1
/*
2
* QEMU PowerMac CUDA device support
ths
authored
18 years ago
3
*
4
5
* Copyright ( c ) 2004 - 2007 Fabrice Bellard
* Copyright ( c ) 2007 Jocelyn Mayer
ths
authored
18 years ago
6
*
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
* Permission is hereby granted , free of charge , to any person obtaining a copy
* of this software and associated documentation files ( the "Software" ), to deal
* in the Software without restriction , including without limitation the rights
* to use , copy , modify , merge , publish , distribute , sublicense , and / or sell
* copies of the Software , and to permit persons to whom the Software is
* furnished to do so , subject to the following conditions :
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software .
*
* THE SOFTWARE IS PROVIDED "AS IS" , WITHOUT WARRANTY OF ANY KIND , EXPRESS OR
* IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY ,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT . IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM , DAMAGES OR OTHER
* LIABILITY , WHETHER IN AN ACTION OF CONTRACT , TORT OR OTHERWISE , ARISING FROM ,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE .
*/
25
# include "hw.h"
26
# include "ppc_mac.h"
27
28
# include "qemu-timer.h"
# include "sysemu.h"
29
30
31
/* XXX: implement all timer modes */
32
/* debug CUDA */
33
// # define DEBUG_CUDA
34
35
/* debug CUDA packets */
36
37
// # define DEBUG_CUDA_PACKET
38
39
40
41
42
43
44
# ifdef DEBUG_CUDA
# define CUDA_DPRINTF ( fmt , args ...) \
do { printf ( "CUDA: " fmt , ## args ); } while ( 0 )
# else
# define CUDA_DPRINTF ( fmt , args ...)
# endif
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
/* Bits in B data register: all active low */
# define TREQ 0x08 /* Transfer request (input) */
# define TACK 0x10 /* Transfer acknowledge (output) */
# define TIP 0x20 /* Transfer in progress (output) */
/* Bits in ACR */
# define SR_CTRL 0x1c /* Shift register control bits */
# define SR_EXT 0x0c /* Shift on external clock */
# define SR_OUT 0x10 /* Shift out if 1 */
/* Bits in IFR and IER */
# define IER_SET 0x80 /* set bits in IER */
# define IER_CLR 0 /* clear bits in IER */
# define SR_INT 0x04 /* Shift register full/empty */
# define T1_INT 0x40 /* Timer 1 interrupt */
60
# define T2_INT 0x20 /* Timer 2 interrupt */
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
/* Bits in ACR */
# define T1MODE 0xc0 /* Timer 1 mode */
# define T1MODE_CONT 0x40 /* continuous interrupts */
/* commands (1st byte) */
# define ADB_PACKET 0
# define CUDA_PACKET 1
# define ERROR_PACKET 2
# define TIMER_PACKET 3
# define POWER_PACKET 4
# define MACIIC_PACKET 5
# define PMU_PACKET 6
/* CUDA commands (2nd byte) */
# define CUDA_WARM_START 0x0
# define CUDA_AUTOPOLL 0x1
# define CUDA_GET_6805_ADDR 0x2
# define CUDA_GET_TIME 0x3
# define CUDA_GET_PRAM 0x7
# define CUDA_SET_6805_ADDR 0x8
# define CUDA_SET_TIME 0x9
# define CUDA_POWERDOWN 0xa
# define CUDA_POWERUP_TIME 0xb
# define CUDA_SET_PRAM 0xc
# define CUDA_MS_RESET 0xd
# define CUDA_SEND_DFAC 0xe
# define CUDA_BATTERY_SWAP_SENSE 0x10
# define CUDA_RESET_SYSTEM 0x11
# define CUDA_SET_IPL 0x12
# define CUDA_FILE_SERVER_FLAG 0x13
# define CUDA_SET_AUTO_RATE 0x14
# define CUDA_GET_AUTO_RATE 0x16
# define CUDA_SET_DEVICE_LIST 0x19
# define CUDA_GET_DEVICE_LIST 0x1a
# define CUDA_SET_ONE_SECOND_MODE 0x1b
# define CUDA_SET_POWER_MESSAGES 0x21
# define CUDA_GET_SET_IIC 0x22
# define CUDA_WAKEUP 0x23
# define CUDA_TIMER_TICKLE 0x24
# define CUDA_COMBINED_FORMAT_IIC 0x25
# define CUDA_TIMER_FREQ ( 4700000 / 6 )
105
# define CUDA_ADB_POLL_FREQ 50
106
107
108
109
/* CUDA returns time_t's offset from Jan 1, 1904, not 1970 */
# define RTC_OFFSET 2082844800
110
typedef struct CUDATimer {
ths
authored
18 years ago
111
int index ;
112
uint16_t latch ;
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
uint16_t counter_value ; /* counter value at load time */
int64_t load_time ;
int64_t next_irq_time ;
QEMUTimer * timer ;
} CUDATimer ;
typedef struct CUDAState {
/* cuda registers */
uint8_t b ; /* B-side data */
uint8_t a ; /* A-side data */
uint8_t dirb ; /* B-side direction (1=output) */
uint8_t dira ; /* A-side direction (1=output) */
uint8_t sr ; /* Shift register */
uint8_t acr ; /* Auxiliary control register */
uint8_t pcr ; /* Peripheral control register */
uint8_t ifr ; /* Interrupt flag register */
uint8_t ier ; /* Interrupt enable register */
uint8_t anh ; /* A-side data, no handshake */
CUDATimer timers [ 2 ];
ths
authored
18 years ago
133
134
135
uint8_t last_b ; /* last value of B register */
uint8_t last_acr ; /* last value of B register */
ths
authored
18 years ago
136
137
138
139
140
int data_in_size ;
int data_in_index ;
int data_out_index ;
141
qemu_irq irq ;
142
143
144
uint8_t autopoll ;
uint8_t data_in [ 128 ];
uint8_t data_out [ 16 ];
145
QEMUTimer * adb_poll_timer ;
146
147
148
149
150
151
} CUDAState ;
static CUDAState cuda_state ;
ADBBusState adb_bus ;
static void cuda_update ( CUDAState * s );
ths
authored
18 years ago
152
static void cuda_receive_packet_from_host ( CUDAState * s ,
153
const uint8_t * data , int len );
ths
authored
18 years ago
154
static void cuda_timer_update ( CUDAState * s , CUDATimer * ti ,
155
int64_t current_time );
156
157
158
static void cuda_update_irq ( CUDAState * s )
{
159
if ( s -> ifr & s -> ier & ( SR_INT | T1_INT )) {
160
qemu_irq_raise ( s -> irq );
161
} else {
162
qemu_irq_lower ( s -> irq );
163
164
165
166
167
168
169
170
}
}
static unsigned int get_counter ( CUDATimer * s )
{
int64_t d ;
unsigned int counter ;
ths
authored
18 years ago
171
d = muldiv64 ( qemu_get_clock ( vm_clock ) - s -> load_time ,
172
CUDA_TIMER_FREQ , ticks_per_sec );
173
174
175
176
177
178
if ( s -> index == 0 ) {
/* the timer goes down from latch to -1 (period of latch + 2) */
if ( d <= ( s -> counter_value + 1 )) {
counter = ( s -> counter_value - d ) & 0xffff ;
} else {
counter = ( d - ( s -> counter_value + 1 )) % ( s -> latch + 2 );
ths
authored
18 years ago
179
counter = ( s -> latch - counter ) & 0xffff ;
180
}
181
} else {
182
counter = ( s -> counter_value - d ) & 0xffff ;
183
184
185
186
}
return counter ;
}
187
static void set_counter ( CUDAState * s , CUDATimer * ti , unsigned int val )
188
{
189
CUDA_DPRINTF ( "T%d.counter=%d \n " , 1 + ( ti -> timer == NULL ), val );
190
191
192
ti -> load_time = qemu_get_clock ( vm_clock );
ti -> counter_value = val ;
cuda_timer_update ( s , ti , ti -> load_time );
193
194
195
196
}
static int64_t get_next_irq_time ( CUDATimer * s , int64_t current_time )
{
197
198
199
int64_t d , next_time ;
unsigned int counter ;
200
/* current counter value */
ths
authored
18 years ago
201
d = muldiv64 ( current_time - s -> load_time ,
202
CUDA_TIMER_FREQ , ticks_per_sec );
203
204
205
206
207
/* the timer goes down from latch to -1 (period of latch + 2) */
if ( d <= ( s -> counter_value + 1 )) {
counter = ( s -> counter_value - d ) & 0xffff ;
} else {
counter = ( d - ( s -> counter_value + 1 )) % ( s -> latch + 2 );
ths
authored
18 years ago
208
counter = ( s -> latch - counter ) & 0xffff ;
209
}
ths
authored
18 years ago
210
211
212
213
214
215
216
217
/* Note: we consider the irq is raised on 0 */
if ( counter == 0xffff ) {
next_time = d + s -> latch + 1 ;
} else if ( counter == 0 ) {
next_time = d + s -> latch + 2 ;
} else {
next_time = d + counter ;
218
}
219
220
CUDA_DPRINTF ( "latch=%d counter=%" PRId64 " delta_next=%" PRId64 " \n " ,
s -> latch , d , next_time - d );
ths
authored
18 years ago
221
next_time = muldiv64 ( next_time , ticks_per_sec , CUDA_TIMER_FREQ ) +
222
223
224
225
226
227
s -> load_time ;
if ( next_time <= current_time )
next_time = current_time + 1 ;
return next_time ;
}
ths
authored
18 years ago
228
static void cuda_timer_update ( CUDAState * s , CUDATimer * ti ,
229
230
231
232
233
234
235
236
237
238
239
240
int64_t current_time )
{
if ( ! ti -> timer )
return ;
if (( s -> acr & T1MODE ) != T1MODE_CONT ) {
qemu_del_timer ( ti -> timer );
} else {
ti -> next_irq_time = get_next_irq_time ( ti , current_time );
qemu_mod_timer ( ti -> timer , ti -> next_irq_time );
}
}
241
242
243
244
245
static void cuda_timer1 ( void * opaque )
{
CUDAState * s = opaque ;
CUDATimer * ti = & s -> timers [ 0 ];
246
cuda_timer_update ( s , ti , ti -> next_irq_time );
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
s -> ifr |= T1_INT ;
cuda_update_irq ( s );
}
static uint32_t cuda_readb ( void * opaque , target_phys_addr_t addr )
{
CUDAState * s = opaque ;
uint32_t val ;
addr = ( addr >> 9 ) & 0xf ;
switch ( addr ) {
case 0 :
val = s -> b ;
break ;
case 1 :
val = s -> a ;
break ;
case 2 :
val = s -> dirb ;
break ;
case 3 :
val = s -> dira ;
break ;
case 4 :
val = get_counter ( & s -> timers [ 0 ]) & 0xff ;
s -> ifr &= ~ T1_INT ;
cuda_update_irq ( s );
break ;
case 5 :
val = get_counter ( & s -> timers [ 0 ]) >> 8 ;
cuda_update_irq ( s );
break ;
case 6 :
val = s -> timers [ 0 ]. latch & 0xff ;
break ;
case 7 :
283
/* XXX: check this */
284
285
286
287
val = ( s -> timers [ 0 ]. latch >> 8 ) & 0xff ;
break ;
case 8 :
val = get_counter ( & s -> timers [ 1 ]) & 0xff ;
288
s -> ifr &= ~ T2_INT ;
289
290
291
292
293
break ;
case 9 :
val = get_counter ( & s -> timers [ 1 ]) >> 8 ;
break ;
case 10 :
294
295
296
val = s -> sr ;
s -> ifr &= ~ SR_INT ;
cuda_update_irq ( s );
297
298
299
300
301
302
303
304
305
break ;
case 11 :
val = s -> acr ;
break ;
case 12 :
val = s -> pcr ;
break ;
case 13 :
val = s -> ifr ;
ths
authored
18 years ago
306
if ( s -> ifr & s -> ier )
307
val |= 0x80 ;
308
309
break ;
case 14 :
310
val = s -> ier | 0x80 ;
311
312
313
314
315
316
break ;
default :
case 15 :
val = s -> anh ;
break ;
}
317
if ( addr != 13 || val != 0 )
318
CUDA_DPRINTF ( "read: reg=0x%x val=%02x \n " , ( int ) addr , val );
319
320
321
322
323
324
return val ;
}
static void cuda_writeb ( void * opaque , target_phys_addr_t addr , uint32_t val )
{
CUDAState * s = opaque ;
ths
authored
18 years ago
325
326
addr = ( addr >> 9 ) & 0xf ;
327
CUDA_DPRINTF ( "write: reg=0x%x val=%02x \n " , ( int ) addr , val );
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
switch ( addr ) {
case 0 :
s -> b = val ;
cuda_update ( s );
break ;
case 1 :
s -> a = val ;
break ;
case 2 :
s -> dirb = val ;
break ;
case 3 :
s -> dira = val ;
break ;
case 4 :
344
345
s -> timers [ 0 ]. latch = ( s -> timers [ 0 ]. latch & 0xff00 ) | val ;
cuda_timer_update ( s , & s -> timers [ 0 ], qemu_get_clock ( vm_clock ));
346
347
break ;
case 5 :
348
349
350
s -> timers [ 0 ]. latch = ( s -> timers [ 0 ]. latch & 0xff ) | ( val << 8 );
s -> ifr &= ~ T1_INT ;
set_counter ( s , & s -> timers [ 0 ], s -> timers [ 0 ]. latch );
351
352
353
break ;
case 6 :
s -> timers [ 0 ]. latch = ( s -> timers [ 0 ]. latch & 0xff00 ) | val ;
354
cuda_timer_update ( s , & s -> timers [ 0 ], qemu_get_clock ( vm_clock ));
355
356
357
break ;
case 7 :
s -> timers [ 0 ]. latch = ( s -> timers [ 0 ]. latch & 0xff ) | ( val << 8 );
358
s -> ifr &= ~ T1_INT ;
359
cuda_timer_update ( s , & s -> timers [ 0 ], qemu_get_clock ( vm_clock ));
360
361
break ;
case 8 :
362
s -> timers [ 1 ]. latch = val ;
363
set_counter ( s , & s -> timers [ 1 ], val );
364
365
break ;
case 9 :
366
set_counter ( s , & s -> timers [ 1 ], ( val << 8 ) | s -> timers [ 1 ]. latch );
367
368
369
370
371
372
break ;
case 10 :
s -> sr = val ;
break ;
case 11 :
s -> acr = val ;
373
cuda_timer_update ( s , & s -> timers [ 0 ], qemu_get_clock ( vm_clock ));
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
cuda_update ( s );
break ;
case 12 :
s -> pcr = val ;
break ;
case 13 :
/* reset bits */
s -> ifr &= ~ val ;
cuda_update_irq ( s );
break ;
case 14 :
if ( val & IER_SET ) {
/* set bits */
s -> ier |= val & 0x7f ;
} else {
/* reset bits */
s -> ier &= ~ val ;
}
cuda_update_irq ( s );
break ;
default :
case 15 :
s -> anh = val ;
break ;
}
}
/* NOTE: TIP and TREQ are negated */
static void cuda_update ( CUDAState * s )
{
404
405
406
407
408
int packet_received , len ;
packet_received = 0 ;
if ( ! ( s -> b & TIP )) {
/* transfer requested from host */
409
410
411
412
413
if ( s -> acr & SR_OUT ) {
/* data output */
if (( s -> b & ( TACK | TIP )) != ( s -> last_b & ( TACK | TIP ))) {
if ( s -> data_out_index < sizeof ( s -> data_out )) {
414
CUDA_DPRINTF ( "send: %02x \n " , s -> sr );
415
416
417
418
419
420
421
422
423
424
s -> data_out [ s -> data_out_index ++ ] = s -> sr ;
s -> ifr |= SR_INT ;
cuda_update_irq ( s );
}
}
} else {
if ( s -> data_in_index < s -> data_in_size ) {
/* data input */
if (( s -> b & ( TACK | TIP )) != ( s -> last_b & ( TACK | TIP ))) {
s -> sr = s -> data_in [ s -> data_in_index ++ ];
425
CUDA_DPRINTF ( "recv: %02x \n " , s -> sr );
426
427
428
429
430
431
432
/* indicate end of transfer */
if ( s -> data_in_index >= s -> data_in_size ) {
s -> b = ( s -> b | TREQ );
}
s -> ifr |= SR_INT ;
cuda_update_irq ( s );
}
433
}
434
435
436
437
438
439
440
441
442
}
} else {
/* no transfer requested: handle sync case */
if (( s -> last_b & TIP ) && ( s -> b & TACK ) != ( s -> last_b & TACK )) {
/* update TREQ state each time TACK change state */
if ( s -> b & TACK )
s -> b = ( s -> b | TREQ );
else
s -> b = ( s -> b & ~ TREQ );
443
444
s -> ifr |= SR_INT ;
cuda_update_irq ( s );
445
446
} else {
if ( ! ( s -> last_b & TIP )) {
ths
authored
18 years ago
447
/* handle end of host to cuda transfer */
448
packet_received = ( s -> data_out_index > 0 );
ths
authored
18 years ago
449
/* always an IRQ at the end of transfer */
450
451
452
453
454
455
456
s -> ifr |= SR_INT ;
cuda_update_irq ( s );
}
/* signal if there is data to read */
if ( s -> data_in_index < s -> data_in_size ) {
s -> b = ( s -> b & ~ TREQ );
}
457
458
459
460
461
}
}
s -> last_acr = s -> acr ;
s -> last_b = s -> b ;
462
463
464
465
466
467
468
469
/* NOTE : cuda_receive_packet_from_host () can call cuda_update ()
recursively */
if ( packet_received ) {
len = s -> data_out_index ;
s -> data_out_index = 0 ;
cuda_receive_packet_from_host ( s , s -> data_out , len );
}
470
471
}
ths
authored
18 years ago
472
static void cuda_send_packet_to_host ( CUDAState * s ,
473
474
const uint8_t * data , int len )
{
475
476
477
478
479
480
481
482
483
# ifdef DEBUG_CUDA_PACKET
{
int i ;
printf ( "cuda_send_packet_to_host: \n " );
for ( i = 0 ; i < len ; i ++ )
printf ( " %02x" , data [ i ]);
printf ( " \n " );
}
# endif
484
485
486
487
488
489
490
491
memcpy ( s -> data_in , data , len );
s -> data_in_size = len ;
s -> data_in_index = 0 ;
cuda_update ( s );
s -> ifr |= SR_INT ;
cuda_update_irq ( s );
}
492
static void cuda_adb_poll ( void * opaque )
493
494
495
496
497
498
499
500
501
502
503
{
CUDAState * s = opaque ;
uint8_t obuf [ ADB_MAX_OUT_LEN + 2 ];
int olen ;
olen = adb_poll ( & adb_bus , obuf + 2 );
if ( olen > 0 ) {
obuf [ 0 ] = ADB_PACKET ;
obuf [ 1 ] = 0x40 ; /* polled data */
cuda_send_packet_to_host ( s , obuf , olen + 2 );
}
ths
authored
18 years ago
504
505
qemu_mod_timer ( s -> adb_poll_timer ,
qemu_get_clock ( vm_clock ) +
506
507
508
( ticks_per_sec / CUDA_ADB_POLL_FREQ ));
}
ths
authored
18 years ago
509
static void cuda_receive_packet ( CUDAState * s ,
510
511
512
const uint8_t * data , int len )
{
uint8_t obuf [ 16 ];
513
int ti , autopoll ;
514
515
516
switch ( data [ 0 ]) {
case CUDA_AUTOPOLL :
517
518
519
520
autopoll = ( data [ 1 ] != 0 );
if ( autopoll != s -> autopoll ) {
s -> autopoll = autopoll ;
if ( autopoll ) {
ths
authored
18 years ago
521
522
qemu_mod_timer ( s -> adb_poll_timer ,
qemu_get_clock ( vm_clock ) +
523
524
525
526
527
( ticks_per_sec / CUDA_ADB_POLL_FREQ ));
} else {
qemu_del_timer ( s -> adb_poll_timer );
}
}
528
529
530
531
532
obuf [ 0 ] = CUDA_PACKET ;
obuf [ 1 ] = data [ 1 ];
cuda_send_packet_to_host ( s , obuf , 2 );
break ;
case CUDA_GET_TIME :
533
case CUDA_SET_TIME :
534
/* XXX: add time support ? */
535
ti = time ( NULL ) + RTC_OFFSET ;
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
obuf [ 0 ] = CUDA_PACKET ;
obuf [ 1 ] = 0 ;
obuf [ 2 ] = 0 ;
obuf [ 3 ] = ti >> 24 ;
obuf [ 4 ] = ti >> 16 ;
obuf [ 5 ] = ti >> 8 ;
obuf [ 6 ] = ti ;
cuda_send_packet_to_host ( s , obuf , 7 );
break ;
case CUDA_FILE_SERVER_FLAG :
case CUDA_SET_DEVICE_LIST :
case CUDA_SET_AUTO_RATE :
case CUDA_SET_POWER_MESSAGES :
obuf [ 0 ] = CUDA_PACKET ;
obuf [ 1 ] = 0 ;
cuda_send_packet_to_host ( s , obuf , 2 );
break ;
553
554
555
556
557
558
case CUDA_POWERDOWN :
obuf [ 0 ] = CUDA_PACKET ;
obuf [ 1 ] = 0 ;
cuda_send_packet_to_host ( s , obuf , 2 );
qemu_system_shutdown_request ();
break ;
559
560
561
562
563
564
case CUDA_RESET_SYSTEM :
obuf [ 0 ] = CUDA_PACKET ;
obuf [ 1 ] = 0 ;
cuda_send_packet_to_host ( s , obuf , 2 );
qemu_system_reset_request ();
break ;
565
566
567
568
569
default :
break ;
}
}
ths
authored
18 years ago
570
static void cuda_receive_packet_from_host ( CUDAState * s ,
571
572
const uint8_t * data , int len )
{
573
574
575
# ifdef DEBUG_CUDA_PACKET
{
int i ;
576
printf ( "cuda_receive_packet_from_host: \n " );
577
578
579
580
581
for ( i = 0 ; i < len ; i ++ )
printf ( " %02x" , data [ i ]);
printf ( " \n " );
}
# endif
582
583
switch ( data [ 0 ]) {
case ADB_PACKET :
584
585
586
587
{
uint8_t obuf [ ADB_MAX_OUT_LEN + 2 ];
int olen ;
olen = adb_request ( & adb_bus , obuf + 2 , data + 1 , len - 1 );
588
if ( olen > 0 ) {
589
590
591
obuf [ 0 ] = ADB_PACKET ;
obuf [ 1 ] = 0x00 ;
} else {
592
/* error */
593
obuf [ 0 ] = ADB_PACKET ;
594
595
obuf [ 1 ] = - olen ;
olen = 0 ;
596
597
598
}
cuda_send_packet_to_host ( s , obuf , olen + 2 );
}
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
break ;
case CUDA_PACKET :
cuda_receive_packet ( s , data + 1 , len - 1 );
break ;
}
}
static void cuda_writew ( void * opaque , target_phys_addr_t addr , uint32_t value )
{
}
static void cuda_writel ( void * opaque , target_phys_addr_t addr , uint32_t value )
{
}
static uint32_t cuda_readw ( void * opaque , target_phys_addr_t addr )
{
return 0 ;
}
static uint32_t cuda_readl ( void * opaque , target_phys_addr_t addr )
{
return 0 ;
}
static CPUWriteMemoryFunc * cuda_write [] = {
& cuda_writeb ,
& cuda_writew ,
& cuda_writel ,
};
static CPUReadMemoryFunc * cuda_read [] = {
& cuda_readb ,
& cuda_readw ,
& cuda_readl ,
};
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
static void cuda_save_timer ( QEMUFile * f , CUDATimer * s )
{
qemu_put_be16s ( f , & s -> latch );
qemu_put_be16s ( f , & s -> counter_value );
qemu_put_sbe64s ( f , & s -> load_time );
qemu_put_sbe64s ( f , & s -> next_irq_time );
if ( s -> timer )
qemu_put_timer ( f , s -> timer );
}
static void cuda_save ( QEMUFile * f , void * opaque )
{
CUDAState * s = ( CUDAState * ) opaque ;
qemu_put_ubyte ( f , s -> b );
qemu_put_ubyte ( f , s -> a );
qemu_put_ubyte ( f , s -> dirb );
qemu_put_ubyte ( f , s -> dira );
qemu_put_ubyte ( f , s -> sr );
qemu_put_ubyte ( f , s -> acr );
qemu_put_ubyte ( f , s -> pcr );
qemu_put_ubyte ( f , s -> ifr );
qemu_put_ubyte ( f , s -> ier );
qemu_put_ubyte ( f , s -> anh );
qemu_put_sbe32s ( f , & s -> data_in_size );
qemu_put_sbe32s ( f , & s -> data_in_index );
qemu_put_sbe32s ( f , & s -> data_out_index );
qemu_put_ubyte ( f , s -> autopoll );
qemu_put_buffer ( f , s -> data_in , sizeof ( s -> data_in ));
qemu_put_buffer ( f , s -> data_out , sizeof ( s -> data_out ));
cuda_save_timer ( f , & s -> timers [ 0 ]);
cuda_save_timer ( f , & s -> timers [ 1 ]);
}
static void cuda_load_timer ( QEMUFile * f , CUDATimer * s )
{
qemu_get_be16s ( f , & s -> latch );
qemu_get_be16s ( f , & s -> counter_value );
qemu_get_sbe64s ( f , & s -> load_time );
qemu_get_sbe64s ( f , & s -> next_irq_time );
if ( s -> timer )
qemu_get_timer ( f , s -> timer );
}
static int cuda_load ( QEMUFile * f , void * opaque , int version_id )
{
CUDAState * s = ( CUDAState * ) opaque ;
if ( version_id != 1 )
return - EINVAL ;
s -> b = qemu_get_ubyte ( f );
s -> a = qemu_get_ubyte ( f );
s -> dirb = qemu_get_ubyte ( f );
s -> dira = qemu_get_ubyte ( f );
s -> sr = qemu_get_ubyte ( f );
s -> acr = qemu_get_ubyte ( f );
s -> pcr = qemu_get_ubyte ( f );
s -> ifr = qemu_get_ubyte ( f );
s -> ier = qemu_get_ubyte ( f );
s -> anh = qemu_get_ubyte ( f );
qemu_get_sbe32s ( f , & s -> data_in_size );
qemu_get_sbe32s ( f , & s -> data_in_index );
qemu_get_sbe32s ( f , & s -> data_out_index );
s -> autopoll = qemu_get_ubyte ( f );
qemu_get_buffer ( f , s -> data_in , sizeof ( s -> data_in ));
qemu_get_buffer ( f , s -> data_out , sizeof ( s -> data_out ));
cuda_load_timer ( f , & s -> timers [ 0 ]);
cuda_load_timer ( f , & s -> timers [ 1 ]);
return 0 ;
}
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
static void cuda_reset ( void * opaque )
{
CUDAState * s = opaque ;
s -> b = 0 ;
s -> a = 0 ;
s -> dirb = 0 ;
s -> dira = 0 ;
s -> sr = 0 ;
s -> acr = 0 ;
s -> pcr = 0 ;
s -> ifr = 0 ;
s -> ier = 0 ;
// s -> ier = T1_INT | SR_INT ;
s -> anh = 0 ;
s -> data_in_size = 0 ;
s -> data_in_index = 0 ;
s -> data_out_index = 0 ;
s -> autopoll = 0 ;
s -> timers [ 0 ]. latch = 0xffff ;
set_counter ( s , & s -> timers [ 0 ], 0xffff );
s -> timers [ 1 ]. latch = 0 ;
set_counter ( s , & s -> timers [ 1 ], 0xffff );
}
736
void cuda_init ( int * cuda_mem_index , qemu_irq irq )
737
738
739
{
CUDAState * s = & cuda_state ;
740
741
s -> irq = irq ;
742
s -> timers [ 0 ]. index = 0 ;
743
s -> timers [ 0 ]. timer = qemu_new_timer ( vm_clock , cuda_timer1 , s );
744
745
s -> timers [ 1 ]. index = 1 ;
746
747
s -> adb_poll_timer = qemu_new_timer ( vm_clock , cuda_adb_poll , s );
748
* cuda_mem_index = cpu_register_io_memory ( 0 , cuda_read , cuda_write , s );
749
register_savevm ( "cuda" , - 1 , 1 , cuda_save , cuda_load , s );
750
751
qemu_register_reset ( cuda_reset , s );
cuda_reset ( s );
752
}