Blame view

cpu-all.h 24.2 KB
bellard authored
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
/*
 * defines common to all virtual CPUs
 * 
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
#ifndef CPU_ALL_H
#define CPU_ALL_H
23
#if defined(__arm__) || defined(__sparc__) || defined(__mips__)
bellard authored
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
#define WORDS_ALIGNED
#endif

/* some important defines: 
 * 
 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
 * memory accesses.
 * 
 * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
 * otherwise little endian.
 * 
 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
 * 
 * TARGET_WORDS_BIGENDIAN : same for target cpu
 */
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
#include "bswap.h"

#if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
#define BSWAP_NEEDED
#endif

#ifdef BSWAP_NEEDED

static inline uint16_t tswap16(uint16_t s)
{
    return bswap16(s);
}

static inline uint32_t tswap32(uint32_t s)
{
    return bswap32(s);
}

static inline uint64_t tswap64(uint64_t s)
{
    return bswap64(s);
}

static inline void tswap16s(uint16_t *s)
{
    *s = bswap16(*s);
}

static inline void tswap32s(uint32_t *s)
{
    *s = bswap32(*s);
}

static inline void tswap64s(uint64_t *s)
{
    *s = bswap64(*s);
}

#else

static inline uint16_t tswap16(uint16_t s)
{
    return s;
}

static inline uint32_t tswap32(uint32_t s)
{
    return s;
}

static inline uint64_t tswap64(uint64_t s)
{
    return s;
}

static inline void tswap16s(uint16_t *s)
{
}

static inline void tswap32s(uint32_t *s)
{
}

static inline void tswap64s(uint64_t *s)
{
}

#endif

#if TARGET_LONG_SIZE == 4
#define tswapl(s) tswap32(s)
#define tswapls(s) tswap32s((uint32_t *)(s))
bellard authored
112
#define bswaptls(s) bswap32s(s)
113
114
115
#else
#define tswapl(s) tswap64(s)
#define tswapls(s) tswap64s((uint64_t *)(s))
bellard authored
116
#define bswaptls(s) bswap64s(s)
117
118
#endif
bellard authored
119
120
/* NOTE: arm FPA is horrible as double 32 bit words are stored in big
   endian ! */
bellard authored
121
typedef union {
bellard authored
122
    float64 d;
123
124
#if defined(WORDS_BIGENDIAN) \
    || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
bellard authored
125
126
    struct {
        uint32_t upper;
bellard authored
127
        uint32_t lower;
bellard authored
128
129
130
131
    } l;
#else
    struct {
        uint32_t lower;
bellard authored
132
        uint32_t upper;
bellard authored
133
134
135
136
137
    } l;
#endif
    uint64_t ll;
} CPU_DoubleU;
bellard authored
138
139
/* CPU memory access without any memory or io remapping */
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
/*
 * the generic syntax for the memory accesses is:
 *
 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
 *
 * store: st{type}{size}{endian}_{access_type}(ptr, val)
 *
 * type is:
 * (empty): integer access
 *   f    : float access
 * 
 * sign is:
 * (empty): for floats or 32 bit size
 *   u    : unsigned
 *   s    : signed
 *
 * size is:
 *   b: 8 bits
 *   w: 16 bits
 *   l: 32 bits
 *   q: 64 bits
 * 
 * endian is:
 * (empty): target cpu endianness or 8 bit access
 *   r    : reversed target cpu endianness (not implemented yet)
 *   be   : big endian (not implemented yet)
 *   le   : little endian (not implemented yet)
 *
 * access_type is:
 *   raw    : host memory access
 *   user   : user mode access using soft MMU
 *   kernel : kernel mode access using soft MMU
 */
bellard authored
173
static inline int ldub_p(void *ptr)
bellard authored
174
175
176
177
{
    return *(uint8_t *)ptr;
}
bellard authored
178
static inline int ldsb_p(void *ptr)
bellard authored
179
180
181
182
{
    return *(int8_t *)ptr;
}
bellard authored
183
static inline void stb_p(void *ptr, int v)
bellard authored
184
185
186
187
188
189
190
{
    *(uint8_t *)ptr = v;
}

/* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
   kernel handles unaligned load/stores may give better results, but
   it is a system wide setting : bad */
191
#if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
bellard authored
192
193

/* conservative code for little endian unaligned accesses */
194
static inline int lduw_le_p(void *ptr)
bellard authored
195
196
197
198
199
200
201
202
203
204
205
{
#ifdef __powerpc__
    int val;
    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
    return val;
#else
    uint8_t *p = ptr;
    return p[0] | (p[1] << 8);
#endif
}
206
static inline int ldsw_le_p(void *ptr)
bellard authored
207
208
209
210
211
212
213
214
215
216
217
{
#ifdef __powerpc__
    int val;
    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
    return (int16_t)val;
#else
    uint8_t *p = ptr;
    return (int16_t)(p[0] | (p[1] << 8));
#endif
}
218
static inline int ldl_le_p(void *ptr)
bellard authored
219
220
221
222
223
224
225
226
227
228
229
{
#ifdef __powerpc__
    int val;
    __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
    return val;
#else
    uint8_t *p = ptr;
    return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
#endif
}
230
static inline uint64_t ldq_le_p(void *ptr)
bellard authored
231
232
233
{
    uint8_t *p = ptr;
    uint32_t v1, v2;
234
235
    v1 = ldl_le_p(p);
    v2 = ldl_le_p(p + 4);
bellard authored
236
237
238
    return v1 | ((uint64_t)v2 << 32);
}
239
static inline void stw_le_p(void *ptr, int v)
bellard authored
240
241
242
243
244
245
246
247
248
249
{
#ifdef __powerpc__
    __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
#else
    uint8_t *p = ptr;
    p[0] = v;
    p[1] = v >> 8;
#endif
}
250
static inline void stl_le_p(void *ptr, int v)
bellard authored
251
252
253
254
255
256
257
258
259
260
261
262
{
#ifdef __powerpc__
    __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
#else
    uint8_t *p = ptr;
    p[0] = v;
    p[1] = v >> 8;
    p[2] = v >> 16;
    p[3] = v >> 24;
#endif
}
263
static inline void stq_le_p(void *ptr, uint64_t v)
bellard authored
264
265
{
    uint8_t *p = ptr;
266
267
    stl_le_p(p, (uint32_t)v);
    stl_le_p(p + 4, v >> 32);
bellard authored
268
269
270
271
}

/* float access */
272
static inline float32 ldfl_le_p(void *ptr)
bellard authored
273
274
{
    union {
bellard authored
275
        float32 f;
bellard authored
276
277
        uint32_t i;
    } u;
278
    u.i = ldl_le_p(ptr);
bellard authored
279
280
281
    return u.f;
}
282
static inline void stfl_le_p(void *ptr, float32 v)
bellard authored
283
284
{
    union {
bellard authored
285
        float32 f;
bellard authored
286
287
288
        uint32_t i;
    } u;
    u.f = v;
289
    stl_le_p(ptr, u.i);
bellard authored
290
291
}
292
static inline float64 ldfq_le_p(void *ptr)
bellard authored
293
{
bellard authored
294
    CPU_DoubleU u;
295
296
    u.l.lower = ldl_le_p(ptr);
    u.l.upper = ldl_le_p(ptr + 4);
bellard authored
297
298
299
    return u.d;
}
300
static inline void stfq_le_p(void *ptr, float64 v)
bellard authored
301
{
bellard authored
302
    CPU_DoubleU u;
bellard authored
303
    u.d = v;
304
305
    stl_le_p(ptr, u.l.lower);
    stl_le_p(ptr + 4, u.l.upper);
bellard authored
306
307
}
308
309
310
311
312
313
314
315
316
317
318
#else

static inline int lduw_le_p(void *ptr)
{
    return *(uint16_t *)ptr;
}

static inline int ldsw_le_p(void *ptr)
{
    return *(int16_t *)ptr;
}
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
static inline int ldl_le_p(void *ptr)
{
    return *(uint32_t *)ptr;
}

static inline uint64_t ldq_le_p(void *ptr)
{
    return *(uint64_t *)ptr;
}

static inline void stw_le_p(void *ptr, int v)
{
    *(uint16_t *)ptr = v;
}

static inline void stl_le_p(void *ptr, int v)
{
    *(uint32_t *)ptr = v;
}

static inline void stq_le_p(void *ptr, uint64_t v)
{
    *(uint64_t *)ptr = v;
}

/* float access */

static inline float32 ldfl_le_p(void *ptr)
{
    return *(float32 *)ptr;
}

static inline float64 ldfq_le_p(void *ptr)
{
    return *(float64 *)ptr;
}

static inline void stfl_le_p(void *ptr, float32 v)
{
    *(float32 *)ptr = v;
}

static inline void stfq_le_p(void *ptr, float64 v)
{
    *(float64 *)ptr = v;
}
#endif

#if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)

static inline int lduw_be_p(void *ptr)
371
{
372
373
374
375
376
377
378
379
#if defined(__i386__)
    int val;
    asm volatile ("movzwl %1, %0\n"
                  "xchgb %b0, %h0\n"
                  : "=q" (val)
                  : "m" (*(uint16_t *)ptr));
    return val;
#else
380
    uint8_t *b = (uint8_t *) ptr;
381
382
    return ((b[0] << 8) | b[1]);
#endif
383
384
}
385
static inline int ldsw_be_p(void *ptr)
386
{
387
388
389
390
391
392
393
394
395
396
397
#if defined(__i386__)
    int val;
    asm volatile ("movzwl %1, %0\n"
                  "xchgb %b0, %h0\n"
                  : "=q" (val)
                  : "m" (*(uint16_t *)ptr));
    return (int16_t)val;
#else
    uint8_t *b = (uint8_t *) ptr;
    return (int16_t)((b[0] << 8) | b[1]);
#endif
398
399
}
400
static inline int ldl_be_p(void *ptr)
401
{
bellard authored
402
#if defined(__i386__) || defined(__x86_64__)
403
404
405
406
407
408
409
    int val;
    asm volatile ("movl %1, %0\n"
                  "bswap %0\n"
                  : "=r" (val)
                  : "m" (*(uint32_t *)ptr));
    return val;
#else
410
    uint8_t *b = (uint8_t *) ptr;
411
412
    return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
#endif
413
414
}
415
static inline uint64_t ldq_be_p(void *ptr)
416
417
{
    uint32_t a,b;
418
419
    a = ldl_be_p(ptr);
    b = ldl_be_p(ptr+4);
420
421
422
    return (((uint64_t)a<<32)|b);
}
423
static inline void stw_be_p(void *ptr, int v)
424
{
425
426
427
428
429
430
#if defined(__i386__)
    asm volatile ("xchgb %b0, %h0\n"
                  "movw %w0, %1\n"
                  : "=q" (v)
                  : "m" (*(uint16_t *)ptr), "0" (v));
#else
431
432
433
    uint8_t *d = (uint8_t *) ptr;
    d[0] = v >> 8;
    d[1] = v;
434
#endif
435
436
}
437
static inline void stl_be_p(void *ptr, int v)
438
{
bellard authored
439
#if defined(__i386__) || defined(__x86_64__)
440
441
442
443
444
    asm volatile ("bswap %0\n"
                  "movl %0, %1\n"
                  : "=r" (v)
                  : "m" (*(uint32_t *)ptr), "0" (v));
#else
445
446
447
448
449
    uint8_t *d = (uint8_t *) ptr;
    d[0] = v >> 24;
    d[1] = v >> 16;
    d[2] = v >> 8;
    d[3] = v;
450
#endif
451
452
}
453
static inline void stq_be_p(void *ptr, uint64_t v)
454
{
455
456
    stl_be_p(ptr, v >> 32);
    stl_be_p(ptr + 4, v);
bellard authored
457
458
459
460
}

/* float access */
461
static inline float32 ldfl_be_p(void *ptr)
bellard authored
462
463
{
    union {
bellard authored
464
        float32 f;
bellard authored
465
466
        uint32_t i;
    } u;
467
    u.i = ldl_be_p(ptr);
bellard authored
468
469
470
    return u.f;
}
471
static inline void stfl_be_p(void *ptr, float32 v)
bellard authored
472
473
{
    union {
bellard authored
474
        float32 f;
bellard authored
475
476
477
        uint32_t i;
    } u;
    u.f = v;
478
    stl_be_p(ptr, u.i);
bellard authored
479
480
}
481
static inline float64 ldfq_be_p(void *ptr)
bellard authored
482
483
{
    CPU_DoubleU u;
484
485
    u.l.upper = ldl_be_p(ptr);
    u.l.lower = ldl_be_p(ptr + 4);
bellard authored
486
487
488
    return u.d;
}
489
static inline void stfq_be_p(void *ptr, float64 v)
bellard authored
490
491
492
{
    CPU_DoubleU u;
    u.d = v;
493
494
    stl_be_p(ptr, u.l.upper);
    stl_be_p(ptr + 4, u.l.lower);
495
496
}
bellard authored
497
498
#else
499
static inline int lduw_be_p(void *ptr)
bellard authored
500
501
502
503
{
    return *(uint16_t *)ptr;
}
504
static inline int ldsw_be_p(void *ptr)
bellard authored
505
506
507
508
{
    return *(int16_t *)ptr;
}
509
static inline int ldl_be_p(void *ptr)
bellard authored
510
511
512
513
{
    return *(uint32_t *)ptr;
}
514
static inline uint64_t ldq_be_p(void *ptr)
bellard authored
515
516
517
518
{
    return *(uint64_t *)ptr;
}
519
static inline void stw_be_p(void *ptr, int v)
bellard authored
520
521
522
523
{
    *(uint16_t *)ptr = v;
}
524
static inline void stl_be_p(void *ptr, int v)
bellard authored
525
526
527
528
{
    *(uint32_t *)ptr = v;
}
529
static inline void stq_be_p(void *ptr, uint64_t v)
bellard authored
530
531
532
533
534
535
{
    *(uint64_t *)ptr = v;
}

/* float access */
536
static inline float32 ldfl_be_p(void *ptr)
bellard authored
537
{
bellard authored
538
    return *(float32 *)ptr;
bellard authored
539
540
}
541
static inline float64 ldfq_be_p(void *ptr)
bellard authored
542
{
bellard authored
543
    return *(float64 *)ptr;
bellard authored
544
545
}
546
static inline void stfl_be_p(void *ptr, float32 v)
bellard authored
547
{
bellard authored
548
    *(float32 *)ptr = v;
bellard authored
549
550
}
551
static inline void stfq_be_p(void *ptr, float64 v)
bellard authored
552
{
bellard authored
553
    *(float64 *)ptr = v;
bellard authored
554
}
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582

#endif

/* target CPU memory access functions */
#if defined(TARGET_WORDS_BIGENDIAN)
#define lduw_p(p) lduw_be_p(p)
#define ldsw_p(p) ldsw_be_p(p)
#define ldl_p(p) ldl_be_p(p)
#define ldq_p(p) ldq_be_p(p)
#define ldfl_p(p) ldfl_be_p(p)
#define ldfq_p(p) ldfq_be_p(p)
#define stw_p(p, v) stw_be_p(p, v)
#define stl_p(p, v) stl_be_p(p, v)
#define stq_p(p, v) stq_be_p(p, v)
#define stfl_p(p, v) stfl_be_p(p, v)
#define stfq_p(p, v) stfq_be_p(p, v)
#else
#define lduw_p(p) lduw_le_p(p)
#define ldsw_p(p) ldsw_le_p(p)
#define ldl_p(p) ldl_le_p(p)
#define ldq_p(p) ldq_le_p(p)
#define ldfl_p(p) ldfl_le_p(p)
#define ldfq_p(p) ldfq_le_p(p)
#define stw_p(p, v) stw_le_p(p, v)
#define stl_p(p, v) stl_le_p(p, v)
#define stq_p(p, v) stq_le_p(p, v)
#define stfl_p(p, v) stfl_le_p(p, v)
#define stfq_p(p, v) stfq_le_p(p, v)
bellard authored
583
584
#endif
bellard authored
585
586
/* MMU memory access macros */
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
#if defined(CONFIG_USER_ONLY)
/* On some host systems the guest address space is reserved on the host.
 * This allows the guest address space to be offset to a convenient location.
 */
//#define GUEST_BASE 0x20000000
#define GUEST_BASE 0

/* All direct uses of g2h and h2g need to go away for usermode softmmu.  */
#define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
#define h2g(x) ((target_ulong)(x - GUEST_BASE))

#define saddr(x) g2h(x)
#define laddr(x) g2h(x)

#else /* !CONFIG_USER_ONLY */
bellard authored
602
603
/* NOTE: we use double casts if pointers and target_ulong have
   different sizes */
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
#define saddr(x) (uint8_t *)(long)(x)
#define laddr(x) (uint8_t *)(long)(x)
#endif

#define ldub_raw(p) ldub_p(laddr((p)))
#define ldsb_raw(p) ldsb_p(laddr((p)))
#define lduw_raw(p) lduw_p(laddr((p)))
#define ldsw_raw(p) ldsw_p(laddr((p)))
#define ldl_raw(p) ldl_p(laddr((p)))
#define ldq_raw(p) ldq_p(laddr((p)))
#define ldfl_raw(p) ldfl_p(laddr((p)))
#define ldfq_raw(p) ldfq_p(laddr((p)))
#define stb_raw(p, v) stb_p(saddr((p)), v)
#define stw_raw(p, v) stw_p(saddr((p)), v)
#define stl_raw(p, v) stl_p(saddr((p)), v)
#define stq_raw(p, v) stq_p(saddr((p)), v)
#define stfl_raw(p, v) stfl_p(saddr((p)), v)
#define stfq_raw(p, v) stfq_p(saddr((p)), v)
bellard authored
622
623
bellard authored
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
#if defined(CONFIG_USER_ONLY) 

/* if user mode, no other memory access functions */
#define ldub(p) ldub_raw(p)
#define ldsb(p) ldsb_raw(p)
#define lduw(p) lduw_raw(p)
#define ldsw(p) ldsw_raw(p)
#define ldl(p) ldl_raw(p)
#define ldq(p) ldq_raw(p)
#define ldfl(p) ldfl_raw(p)
#define ldfq(p) ldfq_raw(p)
#define stb(p, v) stb_raw(p, v)
#define stw(p, v) stw_raw(p, v)
#define stl(p, v) stl_raw(p, v)
#define stq(p, v) stq_raw(p, v)
#define stfl(p, v) stfl_raw(p, v)
#define stfq(p, v) stfq_raw(p, v)

#define ldub_code(p) ldub_raw(p)
#define ldsb_code(p) ldsb_raw(p)
#define lduw_code(p) lduw_raw(p)
#define ldsw_code(p) ldsw_raw(p)
#define ldl_code(p) ldl_raw(p)
647
#define ldq_code(p) ldq_raw(p)
bellard authored
648
649
650
651
652
653

#define ldub_kernel(p) ldub_raw(p)
#define ldsb_kernel(p) ldsb_raw(p)
#define lduw_kernel(p) lduw_raw(p)
#define ldsw_kernel(p) ldsw_raw(p)
#define ldl_kernel(p) ldl_raw(p)
654
#define ldq_kernel(p) ldq_raw(p)
bellard authored
655
656
#define ldfl_kernel(p) ldfl_raw(p)
#define ldfq_kernel(p) ldfq_raw(p)
bellard authored
657
658
659
660
#define stb_kernel(p, v) stb_raw(p, v)
#define stw_kernel(p, v) stw_raw(p, v)
#define stl_kernel(p, v) stl_raw(p, v)
#define stq_kernel(p, v) stq_raw(p, v)
bellard authored
661
662
#define stfl_kernel(p, v) stfl_raw(p, v)
#define stfq_kernel(p, vt) stfq_raw(p, v)
bellard authored
663
664
665

#endif /* defined(CONFIG_USER_ONLY) */
bellard authored
666
667
668
669
670
671
/* page related stuff */

#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
672
/* ??? These should be the larger of unsigned long and target_ulong.  */
673
674
675
676
extern unsigned long qemu_real_host_page_size;
extern unsigned long qemu_host_page_bits;
extern unsigned long qemu_host_page_size;
extern unsigned long qemu_host_page_mask;
bellard authored
677
678
#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
bellard authored
679
680
681
682
683
684
685
686
687
688
689
690

/* same as PROT_xxx */
#define PAGE_READ      0x0001
#define PAGE_WRITE     0x0002
#define PAGE_EXEC      0x0004
#define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
#define PAGE_VALID     0x0008
/* original state of the write flag (used when tracking self-modifying
   code */
#define PAGE_WRITE_ORG 0x0010 

void page_dump(FILE *f);
691
692
693
int page_get_flags(target_ulong address);
void page_set_flags(target_ulong start, target_ulong end, int flags);
void page_unprotect_range(target_ulong data, target_ulong data_size);
bellard authored
694
695
696
CPUState *cpu_copy(CPUState *env);
bellard authored
697
698
699
void cpu_dump_state(CPUState *env, FILE *f, 
                    int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
                    int flags);
700
701
702
void cpu_dump_statistics (CPUState *env, FILE *f,
                          int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
                          int flags);
bellard authored
703
704
705
void cpu_abort(CPUState *env, const char *fmt, ...)
    __attribute__ ((__format__ (__printf__, 2, 3)));
706
extern CPUState *first_cpu;
bellard authored
707
extern CPUState *cpu_single_env;
708
extern int code_copy_enabled;
bellard authored
709
710
711
712
#define CPU_INTERRUPT_EXIT   0x01 /* wants exit from main loop */
#define CPU_INTERRUPT_HARD   0x02 /* hardware interrupt pending */
#define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
bellard authored
713
#define CPU_INTERRUPT_TIMER  0x08 /* internal timer exception pending */
714
#define CPU_INTERRUPT_FIQ    0x10 /* Fast interrupt pending.  */
715
#define CPU_INTERRUPT_HALT   0x20 /* CPU halt wanted */
bellard authored
716
#define CPU_INTERRUPT_SMI    0x40 /* (x86 only) SMI interrupt pending */
717
#define CPU_INTERRUPT_DEBUG  0x80 /* Debug event occured.  */
718
bellard authored
719
void cpu_interrupt(CPUState *s, int mask);
720
void cpu_reset_interrupt(CPUState *env, int mask);
bellard authored
721
722
723
int cpu_watchpoint_insert(CPUState *env, target_ulong addr);
int cpu_watchpoint_remove(CPUState *env, target_ulong addr);
724
725
int cpu_breakpoint_insert(CPUState *env, target_ulong pc);
int cpu_breakpoint_remove(CPUState *env, target_ulong pc);
726
void cpu_single_step(CPUState *env, int enabled);
bellard authored
727
void cpu_reset(CPUState *s);
bellard authored
728
729
730
731
/* Return the physical page corresponding to a virtual one. Use it
   only for debugging because no protection checks are done. Return -1
   if no page found. */
732
target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
733
734
735
#define CPU_LOG_TB_OUT_ASM (1 << 0) 
#define CPU_LOG_TB_IN_ASM  (1 << 1)
736
737
738
739
740
#define CPU_LOG_TB_OP      (1 << 2)
#define CPU_LOG_TB_OP_OPT  (1 << 3)
#define CPU_LOG_INT        (1 << 4)
#define CPU_LOG_EXEC       (1 << 5)
#define CPU_LOG_PCALL      (1 << 6)
741
#define CPU_LOG_IOPORT     (1 << 7)
742
#define CPU_LOG_TB_CPU     (1 << 8)
743
744
745
746
747
748
749
750
751
752

/* define log items */
typedef struct CPULogItem {
    int mask;
    const char *name;
    const char *help;
} CPULogItem;

extern CPULogItem cpu_log_items[];
753
754
void cpu_set_log(int log_flags);
void cpu_set_log_filename(const char *filename);
755
int cpu_str_to_log_mask(const char *str);
756
757
758
759
760
761
762
763
764
765
766
767
768
769
/* IO ports API */

/* NOTE: as these functions may be even used when there is an isa
   brige on non x86 targets, we always defined them */
#ifndef NO_CPU_IO_DEFS
void cpu_outb(CPUState *env, int addr, int val);
void cpu_outw(CPUState *env, int addr, int val);
void cpu_outl(CPUState *env, int addr, int val);
int cpu_inb(CPUState *env, int addr);
int cpu_inw(CPUState *env, int addr);
int cpu_inl(CPUState *env, int addr);
#endif
770
771
/* memory API */
bellard authored
772
773
774
extern int phys_ram_size;
extern int phys_ram_fd;
extern uint8_t *phys_ram_base;
775
extern uint8_t *phys_ram_dirty;
bellard authored
776
777
778
779

/* physical memory access */
#define TLB_INVALID_MASK   (1 << 3)
#define IO_MEM_SHIFT       4
780
#define IO_MEM_NB_ENTRIES  (1 << (TARGET_PAGE_BITS  - IO_MEM_SHIFT))
bellard authored
781
782
783
784

#define IO_MEM_RAM         (0 << IO_MEM_SHIFT) /* hardcoded offset */
#define IO_MEM_ROM         (1 << IO_MEM_SHIFT) /* hardcoded offset */
#define IO_MEM_UNASSIGNED  (2 << IO_MEM_SHIFT)
785
#define IO_MEM_NOTDIRTY    (4 << IO_MEM_SHIFT) /* used internally, never use directly */
786
787
788
789
/* acts like a ROM when read and like a device when written. As an
   exception, the write memory callback gets the ram offset instead of
   the physical address */
#define IO_MEM_ROMD        (1)
790
#define IO_MEM_SUBPAGE     (2)
bellard authored
791
792
793
typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value);
typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr);
794
795
796
797
void cpu_register_physical_memory(target_phys_addr_t start_addr, 
                                  unsigned long size,
                                  unsigned long phys_offset);
bellard authored
798
uint32_t cpu_get_physical_page_desc(target_phys_addr_t addr);
bellard authored
799
800
ram_addr_t qemu_ram_alloc(unsigned int size);
void qemu_ram_free(ram_addr_t addr);
801
802
int cpu_register_io_memory(int io_index,
                           CPUReadMemoryFunc **mem_read,
803
804
                           CPUWriteMemoryFunc **mem_write,
                           void *opaque);
805
806
CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index);
CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index);
807
808
void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
809
                            int len, int is_write);
810
811
static inline void cpu_physical_memory_read(target_phys_addr_t addr, 
                                            uint8_t *buf, int len)
812
813
814
{
    cpu_physical_memory_rw(addr, buf, len, 0);
}
815
816
static inline void cpu_physical_memory_write(target_phys_addr_t addr, 
                                             const uint8_t *buf, int len)
817
818
819
{
    cpu_physical_memory_rw(addr, (uint8_t *)buf, len, 1);
}
820
821
uint32_t ldub_phys(target_phys_addr_t addr);
uint32_t lduw_phys(target_phys_addr_t addr);
822
uint32_t ldl_phys(target_phys_addr_t addr);
823
uint64_t ldq_phys(target_phys_addr_t addr);
824
void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val);
825
void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val);
826
827
void stb_phys(target_phys_addr_t addr, uint32_t val);
void stw_phys(target_phys_addr_t addr, uint32_t val);
828
void stl_phys(target_phys_addr_t addr, uint32_t val);
829
void stq_phys(target_phys_addr_t addr, uint64_t val);
830
831
832
void cpu_physical_memory_write_rom(target_phys_addr_t addr, 
                                   const uint8_t *buf, int len);
833
834
int cpu_memory_rw_debug(CPUState *env, target_ulong addr, 
                        uint8_t *buf, int len, int is_write);
835
bellard authored
836
837
#define VGA_DIRTY_FLAG  0x01
#define CODE_DIRTY_FLAG 0x02
bellard authored
838
839
/* read dirty bit (return 0 or 1) */
bellard authored
840
static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
841
{
bellard authored
842
843
844
    return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
}
bellard authored
845
static inline int cpu_physical_memory_get_dirty(ram_addr_t addr, 
bellard authored
846
847
848
                                                int dirty_flags)
{
    return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
849
850
}
bellard authored
851
static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
852
{
bellard authored
853
    phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
854
855
}
bellard authored
856
void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
bellard authored
857
                                     int dirty_flags);
bellard authored
858
void cpu_tlb_update_dirty(CPUState *env);
859
bellard authored
860
861
862
void dump_exec_info(FILE *f,
                    int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
bellard authored
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
/*******************************************/
/* host CPU ticks (if available) */

#if defined(__powerpc__)

static inline uint32_t get_tbl(void) 
{
    uint32_t tbl;
    asm volatile("mftb %0" : "=r" (tbl));
    return tbl;
}

static inline uint32_t get_tbu(void) 
{
	uint32_t tbl;
	asm volatile("mftbu %0" : "=r" (tbl));
	return tbl;
}

static inline int64_t cpu_get_real_ticks(void)
{
    uint32_t l, h, h1;
    /* NOTE: we test if wrapping has occurred */
    do {
        h = get_tbu();
        l = get_tbl();
        h1 = get_tbu();
    } while (h != h1);
    return ((int64_t)h << 32) | l;
}

#elif defined(__i386__)

static inline int64_t cpu_get_real_ticks(void)
bellard authored
897
898
899
900
901
902
{
    int64_t val;
    asm volatile ("rdtsc" : "=A" (val));
    return val;
}
bellard authored
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
#elif defined(__x86_64__)

static inline int64_t cpu_get_real_ticks(void)
{
    uint32_t low,high;
    int64_t val;
    asm volatile("rdtsc" : "=a" (low), "=d" (high));
    val = high;
    val <<= 32;
    val |= low;
    return val;
}

#elif defined(__ia64)

static inline int64_t cpu_get_real_ticks(void)
{
	int64_t val;
	asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
	return val;
}

#elif defined(__s390__)

static inline int64_t cpu_get_real_ticks(void)
{
    int64_t val;
    asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
    return val;
}
934
#elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
bellard authored
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954

static inline int64_t cpu_get_real_ticks (void)
{
#if     defined(_LP64)
        uint64_t        rval;
        asm volatile("rd %%tick,%0" : "=r"(rval));
        return rval;
#else
        union {
                uint64_t i64;
                struct {
                        uint32_t high;
                        uint32_t low;
                }       i32;
        } rval;
        asm volatile("rd %%tick,%1; srlx %1,32,%0"
                : "=r"(rval.i32.high), "=r"(rval.i32.low));
        return rval.i64;
#endif
}
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975

#elif defined(__mips__)

static inline int64_t cpu_get_real_ticks(void)
{
#if __mips_isa_rev >= 2
    uint32_t count;
    static uint32_t cyc_per_count = 0;

    if (!cyc_per_count)
        __asm__ __volatile__("rdhwr %0, $3" : "=r" (cyc_per_count));

    __asm__ __volatile__("rdhwr %1, $2" : "=r" (count));
    return (int64_t)(count * cyc_per_count);
#else
    /* FIXME */
    static int64_t ticks = 0;
    return ticks++;
#endif
}
pbrook authored
976
977
#else
/* The host CPU doesn't have an easily accessible cycle counter.
ths authored
978
979
   Just return a monotonically increasing value.  This will be
   totally wrong, but hopefully better than nothing.  */
pbrook authored
980
981
982
983
984
static inline int64_t cpu_get_real_ticks (void)
{
    static int64_t ticks = 0;
    return ticks++;
}
bellard authored
985
986
987
988
989
990
991
992
993
#endif

/* profiling */
#ifdef CONFIG_PROFILER
static inline int64_t profile_getclock(void)
{
    return cpu_get_real_ticks();
}
bellard authored
994
995
996
997
998
999
1000
1001
1002
1003
1004
extern int64_t kqemu_time, kqemu_time_start;
extern int64_t qemu_time, qemu_time_start;
extern int64_t tlb_flush_time;
extern int64_t kqemu_exec_count;
extern int64_t dev_time;
extern int64_t kqemu_ret_int_count;
extern int64_t kqemu_ret_excp_count;
extern int64_t kqemu_ret_intr_count;

#endif
bellard authored
1005
#endif /* CPU_ALL_H */