Blame view

hw/lance.c 13.8 KB
1
2
3
/*
 * QEMU Lance emulation
 * 
bellard authored
4
 * Copyright (c) 2003-2005 Fabrice Bellard
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
 * 
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include "vl.h"

/* debug LANCE card */
bellard authored
27
//#define DEBUG_LANCE
28
bellard authored
29
30
31
32
33
34
35
#ifdef DEBUG_LANCE
#define DPRINTF(fmt, args...) \
do { printf("LANCE: " fmt , ##args); } while (0)
#else
#define DPRINTF(fmt, args...)
#endif
36
37
38
39
40
41
42
43
44
#ifndef LANCE_LOG_TX_BUFFERS
#define LANCE_LOG_TX_BUFFERS 4
#define LANCE_LOG_RX_BUFFERS 4
#endif

#define LE_CSR0 0
#define LE_CSR1 1
#define LE_CSR2 2
#define LE_CSR3 3
bellard authored
45
46
#define LE_NREGS (LE_CSR3 + 1)
#define LE_MAXREG LE_CSR3
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

#define LE_RDP  0
#define LE_RAP  1

#define LE_MO_PROM      0x8000  /* Enable promiscuous mode */

#define	LE_C0_ERR	0x8000	/* Error: set if BAB, SQE, MISS or ME is set */
#define	LE_C0_BABL	0x4000	/* BAB:  Babble: tx timeout. */
#define	LE_C0_CERR	0x2000	/* SQE:  Signal quality error */
#define	LE_C0_MISS	0x1000	/* MISS: Missed a packet */
#define	LE_C0_MERR	0x0800	/* ME:   Memory error */
#define	LE_C0_RINT	0x0400	/* Received interrupt */
#define	LE_C0_TINT	0x0200	/* Transmitter Interrupt */
#define	LE_C0_IDON	0x0100	/* IFIN: Init finished. */
#define	LE_C0_INTR	0x0080	/* Interrupt or error */
#define	LE_C0_INEA	0x0040	/* Interrupt enable */
#define	LE_C0_RXON	0x0020	/* Receiver on */
#define	LE_C0_TXON	0x0010	/* Transmitter on */
#define	LE_C0_TDMD	0x0008	/* Transmitter demand */
#define	LE_C0_STOP	0x0004	/* Stop the card */
#define	LE_C0_STRT	0x0002	/* Start the card */
#define	LE_C0_INIT	0x0001	/* Init the card */

#define	LE_C3_BSWP	0x4     /* SWAP */
#define	LE_C3_ACON	0x2	/* ALE Control */
#define	LE_C3_BCON	0x1	/* Byte control */

/* Receive message descriptor 1 */
#define LE_R1_OWN       0x80    /* Who owns the entry */
#define LE_R1_ERR       0x40    /* Error: if FRA, OFL, CRC or BUF is set */
#define LE_R1_FRA       0x20    /* FRA: Frame error */
#define LE_R1_OFL       0x10    /* OFL: Frame overflow */
#define LE_R1_CRC       0x08    /* CRC error */
#define LE_R1_BUF       0x04    /* BUF: Buffer error */
#define LE_R1_SOP       0x02    /* Start of packet */
#define LE_R1_EOP       0x01    /* End of packet */
#define LE_R1_POK       0x03    /* Packet is complete: SOP + EOP */

#define LE_T1_OWN       0x80    /* Lance owns the packet */
#define LE_T1_ERR       0x40    /* Error summary */
#define LE_T1_EMORE     0x10    /* Error: more than one retry needed */
#define LE_T1_EONE      0x08    /* Error: one retry needed */
#define LE_T1_EDEF      0x04    /* Error: deferred */
#define LE_T1_SOP       0x02    /* Start of packet */
#define LE_T1_EOP       0x01    /* End of packet */
#define LE_T1_POK	0x03	/* Packet is complete: SOP + EOP */

#define LE_T3_BUF       0x8000  /* Buffer error */
#define LE_T3_UFL       0x4000  /* Error underflow */
#define LE_T3_LCOL      0x1000  /* Error late collision */
#define LE_T3_CLOS      0x0800  /* Error carrier loss */
#define LE_T3_RTY       0x0400  /* Error retry */
#define LE_T3_TDR       0x03ff  /* Time Domain Reflectometry counter */

#define TX_RING_SIZE			(1 << (LANCE_LOG_TX_BUFFERS))
#define TX_RING_MOD_MASK		(TX_RING_SIZE - 1)
#define TX_RING_LEN_BITS		((LANCE_LOG_TX_BUFFERS) << 29)

#define RX_RING_SIZE			(1 << (LANCE_LOG_RX_BUFFERS))
#define RX_RING_MOD_MASK		(RX_RING_SIZE - 1)
#define RX_RING_LEN_BITS		((LANCE_LOG_RX_BUFFERS) << 29)

#define PKT_BUF_SZ		1544
#define RX_BUFF_SIZE            PKT_BUF_SZ
#define TX_BUFF_SIZE            PKT_BUF_SZ

struct lance_rx_desc {
	unsigned short rmd0;        /* low address of packet */
	unsigned char  rmd1_bits;   /* descriptor bits */
	unsigned char  rmd1_hadr;   /* high address of packet */
	short    length;    	    /* This length is 2s complement (negative)!
				     * Buffer length
				     */
	unsigned short mblength;    /* This is the actual number of bytes received */
};

struct lance_tx_desc {
	unsigned short tmd0;        /* low address of packet */
	unsigned char  tmd1_bits;   /* descriptor bits */
	unsigned char  tmd1_hadr;   /* high address of packet */
	short length;          	    /* Length is 2s complement (negative)! */
	unsigned short misc;
};

/* The LANCE initialization block, described in databook. */
/* On the Sparc, this block should be on a DMA region     */
struct lance_init_block {
	unsigned short mode;		/* Pre-set mode (reg. 15) */
	unsigned char phys_addr[6];     /* Physical ethernet address */
	unsigned filter[2];		/* Multicast filter. */

	/* Receive and transmit ring base, along with extra bits. */
	unsigned short rx_ptr;		/* receive descriptor addr */
	unsigned short rx_len;		/* receive len and high addr */
	unsigned short tx_ptr;		/* transmit descriptor addr */
	unsigned short tx_len;		/* transmit len and high addr */

	/* The Tx and Rx ring entries must aligned on 8-byte boundaries. */
	struct lance_rx_desc brx_ring[RX_RING_SIZE];
	struct lance_tx_desc btx_ring[TX_RING_SIZE];

	char   tx_buf [TX_RING_SIZE][TX_BUFF_SIZE];
	char   pad[2];			/* align rx_buf for copy_and_sum(). */
	char   rx_buf [RX_RING_SIZE][RX_BUFF_SIZE];
};

#define LEDMA_REGS 4
bellard authored
154
#define LEDMA_MAXADDR (LEDMA_REGS * 4 - 1)
155
156

typedef struct LANCEState {
bellard authored
157
158
    VLANClientState *vc;
    uint8_t macaddr[6]; /* init mac address */
159
160
    uint32_t leptr;
    uint16_t addr;
bellard authored
161
    uint16_t regs[LE_NREGS];
162
163
    uint8_t phys[6]; /* mac address */
    int irq;
bellard authored
164
165
    unsigned int rxptr, txptr;
    uint32_t ledmaregs[LEDMA_REGS];
166
167
168
169
} LANCEState;

static void lance_send(void *opaque);
bellard authored
170
static void lance_reset(void *opaque)
171
{
bellard authored
172
    LANCEState *s = opaque;
bellard authored
173
    memcpy(s->phys, s->macaddr, 6);
bellard authored
174
175
    s->rxptr = 0;
    s->txptr = 0;
bellard authored
176
    memset(s->regs, 0, LE_NREGS * 2);
177
    s->regs[LE_CSR0] = LE_C0_STOP;
bellard authored
178
    memset(s->ledmaregs, 0, LEDMA_REGS * 4);
179
180
181
182
183
184
185
}

static uint32_t lance_mem_readw(void *opaque, target_phys_addr_t addr)
{
    LANCEState *s = opaque;
    uint32_t saddr;
bellard authored
186
    saddr = addr & LE_MAXREG;
187
188
    switch (saddr >> 1) {
    case LE_RDP:
bellard authored
189
	DPRINTF("read dreg[%d] = %4.4x\n", s->addr, s->regs[s->addr]);
190
191
	return s->regs[s->addr];
    case LE_RAP:
bellard authored
192
	DPRINTF("read areg = %4.4x\n", s->addr);
193
194
	return s->addr;
    default:
bellard authored
195
	DPRINTF("read unknown(%d)\n", saddr>>1);
196
197
198
199
200
201
202
203
204
	break;
    }
    return 0;
}

static void lance_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
{
    LANCEState *s = opaque;
    uint32_t saddr;
bellard authored
205
    uint16_t reg;
206
bellard authored
207
    saddr = addr & LE_MAXREG;
208
209
    switch (saddr >> 1) {
    case LE_RDP:
bellard authored
210
	DPRINTF("write dreg[%d] = %4.4x\n", s->addr, val);
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
	switch(s->addr) {
	case LE_CSR0:
	    if (val & LE_C0_STOP) {
		s->regs[LE_CSR0] = LE_C0_STOP;
		break;
	    }

	    reg = s->regs[LE_CSR0];

	    // 1 = clear for some bits
	    reg &= ~(val & 0x7f00);

	    // generated bits
	    reg &= ~(LE_C0_ERR | LE_C0_INTR);
	    if (reg & 0x7100)
		reg |= LE_C0_ERR;
	    if (reg & 0x7f00)
		reg |= LE_C0_INTR;

	    // direct bit
	    reg &= ~LE_C0_INEA;
	    reg |= val & LE_C0_INEA;

	    // exclusive bits
	    if (val & LE_C0_INIT) {
		reg |= LE_C0_IDON | LE_C0_INIT;
		reg &= ~LE_C0_STOP;
	    }
	    else if (val & LE_C0_STRT) {
		reg |= LE_C0_STRT | LE_C0_RXON | LE_C0_TXON;
		reg &= ~LE_C0_STOP;
	    }

	    s->regs[LE_CSR0] = reg;
	    break;
	case LE_CSR1:
	    s->leptr = (s->leptr & 0xffff0000) | (val & 0xffff);
	    s->regs[s->addr] = val;
	    break;
	case LE_CSR2:
	    s->leptr = (s->leptr & 0xffff) | ((val & 0xffff) << 16);
	    s->regs[s->addr] = val;
	    break;
	case LE_CSR3:
	    s->regs[s->addr] = val;
	    break;
	}
	break;
    case LE_RAP:
bellard authored
260
261
	DPRINTF("write areg = %4.4x\n", val);
	if (val < LE_NREGS)
262
263
264
	    s->addr = val;
	break;
    default:
bellard authored
265
	DPRINTF("write unknown(%d) = %4.4x\n", saddr>>1, val);
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
	break;
    }
    lance_send(s);
}

static CPUReadMemoryFunc *lance_mem_read[3] = {
    lance_mem_readw,
    lance_mem_readw,
    lance_mem_readw,
};

static CPUWriteMemoryFunc *lance_mem_write[3] = {
    lance_mem_writew,
    lance_mem_writew,
    lance_mem_writew,
};


#define MIN_BUF_SIZE 60
pbrook authored
286
static int lance_can_receive(void *opaque)
287
288
289
290
{
    return 1;
}
291
292
293
static void lance_receive(void *opaque, const uint8_t *buf, int size)
{
    LANCEState *s = opaque;
bellard authored
294
    uint32_t dmaptr = s->leptr + s->ledmaregs[3];
295
    struct lance_init_block *ib;
bellard authored
296
297
298
    unsigned int i, old_rxptr;
    uint16_t temp16;
    uint8_t temp8;
299
bellard authored
300
    DPRINTF("receive size %d\n", size);
301
302
303
304
305
    if ((s->regs[LE_CSR0] & LE_C0_STOP) == LE_C0_STOP)
	return;

    ib = (void *) iommu_translate(dmaptr);
bellard authored
306
307
    old_rxptr = s->rxptr;
    for (i = s->rxptr; i != ((old_rxptr - 1) & RX_RING_MOD_MASK); i = (i + 1) & RX_RING_MOD_MASK) {
bellard authored
308
309
	cpu_physical_memory_read((uint32_t)&ib->brx_ring[i].rmd1_bits, (void *) &temp8, 1);
	if (temp8 == (LE_R1_OWN)) {
bellard authored
310
	    s->rxptr = (s->rxptr + 1) & RX_RING_MOD_MASK;
bellard authored
311
312
313
	    temp16 = size + 4;
	    bswap16s(&temp16);
	    cpu_physical_memory_write((uint32_t)&ib->brx_ring[i].mblength, (void *) &temp16, 2);
bellard authored
314
	    cpu_physical_memory_write((uint32_t)&ib->rx_buf[i], buf, size);
bellard authored
315
316
	    temp8 = LE_R1_POK;
	    cpu_physical_memory_write((uint32_t)&ib->brx_ring[i].rmd1_bits, (void *) &temp8, 1);
317
	    s->regs[LE_CSR0] |= LE_C0_RINT | LE_C0_INTR;
bellard authored
318
	    if (s->regs[LE_CSR0] & LE_C0_INEA)
319
		pic_set_irq(s->irq, 1);
bellard authored
320
	    DPRINTF("got packet, len %d\n", size);
321
322
323
324
325
326
327
328
	    return;
	}
    }
}

static void lance_send(void *opaque)
{
    LANCEState *s = opaque;
bellard authored
329
    uint32_t dmaptr = s->leptr + s->ledmaregs[3];
330
    struct lance_init_block *ib;
bellard authored
331
332
333
    unsigned int i, old_txptr;
    uint16_t temp16;
    uint8_t temp8;
334
335
    char pkt_buf[PKT_BUF_SZ];
bellard authored
336
    DPRINTF("sending packet? (csr0 %4.4x)\n", s->regs[LE_CSR0]);
337
338
339
340
341
    if ((s->regs[LE_CSR0] & LE_C0_STOP) == LE_C0_STOP)
	return;

    ib = (void *) iommu_translate(dmaptr);
bellard authored
342
    DPRINTF("sending packet? (dmaptr %8.8x) (ib %p) (btx_ring %p)\n", dmaptr, ib, &ib->btx_ring);
bellard authored
343
344
    old_txptr = s->txptr;
    for (i = s->txptr; i != ((old_txptr - 1) & TX_RING_MOD_MASK); i = (i + 1) & TX_RING_MOD_MASK) {
bellard authored
345
346
347
348
349
350
351
	cpu_physical_memory_read((uint32_t)&ib->btx_ring[i].tmd1_bits, (void *) &temp8, 1);
	if (temp8 == (LE_T1_POK|LE_T1_OWN)) {
	    cpu_physical_memory_read((uint32_t)&ib->btx_ring[i].length, (void *) &temp16, 2);
	    bswap16s(&temp16);
	    temp16 = (~temp16) + 1;
	    cpu_physical_memory_read((uint32_t)&ib->tx_buf[i], pkt_buf, temp16);
	    DPRINTF("sending packet, len %d\n", temp16);
bellard authored
352
	    qemu_send_packet(s->vc, pkt_buf, temp16);
bellard authored
353
354
	    temp8 = LE_T1_POK;
	    cpu_physical_memory_write((uint32_t)&ib->btx_ring[i].tmd1_bits, (void *) &temp8, 1);
bellard authored
355
	    s->txptr = (s->txptr + 1) & TX_RING_MOD_MASK;
356
357
358
	    s->regs[LE_CSR0] |= LE_C0_TINT | LE_C0_INTR;
	}
    }
bellard authored
359
360
    if ((s->regs[LE_CSR0] & LE_C0_INTR) && (s->regs[LE_CSR0] & LE_C0_INEA))
	pic_set_irq(s->irq, 1);
361
362
363
364
}

static uint32_t ledma_mem_readl(void *opaque, target_phys_addr_t addr)
{
bellard authored
365
    LANCEState *s = opaque;
366
367
    uint32_t saddr;
bellard authored
368
369
    saddr = (addr & LEDMA_MAXADDR) >> 2;
    return s->ledmaregs[saddr];
370
371
372
373
}

static void ledma_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
bellard authored
374
    LANCEState *s = opaque;
375
376
    uint32_t saddr;
bellard authored
377
378
    saddr = (addr & LEDMA_MAXADDR) >> 2;
    s->ledmaregs[saddr] = val;
379
380
381
382
383
384
385
386
387
388
389
390
391
392
}

static CPUReadMemoryFunc *ledma_mem_read[3] = {
    ledma_mem_readl,
    ledma_mem_readl,
    ledma_mem_readl,
};

static CPUWriteMemoryFunc *ledma_mem_write[3] = {
    ledma_mem_writel,
    ledma_mem_writel,
    ledma_mem_writel,
};
bellard authored
393
394
395
396
397
398
399
static void lance_save(QEMUFile *f, void *opaque)
{
    LANCEState *s = opaque;
    int i;

    qemu_put_be32s(f, &s->leptr);
    qemu_put_be16s(f, &s->addr);
bellard authored
400
    for (i = 0; i < LE_NREGS; i ++)
bellard authored
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
	qemu_put_be16s(f, &s->regs[i]);
    qemu_put_buffer(f, s->phys, 6);
    qemu_put_be32s(f, &s->irq);
    for (i = 0; i < LEDMA_REGS; i ++)
	qemu_put_be32s(f, &s->ledmaregs[i]);
}

static int lance_load(QEMUFile *f, void *opaque, int version_id)
{
    LANCEState *s = opaque;
    int i;

    if (version_id != 1)
        return -EINVAL;

    qemu_get_be32s(f, &s->leptr);
    qemu_get_be16s(f, &s->addr);
bellard authored
418
    for (i = 0; i < LE_NREGS; i ++)
bellard authored
419
420
421
422
423
424
425
426
	qemu_get_be16s(f, &s->regs[i]);
    qemu_get_buffer(f, s->phys, 6);
    qemu_get_be32s(f, &s->irq);
    for (i = 0; i < LEDMA_REGS; i ++)
	qemu_get_be32s(f, &s->ledmaregs[i]);
    return 0;
}
bellard authored
427
void lance_init(NICInfo *nd, int irq, uint32_t leaddr, uint32_t ledaddr)
428
429
{
    LANCEState *s;
bellard authored
430
    int lance_io_memory, ledma_io_memory;
431
432
433
434
435

    s = qemu_mallocz(sizeof(LANCEState));
    if (!s)
        return;
bellard authored
436
437
    s->irq = irq;
438
    lance_io_memory = cpu_register_io_memory(0, lance_mem_read, lance_mem_write, s);
bellard authored
439
    cpu_register_physical_memory(leaddr, 4, lance_io_memory);
bellard authored
440
bellard authored
441
    ledma_io_memory = cpu_register_io_memory(0, ledma_mem_read, ledma_mem_write, s);
bellard authored
442
    cpu_register_physical_memory(ledaddr, 16, ledma_io_memory);
443
bellard authored
444
445
    memcpy(s->macaddr, nd->macaddr, 6);
446
    lance_reset(s);
bellard authored
447
448
    s->vc = qemu_new_vlan_client(nd->vlan, lance_receive, lance_can_receive, s);
bellard authored
449
450
451
452
453
454
455
456
457
458

    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
             "lance macaddr=%02x:%02x:%02x:%02x:%02x:%02x",
             s->macaddr[0],
             s->macaddr[1],
             s->macaddr[2],
             s->macaddr[3],
             s->macaddr[4],
             s->macaddr[5]);
bellard authored
459
460
    register_savevm("lance", leaddr, 1, lance_save, lance_load, s);
    qemu_register_reset(lance_reset, s);
461
462
}