", sig);
put_packet(s, buf);
}
sig = 0;
s->state = RS_IDLE;
|
|
640
641
|
s->running_state = 0;
while (s->running_state == 0) {
|
|
642
643
644
645
646
647
648
649
650
651
652
653
654
655
|
n = read (s->fd, buf, 256);
if (n > 0)
{
int i;
for (i = 0; i < n; i++)
gdb_read_byte (s, env, buf[i]);
}
else if (n == 0 || errno != EAGAIN)
{
/* XXX: Connection closed. Should probably wait for annother
connection before continuing. */
return sig;
}
|
|
656
|
}
|
|
657
658
|
return sig;
}
|
|
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
|
/* Tell the remote gdb that the process has exited. */
void gdb_exit(CPUState *env, int code)
{
GDBState *s;
char buf[4];
if (gdbserver_fd < 0)
return;
s = &gdbserver_state;
snprintf(buf, sizeof(buf), "W%02x", code);
put_packet(s, buf);
}
|
|
675
|
#else
|
|
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
|
static int gdb_can_read(void *opaque)
{
return 256;
}
static void gdb_read(void *opaque, const uint8_t *buf, int size)
{
GDBState *s = opaque;
int i;
if (size == 0) {
/* end of connection */
qemu_del_vm_stop_handler(gdb_vm_stopped, s);
qemu_del_fd_read_handler(s->fd);
qemu_free(s);
vm_start();
} else {
for(i = 0; i < size; i++)
|
|
693
|
gdb_read_byte(s, cpu_single_env, buf[i]);
|
|
694
695
696
|
}
}
|
|
697
698
|
#endif
|
|
699
700
701
702
703
704
705
706
707
708
709
710
711
712
|
static void gdb_accept(void *opaque, const uint8_t *buf, int size)
{
GDBState *s;
struct sockaddr_in sockaddr;
socklen_t len;
int val, fd;
for(;;) {
len = sizeof(sockaddr);
fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
if (fd < 0 && errno != EINTR) {
perror("accept");
return;
} else if (fd >= 0) {
|
|
713
714
715
|
break;
}
}
|
|
716
717
718
|
/* set short latency */
val = 1;
|
|
719
|
setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, &val, sizeof(val));
|
|
720
|
|
|
721
722
723
724
|
#ifdef CONFIG_USER_ONLY
s = &gdbserver_state;
memset (s, 0, sizeof (GDBState));
#else
|
|
725
726
727
728
729
|
s = qemu_mallocz(sizeof(GDBState));
if (!s) {
close(fd);
return;
}
|
|
730
|
#endif
|
|
731
732
733
734
|
s->fd = fd;
fcntl(fd, F_SETFL, O_NONBLOCK);
|
|
735
|
#ifndef CONFIG_USER_ONLY
|
|
736
737
738
739
740
741
742
|
/* stop the VM */
vm_stop(EXCP_INTERRUPT);
/* start handling I/O */
qemu_add_fd_read_handler(s->fd, gdb_can_read, gdb_read, s);
/* when the VM is stopped, the following callback is called */
qemu_add_vm_stop_handler(gdb_vm_stopped, s);
|
|
743
|
#endif
|
|
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
|
}
static int gdbserver_open(int port)
{
struct sockaddr_in sockaddr;
int fd, val, ret;
fd = socket(PF_INET, SOCK_STREAM, 0);
if (fd < 0) {
perror("socket");
return -1;
}
/* allow fast reuse */
val = 1;
setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &val, sizeof(val));
sockaddr.sin_family = AF_INET;
sockaddr.sin_port = htons(port);
sockaddr.sin_addr.s_addr = 0;
ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
if (ret < 0) {
perror("bind");
return -1;
}
ret = listen(fd, 0);
if (ret < 0) {
perror("listen");
return -1;
}
|
|
774
|
#ifndef CONFIG_USER_ONLY
|
|
775
|
fcntl(fd, F_SETFL, O_NONBLOCK);
|
|
776
|
#endif
|
|
777
778
779
780
781
782
783
784
785
|
return fd;
}
int gdbserver_start(int port)
{
gdbserver_fd = gdbserver_open(port);
if (gdbserver_fd < 0)
return -1;
/* accept connections */
|
|
786
787
788
|
#ifdef CONFIG_USER_ONLY
gdb_accept (NULL, NULL, 0);
#else
|
|
789
|
qemu_add_fd_read_handler(gdbserver_fd, NULL, gdb_accept, NULL);
|
|
790
|
#endif
|
|
791
792
|
return 0;
}
|