Commit 20495218834824723ef81306c6e1fd27fc3ae560
1 parent
158142c2
use the generic soft float code
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@1333 c046a42c-6fe2-441c-8c8c-71466251a162
Showing
15 changed files
with
84 additions
and
5011 deletions
target-arm/nwfpe/ARM-gcc.h deleted
100644 → 0
| 1 | -/* | |
| 2 | -------------------------------------------------------------------------------- | |
| 3 | -The macro `BITS64' can be defined to indicate that 64-bit integer types are | |
| 4 | -supported by the compiler. | |
| 5 | -------------------------------------------------------------------------------- | |
| 6 | -*/ | |
| 7 | -#define BITS64 | |
| 8 | - | |
| 9 | -/* | |
| 10 | -------------------------------------------------------------------------------- | |
| 11 | -Each of the following `typedef's defines the most convenient type that holds | |
| 12 | -integers of at least as many bits as specified. For example, `uint8' should | |
| 13 | -be the most convenient type that can hold unsigned integers of as many as | |
| 14 | -8 bits. The `flag' type must be able to hold either a 0 or 1. For most | |
| 15 | -implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed | |
| 16 | -to the same as `int'. | |
| 17 | -------------------------------------------------------------------------------- | |
| 18 | -*/ | |
| 19 | -typedef char flag; | |
| 20 | -typedef unsigned char uint8; | |
| 21 | -typedef signed char int8; | |
| 22 | -typedef int uint16; | |
| 23 | -typedef int int16; | |
| 24 | -typedef unsigned int uint32; | |
| 25 | -typedef signed int int32; | |
| 26 | -#ifdef BITS64 | |
| 27 | -typedef unsigned long long int bits64; | |
| 28 | -typedef signed long long int sbits64; | |
| 29 | -#endif | |
| 30 | - | |
| 31 | -/* | |
| 32 | -------------------------------------------------------------------------------- | |
| 33 | -Each of the following `typedef's defines a type that holds integers | |
| 34 | -of _exactly_ the number of bits specified. For instance, for most | |
| 35 | -implementation of C, `bits16' and `sbits16' should be `typedef'ed to | |
| 36 | -`unsigned short int' and `signed short int' (or `short int'), respectively. | |
| 37 | -------------------------------------------------------------------------------- | |
| 38 | -*/ | |
| 39 | -typedef unsigned char bits8; | |
| 40 | -typedef signed char sbits8; | |
| 41 | -typedef unsigned short int bits16; | |
| 42 | -typedef signed short int sbits16; | |
| 43 | -typedef unsigned int bits32; | |
| 44 | -typedef signed int sbits32; | |
| 45 | -#ifdef BITS64 | |
| 46 | -typedef unsigned long long int uint64; | |
| 47 | -typedef signed long long int int64; | |
| 48 | -#endif | |
| 49 | - | |
| 50 | -#ifdef BITS64 | |
| 51 | -/* | |
| 52 | -------------------------------------------------------------------------------- | |
| 53 | -The `LIT64' macro takes as its argument a textual integer literal and if | |
| 54 | -necessary ``marks'' the literal as having a 64-bit integer type. For | |
| 55 | -example, the Gnu C Compiler (`gcc') requires that 64-bit literals be | |
| 56 | -appended with the letters `LL' standing for `long long', which is `gcc's | |
| 57 | -name for the 64-bit integer type. Some compilers may allow `LIT64' to be | |
| 58 | -defined as the identity macro: `#define LIT64( a ) a'. | |
| 59 | -------------------------------------------------------------------------------- | |
| 60 | -*/ | |
| 61 | -#define LIT64( a ) a##LL | |
| 62 | -#endif | |
| 63 | - | |
| 64 | -/* | |
| 65 | -------------------------------------------------------------------------------- | |
| 66 | -The macro `INLINE' can be used before functions that should be inlined. If | |
| 67 | -a compiler does not support explicit inlining, this macro should be defined | |
| 68 | -to be `static'. | |
| 69 | -------------------------------------------------------------------------------- | |
| 70 | -*/ | |
| 71 | -#define INLINE extern __inline__ | |
| 72 | - | |
| 73 | - | |
| 74 | -/* For use as a GCC soft-float library we need some special function names. */ | |
| 75 | - | |
| 76 | -#ifdef __LIBFLOAT__ | |
| 77 | - | |
| 78 | -/* Some 32-bit ops can be mapped straight across by just changing the name. */ | |
| 79 | -#define float32_add __addsf3 | |
| 80 | -#define float32_sub __subsf3 | |
| 81 | -#define float32_mul __mulsf3 | |
| 82 | -#define float32_div __divsf3 | |
| 83 | -#define int32_to_float32 __floatsisf | |
| 84 | -#define float32_to_int32_round_to_zero __fixsfsi | |
| 85 | -#define float32_to_uint32_round_to_zero __fixunssfsi | |
| 86 | - | |
| 87 | -/* These ones go through the glue code. To avoid namespace pollution | |
| 88 | - we rename the internal functions too. */ | |
| 89 | -#define float32_eq ___float32_eq | |
| 90 | -#define float32_le ___float32_le | |
| 91 | -#define float32_lt ___float32_lt | |
| 92 | - | |
| 93 | -/* All the 64-bit ops have to go through the glue, so we pull the same | |
| 94 | - trick. */ | |
| 95 | -#define float64_add ___float64_add | |
| 96 | -#define float64_sub ___float64_sub | |
| 97 | -#define float64_mul ___float64_mul | |
| 98 | -#define float64_div ___float64_div | |
| 99 | -#define int32_to_float64 ___int32_to_float64 | |
| 100 | -#define float64_to_int32_round_to_zero ___float64_to_int32_round_to_zero | |
| 101 | -#define float64_to_uint32_round_to_zero ___float64_to_uint32_round_to_zero | |
| 102 | -#define float64_to_float32 ___float64_to_float32 | |
| 103 | -#define float32_to_float64 ___float32_to_float64 | |
| 104 | -#define float64_eq ___float64_eq | |
| 105 | -#define float64_le ___float64_le | |
| 106 | -#define float64_lt ___float64_lt | |
| 107 | - | |
| 108 | -#if 0 | |
| 109 | -#define float64_add __adddf3 | |
| 110 | -#define float64_sub __subdf3 | |
| 111 | -#define float64_mul __muldf3 | |
| 112 | -#define float64_div __divdf3 | |
| 113 | -#define int32_to_float64 __floatsidf | |
| 114 | -#define float64_to_int32_round_to_zero __fixdfsi | |
| 115 | -#define float64_to_uint32_round_to_zero __fixunsdfsi | |
| 116 | -#define float64_to_float32 __truncdfsf2 | |
| 117 | -#define float32_to_float64 __extendsfdf2 | |
| 118 | -#endif | |
| 119 | - | |
| 120 | -#endif |
target-arm/nwfpe/double_cpdo.c
| ... | ... | @@ -53,7 +53,7 @@ unsigned int DoubleCPDO(const unsigned int opcode) |
| 53 | 53 | switch (fpa11->fType[Fm]) |
| 54 | 54 | { |
| 55 | 55 | case typeSingle: |
| 56 | - rFm = float32_to_float64(fpa11->fpreg[Fm].fSingle); | |
| 56 | + rFm = float32_to_float64(fpa11->fpreg[Fm].fSingle, &fpa11->fp_status); | |
| 57 | 57 | break; |
| 58 | 58 | |
| 59 | 59 | case typeDouble: |
| ... | ... | @@ -79,7 +79,7 @@ unsigned int DoubleCPDO(const unsigned int opcode) |
| 79 | 79 | switch (fpa11->fType[Fn]) |
| 80 | 80 | { |
| 81 | 81 | case typeSingle: |
| 82 | - rFn = float32_to_float64(fpa11->fpreg[Fn].fSingle); | |
| 82 | + rFn = float32_to_float64(fpa11->fpreg[Fn].fSingle, &fpa11->fp_status); | |
| 83 | 83 | break; |
| 84 | 84 | |
| 85 | 85 | case typeDouble: |
| ... | ... | @@ -96,30 +96,30 @@ unsigned int DoubleCPDO(const unsigned int opcode) |
| 96 | 96 | { |
| 97 | 97 | /* dyadic opcodes */ |
| 98 | 98 | case ADF_CODE: |
| 99 | - fpa11->fpreg[Fd].fDouble = float64_add(rFn,rFm); | |
| 99 | + fpa11->fpreg[Fd].fDouble = float64_add(rFn,rFm, &fpa11->fp_status); | |
| 100 | 100 | break; |
| 101 | 101 | |
| 102 | 102 | case MUF_CODE: |
| 103 | 103 | case FML_CODE: |
| 104 | - fpa11->fpreg[Fd].fDouble = float64_mul(rFn,rFm); | |
| 104 | + fpa11->fpreg[Fd].fDouble = float64_mul(rFn,rFm, &fpa11->fp_status); | |
| 105 | 105 | break; |
| 106 | 106 | |
| 107 | 107 | case SUF_CODE: |
| 108 | - fpa11->fpreg[Fd].fDouble = float64_sub(rFn,rFm); | |
| 108 | + fpa11->fpreg[Fd].fDouble = float64_sub(rFn,rFm, &fpa11->fp_status); | |
| 109 | 109 | break; |
| 110 | 110 | |
| 111 | 111 | case RSF_CODE: |
| 112 | - fpa11->fpreg[Fd].fDouble = float64_sub(rFm,rFn); | |
| 112 | + fpa11->fpreg[Fd].fDouble = float64_sub(rFm,rFn, &fpa11->fp_status); | |
| 113 | 113 | break; |
| 114 | 114 | |
| 115 | 115 | case DVF_CODE: |
| 116 | 116 | case FDV_CODE: |
| 117 | - fpa11->fpreg[Fd].fDouble = float64_div(rFn,rFm); | |
| 117 | + fpa11->fpreg[Fd].fDouble = float64_div(rFn,rFm, &fpa11->fp_status); | |
| 118 | 118 | break; |
| 119 | 119 | |
| 120 | 120 | case RDF_CODE: |
| 121 | 121 | case FRD_CODE: |
| 122 | - fpa11->fpreg[Fd].fDouble = float64_div(rFm,rFn); | |
| 122 | + fpa11->fpreg[Fd].fDouble = float64_div(rFm,rFn, &fpa11->fp_status); | |
| 123 | 123 | break; |
| 124 | 124 | |
| 125 | 125 | #if 0 |
| ... | ... | @@ -133,7 +133,7 @@ unsigned int DoubleCPDO(const unsigned int opcode) |
| 133 | 133 | #endif |
| 134 | 134 | |
| 135 | 135 | case RMF_CODE: |
| 136 | - fpa11->fpreg[Fd].fDouble = float64_rem(rFn,rFm); | |
| 136 | + fpa11->fpreg[Fd].fDouble = float64_rem(rFn,rFm, &fpa11->fp_status); | |
| 137 | 137 | break; |
| 138 | 138 | |
| 139 | 139 | #if 0 |
| ... | ... | @@ -173,11 +173,11 @@ unsigned int DoubleCPDO(const unsigned int opcode) |
| 173 | 173 | |
| 174 | 174 | case RND_CODE: |
| 175 | 175 | case URD_CODE: |
| 176 | - fpa11->fpreg[Fd].fDouble = float64_round_to_int(rFm); | |
| 176 | + fpa11->fpreg[Fd].fDouble = float64_round_to_int(rFm, &fpa11->fp_status); | |
| 177 | 177 | break; |
| 178 | 178 | |
| 179 | 179 | case SQT_CODE: |
| 180 | - fpa11->fpreg[Fd].fDouble = float64_sqrt(rFm); | |
| 180 | + fpa11->fpreg[Fd].fDouble = float64_sqrt(rFm, &fpa11->fp_status); | |
| 181 | 181 | break; |
| 182 | 182 | |
| 183 | 183 | #if 0 | ... | ... |
target-arm/nwfpe/extended_cpdo.c
| ... | ... | @@ -53,11 +53,11 @@ unsigned int ExtendedCPDO(const unsigned int opcode) |
| 53 | 53 | switch (fpa11->fType[Fm]) |
| 54 | 54 | { |
| 55 | 55 | case typeSingle: |
| 56 | - rFm = float32_to_floatx80(fpa11->fpreg[Fm].fSingle); | |
| 56 | + rFm = float32_to_floatx80(fpa11->fpreg[Fm].fSingle, &fpa11->fp_status); | |
| 57 | 57 | break; |
| 58 | 58 | |
| 59 | 59 | case typeDouble: |
| 60 | - rFm = float64_to_floatx80(fpa11->fpreg[Fm].fDouble); | |
| 60 | + rFm = float64_to_floatx80(fpa11->fpreg[Fm].fDouble, &fpa11->fp_status); | |
| 61 | 61 | break; |
| 62 | 62 | |
| 63 | 63 | case typeExtended: |
| ... | ... | @@ -74,11 +74,11 @@ unsigned int ExtendedCPDO(const unsigned int opcode) |
| 74 | 74 | switch (fpa11->fType[Fn]) |
| 75 | 75 | { |
| 76 | 76 | case typeSingle: |
| 77 | - rFn = float32_to_floatx80(fpa11->fpreg[Fn].fSingle); | |
| 77 | + rFn = float32_to_floatx80(fpa11->fpreg[Fn].fSingle, &fpa11->fp_status); | |
| 78 | 78 | break; |
| 79 | 79 | |
| 80 | 80 | case typeDouble: |
| 81 | - rFn = float64_to_floatx80(fpa11->fpreg[Fn].fDouble); | |
| 81 | + rFn = float64_to_floatx80(fpa11->fpreg[Fn].fDouble, &fpa11->fp_status); | |
| 82 | 82 | break; |
| 83 | 83 | |
| 84 | 84 | case typeExtended: |
| ... | ... | @@ -94,30 +94,30 @@ unsigned int ExtendedCPDO(const unsigned int opcode) |
| 94 | 94 | { |
| 95 | 95 | /* dyadic opcodes */ |
| 96 | 96 | case ADF_CODE: |
| 97 | - fpa11->fpreg[Fd].fExtended = floatx80_add(rFn,rFm); | |
| 97 | + fpa11->fpreg[Fd].fExtended = floatx80_add(rFn,rFm, &fpa11->fp_status); | |
| 98 | 98 | break; |
| 99 | 99 | |
| 100 | 100 | case MUF_CODE: |
| 101 | 101 | case FML_CODE: |
| 102 | - fpa11->fpreg[Fd].fExtended = floatx80_mul(rFn,rFm); | |
| 102 | + fpa11->fpreg[Fd].fExtended = floatx80_mul(rFn,rFm, &fpa11->fp_status); | |
| 103 | 103 | break; |
| 104 | 104 | |
| 105 | 105 | case SUF_CODE: |
| 106 | - fpa11->fpreg[Fd].fExtended = floatx80_sub(rFn,rFm); | |
| 106 | + fpa11->fpreg[Fd].fExtended = floatx80_sub(rFn,rFm, &fpa11->fp_status); | |
| 107 | 107 | break; |
| 108 | 108 | |
| 109 | 109 | case RSF_CODE: |
| 110 | - fpa11->fpreg[Fd].fExtended = floatx80_sub(rFm,rFn); | |
| 110 | + fpa11->fpreg[Fd].fExtended = floatx80_sub(rFm,rFn, &fpa11->fp_status); | |
| 111 | 111 | break; |
| 112 | 112 | |
| 113 | 113 | case DVF_CODE: |
| 114 | 114 | case FDV_CODE: |
| 115 | - fpa11->fpreg[Fd].fExtended = floatx80_div(rFn,rFm); | |
| 115 | + fpa11->fpreg[Fd].fExtended = floatx80_div(rFn,rFm, &fpa11->fp_status); | |
| 116 | 116 | break; |
| 117 | 117 | |
| 118 | 118 | case RDF_CODE: |
| 119 | 119 | case FRD_CODE: |
| 120 | - fpa11->fpreg[Fd].fExtended = floatx80_div(rFm,rFn); | |
| 120 | + fpa11->fpreg[Fd].fExtended = floatx80_div(rFm,rFn, &fpa11->fp_status); | |
| 121 | 121 | break; |
| 122 | 122 | |
| 123 | 123 | #if 0 |
| ... | ... | @@ -131,7 +131,7 @@ unsigned int ExtendedCPDO(const unsigned int opcode) |
| 131 | 131 | #endif |
| 132 | 132 | |
| 133 | 133 | case RMF_CODE: |
| 134 | - fpa11->fpreg[Fd].fExtended = floatx80_rem(rFn,rFm); | |
| 134 | + fpa11->fpreg[Fd].fExtended = floatx80_rem(rFn,rFm, &fpa11->fp_status); | |
| 135 | 135 | break; |
| 136 | 136 | |
| 137 | 137 | #if 0 |
| ... | ... | @@ -157,11 +157,11 @@ unsigned int ExtendedCPDO(const unsigned int opcode) |
| 157 | 157 | |
| 158 | 158 | case RND_CODE: |
| 159 | 159 | case URD_CODE: |
| 160 | - fpa11->fpreg[Fd].fExtended = floatx80_round_to_int(rFm); | |
| 160 | + fpa11->fpreg[Fd].fExtended = floatx80_round_to_int(rFm, &fpa11->fp_status); | |
| 161 | 161 | break; |
| 162 | 162 | |
| 163 | 163 | case SQT_CODE: |
| 164 | - fpa11->fpreg[Fd].fExtended = floatx80_sqrt(rFm); | |
| 164 | + fpa11->fpreg[Fd].fExtended = floatx80_sqrt(rFm, &fpa11->fp_status); | |
| 165 | 165 | break; |
| 166 | 166 | |
| 167 | 167 | #if 0 | ... | ... |
target-arm/nwfpe/fpa11.c
| ... | ... | @@ -61,74 +61,79 @@ void resetFPA11(void) |
| 61 | 61 | |
| 62 | 62 | void SetRoundingMode(const unsigned int opcode) |
| 63 | 63 | { |
| 64 | -#if MAINTAIN_FPCR | |
| 64 | + int rounding_mode; | |
| 65 | 65 | FPA11 *fpa11 = GET_FPA11(); |
| 66 | + | |
| 67 | +#if MAINTAIN_FPCR | |
| 66 | 68 | fpa11->fpcr &= ~MASK_ROUNDING_MODE; |
| 67 | 69 | #endif |
| 68 | 70 | switch (opcode & MASK_ROUNDING_MODE) |
| 69 | 71 | { |
| 70 | 72 | default: |
| 71 | 73 | case ROUND_TO_NEAREST: |
| 72 | - float_rounding_mode = float_round_nearest_even; | |
| 74 | + rounding_mode = float_round_nearest_even; | |
| 73 | 75 | #if MAINTAIN_FPCR |
| 74 | 76 | fpa11->fpcr |= ROUND_TO_NEAREST; |
| 75 | 77 | #endif |
| 76 | 78 | break; |
| 77 | 79 | |
| 78 | 80 | case ROUND_TO_PLUS_INFINITY: |
| 79 | - float_rounding_mode = float_round_up; | |
| 81 | + rounding_mode = float_round_up; | |
| 80 | 82 | #if MAINTAIN_FPCR |
| 81 | 83 | fpa11->fpcr |= ROUND_TO_PLUS_INFINITY; |
| 82 | 84 | #endif |
| 83 | 85 | break; |
| 84 | 86 | |
| 85 | 87 | case ROUND_TO_MINUS_INFINITY: |
| 86 | - float_rounding_mode = float_round_down; | |
| 88 | + rounding_mode = float_round_down; | |
| 87 | 89 | #if MAINTAIN_FPCR |
| 88 | 90 | fpa11->fpcr |= ROUND_TO_MINUS_INFINITY; |
| 89 | 91 | #endif |
| 90 | 92 | break; |
| 91 | 93 | |
| 92 | 94 | case ROUND_TO_ZERO: |
| 93 | - float_rounding_mode = float_round_to_zero; | |
| 95 | + rounding_mode = float_round_to_zero; | |
| 94 | 96 | #if MAINTAIN_FPCR |
| 95 | 97 | fpa11->fpcr |= ROUND_TO_ZERO; |
| 96 | 98 | #endif |
| 97 | 99 | break; |
| 98 | 100 | } |
| 101 | + set_float_rounding_mode(rounding_mode, &fpa11->fp_status); | |
| 99 | 102 | } |
| 100 | 103 | |
| 101 | 104 | void SetRoundingPrecision(const unsigned int opcode) |
| 102 | 105 | { |
| 103 | -#if MAINTAIN_FPCR | |
| 106 | + int rounding_precision; | |
| 104 | 107 | FPA11 *fpa11 = GET_FPA11(); |
| 108 | +#if MAINTAIN_FPCR | |
| 105 | 109 | fpa11->fpcr &= ~MASK_ROUNDING_PRECISION; |
| 106 | 110 | #endif |
| 107 | 111 | switch (opcode & MASK_ROUNDING_PRECISION) |
| 108 | 112 | { |
| 109 | 113 | case ROUND_SINGLE: |
| 110 | - floatx80_rounding_precision = 32; | |
| 114 | + rounding_precision = 32; | |
| 111 | 115 | #if MAINTAIN_FPCR |
| 112 | 116 | fpa11->fpcr |= ROUND_SINGLE; |
| 113 | 117 | #endif |
| 114 | 118 | break; |
| 115 | 119 | |
| 116 | 120 | case ROUND_DOUBLE: |
| 117 | - floatx80_rounding_precision = 64; | |
| 121 | + rounding_precision = 64; | |
| 118 | 122 | #if MAINTAIN_FPCR |
| 119 | 123 | fpa11->fpcr |= ROUND_DOUBLE; |
| 120 | 124 | #endif |
| 121 | 125 | break; |
| 122 | 126 | |
| 123 | 127 | case ROUND_EXTENDED: |
| 124 | - floatx80_rounding_precision = 80; | |
| 128 | + rounding_precision = 80; | |
| 125 | 129 | #if MAINTAIN_FPCR |
| 126 | 130 | fpa11->fpcr |= ROUND_EXTENDED; |
| 127 | 131 | #endif |
| 128 | 132 | break; |
| 129 | 133 | |
| 130 | - default: floatx80_rounding_precision = 80; | |
| 134 | + default: rounding_precision = 80; | |
| 131 | 135 | } |
| 136 | + set_floatx80_rounding_precision(rounding_precision, &fpa11->fp_status); | |
| 132 | 137 | } |
| 133 | 138 | |
| 134 | 139 | /* Emulate the instruction in the opcode. */ | ... | ... |
target-arm/nwfpe/fpa11.h
target-arm/nwfpe/fpa11_cpdo.c
| ... | ... | @@ -80,10 +80,10 @@ unsigned int EmulateCPDO(const unsigned int opcode) |
| 80 | 80 | { |
| 81 | 81 | if (typeDouble == nType) |
| 82 | 82 | fpa11->fpreg[Fd].fSingle = |
| 83 | - float64_to_float32(fpa11->fpreg[Fd].fDouble); | |
| 83 | + float64_to_float32(fpa11->fpreg[Fd].fDouble, &fpa11->fp_status); | |
| 84 | 84 | else |
| 85 | 85 | fpa11->fpreg[Fd].fSingle = |
| 86 | - floatx80_to_float32(fpa11->fpreg[Fd].fExtended); | |
| 86 | + floatx80_to_float32(fpa11->fpreg[Fd].fExtended, &fpa11->fp_status); | |
| 87 | 87 | } |
| 88 | 88 | break; |
| 89 | 89 | |
| ... | ... | @@ -91,10 +91,10 @@ unsigned int EmulateCPDO(const unsigned int opcode) |
| 91 | 91 | { |
| 92 | 92 | if (typeSingle == nType) |
| 93 | 93 | fpa11->fpreg[Fd].fDouble = |
| 94 | - float32_to_float64(fpa11->fpreg[Fd].fSingle); | |
| 94 | + float32_to_float64(fpa11->fpreg[Fd].fSingle, &fpa11->fp_status); | |
| 95 | 95 | else |
| 96 | 96 | fpa11->fpreg[Fd].fDouble = |
| 97 | - floatx80_to_float64(fpa11->fpreg[Fd].fExtended); | |
| 97 | + floatx80_to_float64(fpa11->fpreg[Fd].fExtended, &fpa11->fp_status); | |
| 98 | 98 | } |
| 99 | 99 | break; |
| 100 | 100 | |
| ... | ... | @@ -102,10 +102,10 @@ unsigned int EmulateCPDO(const unsigned int opcode) |
| 102 | 102 | { |
| 103 | 103 | if (typeSingle == nType) |
| 104 | 104 | fpa11->fpreg[Fd].fExtended = |
| 105 | - float32_to_floatx80(fpa11->fpreg[Fd].fSingle); | |
| 105 | + float32_to_floatx80(fpa11->fpreg[Fd].fSingle, &fpa11->fp_status); | |
| 106 | 106 | else |
| 107 | 107 | fpa11->fpreg[Fd].fExtended = |
| 108 | - float64_to_floatx80(fpa11->fpreg[Fd].fDouble); | |
| 108 | + float64_to_floatx80(fpa11->fpreg[Fd].fDouble, &fpa11->fp_status); | |
| 109 | 109 | } |
| 110 | 110 | break; |
| 111 | 111 | } | ... | ... |
target-arm/nwfpe/fpa11_cpdt.c
| ... | ... | @@ -106,11 +106,11 @@ void storeSingle(const unsigned int Fn,unsigned int *pMem) |
| 106 | 106 | switch (fpa11->fType[Fn]) |
| 107 | 107 | { |
| 108 | 108 | case typeDouble: |
| 109 | - val = float64_to_float32(fpa11->fpreg[Fn].fDouble); | |
| 109 | + val = float64_to_float32(fpa11->fpreg[Fn].fDouble, &fpa11->fp_status); | |
| 110 | 110 | break; |
| 111 | 111 | |
| 112 | 112 | case typeExtended: |
| 113 | - val = floatx80_to_float32(fpa11->fpreg[Fn].fExtended); | |
| 113 | + val = floatx80_to_float32(fpa11->fpreg[Fn].fExtended, &fpa11->fp_status); | |
| 114 | 114 | break; |
| 115 | 115 | |
| 116 | 116 | default: val = fpa11->fpreg[Fn].fSingle; |
| ... | ... | @@ -129,11 +129,11 @@ void storeDouble(const unsigned int Fn,unsigned int *pMem) |
| 129 | 129 | switch (fpa11->fType[Fn]) |
| 130 | 130 | { |
| 131 | 131 | case typeSingle: |
| 132 | - val = float32_to_float64(fpa11->fpreg[Fn].fSingle); | |
| 132 | + val = float32_to_float64(fpa11->fpreg[Fn].fSingle, &fpa11->fp_status); | |
| 133 | 133 | break; |
| 134 | 134 | |
| 135 | 135 | case typeExtended: |
| 136 | - val = floatx80_to_float64(fpa11->fpreg[Fn].fExtended); | |
| 136 | + val = floatx80_to_float64(fpa11->fpreg[Fn].fExtended, &fpa11->fp_status); | |
| 137 | 137 | break; |
| 138 | 138 | |
| 139 | 139 | default: val = fpa11->fpreg[Fn].fDouble; |
| ... | ... | @@ -157,11 +157,11 @@ void storeExtended(const unsigned int Fn,unsigned int *pMem) |
| 157 | 157 | switch (fpa11->fType[Fn]) |
| 158 | 158 | { |
| 159 | 159 | case typeSingle: |
| 160 | - val = float32_to_floatx80(fpa11->fpreg[Fn].fSingle); | |
| 160 | + val = float32_to_floatx80(fpa11->fpreg[Fn].fSingle, &fpa11->fp_status); | |
| 161 | 161 | break; |
| 162 | 162 | |
| 163 | 163 | case typeDouble: |
| 164 | - val = float64_to_floatx80(fpa11->fpreg[Fn].fDouble); | |
| 164 | + val = float64_to_floatx80(fpa11->fpreg[Fn].fDouble, &fpa11->fp_status); | |
| 165 | 165 | break; |
| 166 | 166 | |
| 167 | 167 | default: val = fpa11->fpreg[Fn].fExtended; | ... | ... |
target-arm/nwfpe/fpa11_cprt.c
| ... | ... | @@ -21,7 +21,6 @@ |
| 21 | 21 | */ |
| 22 | 22 | |
| 23 | 23 | #include "fpa11.h" |
| 24 | -#include "milieu.h" | |
| 25 | 24 | #include "softfloat.h" |
| 26 | 25 | #include "fpopcode.h" |
| 27 | 26 | #include "fpa11.inl" |
| ... | ... | @@ -89,7 +88,7 @@ unsigned int PerformFLT(const unsigned int opcode) |
| 89 | 88 | { |
| 90 | 89 | fpa11->fType[getFn(opcode)] = typeSingle; |
| 91 | 90 | fpa11->fpreg[getFn(opcode)].fSingle = |
| 92 | - int32_to_float32(readRegister(getRd(opcode))); | |
| 91 | + int32_to_float32(readRegister(getRd(opcode)), &fpa11->fp_status); | |
| 93 | 92 | } |
| 94 | 93 | break; |
| 95 | 94 | |
| ... | ... | @@ -97,7 +96,7 @@ unsigned int PerformFLT(const unsigned int opcode) |
| 97 | 96 | { |
| 98 | 97 | fpa11->fType[getFn(opcode)] = typeDouble; |
| 99 | 98 | fpa11->fpreg[getFn(opcode)].fDouble = |
| 100 | - int32_to_float64(readRegister(getRd(opcode))); | |
| 99 | + int32_to_float64(readRegister(getRd(opcode)), &fpa11->fp_status); | |
| 101 | 100 | } |
| 102 | 101 | break; |
| 103 | 102 | |
| ... | ... | @@ -105,7 +104,7 @@ unsigned int PerformFLT(const unsigned int opcode) |
| 105 | 104 | { |
| 106 | 105 | fpa11->fType[getFn(opcode)] = typeExtended; |
| 107 | 106 | fpa11->fpreg[getFn(opcode)].fExtended = |
| 108 | - int32_to_floatx80(readRegister(getRd(opcode))); | |
| 107 | + int32_to_floatx80(readRegister(getRd(opcode)), &fpa11->fp_status); | |
| 109 | 108 | } |
| 110 | 109 | break; |
| 111 | 110 | |
| ... | ... | @@ -128,7 +127,7 @@ unsigned int PerformFIX(const unsigned int opcode) |
| 128 | 127 | case typeSingle: |
| 129 | 128 | { |
| 130 | 129 | writeRegister(getRd(opcode), |
| 131 | - float32_to_int32(fpa11->fpreg[Fn].fSingle)); | |
| 130 | + float32_to_int32(fpa11->fpreg[Fn].fSingle, &fpa11->fp_status)); | |
| 132 | 131 | } |
| 133 | 132 | break; |
| 134 | 133 | |
| ... | ... | @@ -136,14 +135,14 @@ unsigned int PerformFIX(const unsigned int opcode) |
| 136 | 135 | { |
| 137 | 136 | //printf("F%d is 0x%llx\n",Fn,fpa11->fpreg[Fn].fDouble); |
| 138 | 137 | writeRegister(getRd(opcode), |
| 139 | - float64_to_int32(fpa11->fpreg[Fn].fDouble)); | |
| 138 | + float64_to_int32(fpa11->fpreg[Fn].fDouble, &fpa11->fp_status)); | |
| 140 | 139 | } |
| 141 | 140 | break; |
| 142 | 141 | |
| 143 | 142 | case typeExtended: |
| 144 | 143 | { |
| 145 | 144 | writeRegister(getRd(opcode), |
| 146 | - floatx80_to_int32(fpa11->fpreg[Fn].fExtended)); | |
| 145 | + floatx80_to_int32(fpa11->fpreg[Fn].fExtended, &fpa11->fp_status)); | |
| 147 | 146 | } |
| 148 | 147 | break; |
| 149 | 148 | |
| ... | ... | @@ -157,22 +156,23 @@ unsigned int PerformFIX(const unsigned int opcode) |
| 157 | 156 | static unsigned int __inline__ |
| 158 | 157 | PerformComparisonOperation(floatx80 Fn, floatx80 Fm) |
| 159 | 158 | { |
| 159 | + FPA11 *fpa11 = GET_FPA11(); | |
| 160 | 160 | unsigned int flags = 0; |
| 161 | 161 | |
| 162 | 162 | /* test for less than condition */ |
| 163 | - if (floatx80_lt(Fn,Fm)) | |
| 163 | + if (floatx80_lt(Fn,Fm, &fpa11->fp_status)) | |
| 164 | 164 | { |
| 165 | 165 | flags |= CC_NEGATIVE; |
| 166 | 166 | } |
| 167 | 167 | |
| 168 | 168 | /* test for equal condition */ |
| 169 | - if (floatx80_eq(Fn,Fm)) | |
| 169 | + if (floatx80_eq(Fn,Fm, &fpa11->fp_status)) | |
| 170 | 170 | { |
| 171 | 171 | flags |= CC_ZERO; |
| 172 | 172 | } |
| 173 | 173 | |
| 174 | 174 | /* test for greater than or equal condition */ |
| 175 | - if (floatx80_lt(Fm,Fn)) | |
| 175 | + if (floatx80_lt(Fm,Fn, &fpa11->fp_status)) | |
| 176 | 176 | { |
| 177 | 177 | flags |= CC_CARRY; |
| 178 | 178 | } |
| ... | ... | @@ -208,14 +208,14 @@ static unsigned int PerformComparison(const unsigned int opcode) |
| 208 | 208 | //printk("single.\n"); |
| 209 | 209 | if (float32_is_nan(fpa11->fpreg[Fn].fSingle)) |
| 210 | 210 | goto unordered; |
| 211 | - rFn = float32_to_floatx80(fpa11->fpreg[Fn].fSingle); | |
| 211 | + rFn = float32_to_floatx80(fpa11->fpreg[Fn].fSingle, &fpa11->fp_status); | |
| 212 | 212 | break; |
| 213 | 213 | |
| 214 | 214 | case typeDouble: |
| 215 | 215 | //printk("double.\n"); |
| 216 | 216 | if (float64_is_nan(fpa11->fpreg[Fn].fDouble)) |
| 217 | 217 | goto unordered; |
| 218 | - rFn = float64_to_floatx80(fpa11->fpreg[Fn].fDouble); | |
| 218 | + rFn = float64_to_floatx80(fpa11->fpreg[Fn].fDouble, &fpa11->fp_status); | |
| 219 | 219 | break; |
| 220 | 220 | |
| 221 | 221 | case typeExtended: |
| ... | ... | @@ -244,14 +244,14 @@ static unsigned int PerformComparison(const unsigned int opcode) |
| 244 | 244 | //printk("single.\n"); |
| 245 | 245 | if (float32_is_nan(fpa11->fpreg[Fm].fSingle)) |
| 246 | 246 | goto unordered; |
| 247 | - rFm = float32_to_floatx80(fpa11->fpreg[Fm].fSingle); | |
| 247 | + rFm = float32_to_floatx80(fpa11->fpreg[Fm].fSingle, &fpa11->fp_status); | |
| 248 | 248 | break; |
| 249 | 249 | |
| 250 | 250 | case typeDouble: |
| 251 | 251 | //printk("double.\n"); |
| 252 | 252 | if (float64_is_nan(fpa11->fpreg[Fm].fDouble)) |
| 253 | 253 | goto unordered; |
| 254 | - rFm = float64_to_floatx80(fpa11->fpreg[Fm].fDouble); | |
| 254 | + rFm = float64_to_floatx80(fpa11->fpreg[Fm].fDouble, &fpa11->fp_status); | |
| 255 | 255 | break; |
| 256 | 256 | |
| 257 | 257 | case typeExtended: |
| ... | ... | @@ -283,7 +283,7 @@ static unsigned int PerformComparison(const unsigned int opcode) |
| 283 | 283 | |
| 284 | 284 | if (BIT_AC & readFPSR()) flags |= CC_CARRY; |
| 285 | 285 | |
| 286 | - if (e_flag) float_raise(float_flag_invalid); | |
| 286 | + if (e_flag) float_raise(float_flag_invalid, &fpa11->fp_status); | |
| 287 | 287 | |
| 288 | 288 | writeConditionCodes(flags); |
| 289 | 289 | return 1; | ... | ... |
target-arm/nwfpe/fpopcode.c
| ... | ... | @@ -27,14 +27,14 @@ |
| 27 | 27 | //#include "fpmodule.inl" |
| 28 | 28 | |
| 29 | 29 | const floatx80 floatx80Constant[] = { |
| 30 | - { 0x0000, 0x0000000000000000ULL}, /* extended 0.0 */ | |
| 31 | - { 0x3fff, 0x8000000000000000ULL}, /* extended 1.0 */ | |
| 32 | - { 0x4000, 0x8000000000000000ULL}, /* extended 2.0 */ | |
| 33 | - { 0x4000, 0xc000000000000000ULL}, /* extended 3.0 */ | |
| 34 | - { 0x4001, 0x8000000000000000ULL}, /* extended 4.0 */ | |
| 35 | - { 0x4001, 0xa000000000000000ULL}, /* extended 5.0 */ | |
| 36 | - { 0x3ffe, 0x8000000000000000ULL}, /* extended 0.5 */ | |
| 37 | - { 0x4002, 0xa000000000000000ULL} /* extended 10.0 */ | |
| 30 | + { 0x0000000000000000ULL, 0x0000}, /* extended 0.0 */ | |
| 31 | + { 0x8000000000000000ULL, 0x3fff}, /* extended 1.0 */ | |
| 32 | + { 0x8000000000000000ULL, 0x4000}, /* extended 2.0 */ | |
| 33 | + { 0xc000000000000000ULL, 0x4000}, /* extended 3.0 */ | |
| 34 | + { 0x8000000000000000ULL, 0x4001}, /* extended 4.0 */ | |
| 35 | + { 0xa000000000000000ULL, 0x4001}, /* extended 5.0 */ | |
| 36 | + { 0x8000000000000000ULL, 0x3ffe}, /* extended 0.5 */ | |
| 37 | + { 0xa000000000000000ULL, 0x4002} /* extended 10.0 */ | |
| 38 | 38 | }; |
| 39 | 39 | |
| 40 | 40 | const float64 float64Constant[] = { | ... | ... |
target-arm/nwfpe/milieu.h deleted
100644 → 0
| 1 | - | |
| 2 | -/* | |
| 3 | -=============================================================================== | |
| 4 | - | |
| 5 | -This C header file is part of the SoftFloat IEC/IEEE Floating-point | |
| 6 | -Arithmetic Package, Release 2. | |
| 7 | - | |
| 8 | -Written by John R. Hauser. This work was made possible in part by the | |
| 9 | -International Computer Science Institute, located at Suite 600, 1947 Center | |
| 10 | -Street, Berkeley, California 94704. Funding was partially provided by the | |
| 11 | -National Science Foundation under grant MIP-9311980. The original version | |
| 12 | -of this code was written as part of a project to build a fixed-point vector | |
| 13 | -processor in collaboration with the University of California at Berkeley, | |
| 14 | -overseen by Profs. Nelson Morgan and John Wawrzynek. More information | |
| 15 | -is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ | |
| 16 | -arithmetic/softfloat.html'. | |
| 17 | - | |
| 18 | -THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort | |
| 19 | -has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT | |
| 20 | -TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO | |
| 21 | -PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY | |
| 22 | -AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. | |
| 23 | - | |
| 24 | -Derivative works are acceptable, even for commercial purposes, so long as | |
| 25 | -(1) they include prominent notice that the work is derivative, and (2) they | |
| 26 | -include prominent notice akin to these three paragraphs for those parts of | |
| 27 | -this code that are retained. | |
| 28 | - | |
| 29 | -=============================================================================== | |
| 30 | -*/ | |
| 31 | - | |
| 32 | -/* | |
| 33 | -------------------------------------------------------------------------------- | |
| 34 | -Include common integer types and flags. | |
| 35 | -------------------------------------------------------------------------------- | |
| 36 | -*/ | |
| 37 | -#include "ARM-gcc.h" | |
| 38 | - | |
| 39 | -/* | |
| 40 | -------------------------------------------------------------------------------- | |
| 41 | -Symbolic Boolean literals. | |
| 42 | -------------------------------------------------------------------------------- | |
| 43 | -*/ | |
| 44 | -enum { | |
| 45 | - FALSE = 0, | |
| 46 | - TRUE = 1 | |
| 47 | -}; | |
| 48 | - |
target-arm/nwfpe/single_cpdo.c
| ... | ... | @@ -76,30 +76,30 @@ unsigned int SingleCPDO(const unsigned int opcode) |
| 76 | 76 | { |
| 77 | 77 | /* dyadic opcodes */ |
| 78 | 78 | case ADF_CODE: |
| 79 | - fpa11->fpreg[Fd].fSingle = float32_add(rFn,rFm); | |
| 79 | + fpa11->fpreg[Fd].fSingle = float32_add(rFn,rFm, &fpa11->fp_status); | |
| 80 | 80 | break; |
| 81 | 81 | |
| 82 | 82 | case MUF_CODE: |
| 83 | 83 | case FML_CODE: |
| 84 | - fpa11->fpreg[Fd].fSingle = float32_mul(rFn,rFm); | |
| 84 | + fpa11->fpreg[Fd].fSingle = float32_mul(rFn,rFm, &fpa11->fp_status); | |
| 85 | 85 | break; |
| 86 | 86 | |
| 87 | 87 | case SUF_CODE: |
| 88 | - fpa11->fpreg[Fd].fSingle = float32_sub(rFn,rFm); | |
| 88 | + fpa11->fpreg[Fd].fSingle = float32_sub(rFn,rFm, &fpa11->fp_status); | |
| 89 | 89 | break; |
| 90 | 90 | |
| 91 | 91 | case RSF_CODE: |
| 92 | - fpa11->fpreg[Fd].fSingle = float32_sub(rFm,rFn); | |
| 92 | + fpa11->fpreg[Fd].fSingle = float32_sub(rFm,rFn, &fpa11->fp_status); | |
| 93 | 93 | break; |
| 94 | 94 | |
| 95 | 95 | case DVF_CODE: |
| 96 | 96 | case FDV_CODE: |
| 97 | - fpa11->fpreg[Fd].fSingle = float32_div(rFn,rFm); | |
| 97 | + fpa11->fpreg[Fd].fSingle = float32_div(rFn,rFm, &fpa11->fp_status); | |
| 98 | 98 | break; |
| 99 | 99 | |
| 100 | 100 | case RDF_CODE: |
| 101 | 101 | case FRD_CODE: |
| 102 | - fpa11->fpreg[Fd].fSingle = float32_div(rFm,rFn); | |
| 102 | + fpa11->fpreg[Fd].fSingle = float32_div(rFm,rFn, &fpa11->fp_status); | |
| 103 | 103 | break; |
| 104 | 104 | |
| 105 | 105 | #if 0 |
| ... | ... | @@ -113,7 +113,7 @@ unsigned int SingleCPDO(const unsigned int opcode) |
| 113 | 113 | #endif |
| 114 | 114 | |
| 115 | 115 | case RMF_CODE: |
| 116 | - fpa11->fpreg[Fd].fSingle = float32_rem(rFn,rFm); | |
| 116 | + fpa11->fpreg[Fd].fSingle = float32_rem(rFn,rFm, &fpa11->fp_status); | |
| 117 | 117 | break; |
| 118 | 118 | |
| 119 | 119 | #if 0 |
| ... | ... | @@ -139,11 +139,11 @@ unsigned int SingleCPDO(const unsigned int opcode) |
| 139 | 139 | |
| 140 | 140 | case RND_CODE: |
| 141 | 141 | case URD_CODE: |
| 142 | - fpa11->fpreg[Fd].fSingle = float32_round_to_int(rFm); | |
| 142 | + fpa11->fpreg[Fd].fSingle = float32_round_to_int(rFm, &fpa11->fp_status); | |
| 143 | 143 | break; |
| 144 | 144 | |
| 145 | 145 | case SQT_CODE: |
| 146 | - fpa11->fpreg[Fd].fSingle = float32_sqrt(rFm); | |
| 146 | + fpa11->fpreg[Fd].fSingle = float32_sqrt(rFm, &fpa11->fp_status); | |
| 147 | 147 | break; |
| 148 | 148 | |
| 149 | 149 | #if 0 | ... | ... |
target-arm/nwfpe/softfloat-macros deleted
100644 → 0
| 1 | - | |
| 2 | -/* | |
| 3 | -=============================================================================== | |
| 4 | - | |
| 5 | -This C source fragment is part of the SoftFloat IEC/IEEE Floating-point | |
| 6 | -Arithmetic Package, Release 2. | |
| 7 | - | |
| 8 | -Written by John R. Hauser. This work was made possible in part by the | |
| 9 | -International Computer Science Institute, located at Suite 600, 1947 Center | |
| 10 | -Street, Berkeley, California 94704. Funding was partially provided by the | |
| 11 | -National Science Foundation under grant MIP-9311980. The original version | |
| 12 | -of this code was written as part of a project to build a fixed-point vector | |
| 13 | -processor in collaboration with the University of California at Berkeley, | |
| 14 | -overseen by Profs. Nelson Morgan and John Wawrzynek. More information | |
| 15 | -is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ | |
| 16 | -arithmetic/softfloat.html'. | |
| 17 | - | |
| 18 | -THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort | |
| 19 | -has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT | |
| 20 | -TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO | |
| 21 | -PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY | |
| 22 | -AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. | |
| 23 | - | |
| 24 | -Derivative works are acceptable, even for commercial purposes, so long as | |
| 25 | -(1) they include prominent notice that the work is derivative, and (2) they | |
| 26 | -include prominent notice akin to these three paragraphs for those parts of | |
| 27 | -this code that are retained. | |
| 28 | - | |
| 29 | -=============================================================================== | |
| 30 | -*/ | |
| 31 | - | |
| 32 | -/* | |
| 33 | -------------------------------------------------------------------------------- | |
| 34 | -Shifts `a' right by the number of bits given in `count'. If any nonzero | |
| 35 | -bits are shifted off, they are ``jammed'' into the least significant bit of | |
| 36 | -the result by setting the least significant bit to 1. The value of `count' | |
| 37 | -can be arbitrarily large; in particular, if `count' is greater than 32, the | |
| 38 | -result will be either 0 or 1, depending on whether `a' is zero or nonzero. | |
| 39 | -The result is stored in the location pointed to by `zPtr'. | |
| 40 | -------------------------------------------------------------------------------- | |
| 41 | -*/ | |
| 42 | -INLINE void shift32RightJamming( bits32 a, int16 count, bits32 *zPtr ) | |
| 43 | -{ | |
| 44 | - bits32 z; | |
| 45 | - if ( count == 0 ) { | |
| 46 | - z = a; | |
| 47 | - } | |
| 48 | - else if ( count < 32 ) { | |
| 49 | - z = ( a>>count ) | ( ( a<<( ( - count ) & 31 ) ) != 0 ); | |
| 50 | - } | |
| 51 | - else { | |
| 52 | - z = ( a != 0 ); | |
| 53 | - } | |
| 54 | - *zPtr = z; | |
| 55 | -} | |
| 56 | - | |
| 57 | -/* | |
| 58 | -------------------------------------------------------------------------------- | |
| 59 | -Shifts `a' right by the number of bits given in `count'. If any nonzero | |
| 60 | -bits are shifted off, they are ``jammed'' into the least significant bit of | |
| 61 | -the result by setting the least significant bit to 1. The value of `count' | |
| 62 | -can be arbitrarily large; in particular, if `count' is greater than 64, the | |
| 63 | -result will be either 0 or 1, depending on whether `a' is zero or nonzero. | |
| 64 | -The result is stored in the location pointed to by `zPtr'. | |
| 65 | -------------------------------------------------------------------------------- | |
| 66 | -*/ | |
| 67 | -INLINE void shift64RightJamming( bits64 a, int16 count, bits64 *zPtr ) | |
| 68 | -{ | |
| 69 | - bits64 z; | |
| 70 | - | |
| 71 | -// __asm__("@shift64RightJamming -- start"); | |
| 72 | - if ( count == 0 ) { | |
| 73 | - z = a; | |
| 74 | - } | |
| 75 | - else if ( count < 64 ) { | |
| 76 | - z = ( a>>count ) | ( ( a<<( ( - count ) & 63 ) ) != 0 ); | |
| 77 | - } | |
| 78 | - else { | |
| 79 | - z = ( a != 0 ); | |
| 80 | - } | |
| 81 | -// __asm__("@shift64RightJamming -- end"); | |
| 82 | - *zPtr = z; | |
| 83 | -} | |
| 84 | - | |
| 85 | -/* | |
| 86 | -------------------------------------------------------------------------------- | |
| 87 | -Shifts the 128-bit value formed by concatenating `a0' and `a1' right by 64 | |
| 88 | -_plus_ the number of bits given in `count'. The shifted result is at most | |
| 89 | -64 nonzero bits; this is stored at the location pointed to by `z0Ptr'. The | |
| 90 | -bits shifted off form a second 64-bit result as follows: The _last_ bit | |
| 91 | -shifted off is the most-significant bit of the extra result, and the other | |
| 92 | -63 bits of the extra result are all zero if and only if _all_but_the_last_ | |
| 93 | -bits shifted off were all zero. This extra result is stored in the location | |
| 94 | -pointed to by `z1Ptr'. The value of `count' can be arbitrarily large. | |
| 95 | - (This routine makes more sense if `a0' and `a1' are considered to form a | |
| 96 | -fixed-point value with binary point between `a0' and `a1'. This fixed-point | |
| 97 | -value is shifted right by the number of bits given in `count', and the | |
| 98 | -integer part of the result is returned at the location pointed to by | |
| 99 | -`z0Ptr'. The fractional part of the result may be slightly corrupted as | |
| 100 | -described above, and is returned at the location pointed to by `z1Ptr'.) | |
| 101 | -------------------------------------------------------------------------------- | |
| 102 | -*/ | |
| 103 | -INLINE void | |
| 104 | - shift64ExtraRightJamming( | |
| 105 | - bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr ) | |
| 106 | -{ | |
| 107 | - bits64 z0, z1; | |
| 108 | - int8 negCount = ( - count ) & 63; | |
| 109 | - | |
| 110 | - if ( count == 0 ) { | |
| 111 | - z1 = a1; | |
| 112 | - z0 = a0; | |
| 113 | - } | |
| 114 | - else if ( count < 64 ) { | |
| 115 | - z1 = ( a0<<negCount ) | ( a1 != 0 ); | |
| 116 | - z0 = a0>>count; | |
| 117 | - } | |
| 118 | - else { | |
| 119 | - if ( count == 64 ) { | |
| 120 | - z1 = a0 | ( a1 != 0 ); | |
| 121 | - } | |
| 122 | - else { | |
| 123 | - z1 = ( ( a0 | a1 ) != 0 ); | |
| 124 | - } | |
| 125 | - z0 = 0; | |
| 126 | - } | |
| 127 | - *z1Ptr = z1; | |
| 128 | - *z0Ptr = z0; | |
| 129 | - | |
| 130 | -} | |
| 131 | - | |
| 132 | -/* | |
| 133 | -------------------------------------------------------------------------------- | |
| 134 | -Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the | |
| 135 | -number of bits given in `count'. Any bits shifted off are lost. The value | |
| 136 | -of `count' can be arbitrarily large; in particular, if `count' is greater | |
| 137 | -than 128, the result will be 0. The result is broken into two 64-bit pieces | |
| 138 | -which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. | |
| 139 | -------------------------------------------------------------------------------- | |
| 140 | -*/ | |
| 141 | -INLINE void | |
| 142 | - shift128Right( | |
| 143 | - bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr ) | |
| 144 | -{ | |
| 145 | - bits64 z0, z1; | |
| 146 | - int8 negCount = ( - count ) & 63; | |
| 147 | - | |
| 148 | - if ( count == 0 ) { | |
| 149 | - z1 = a1; | |
| 150 | - z0 = a0; | |
| 151 | - } | |
| 152 | - else if ( count < 64 ) { | |
| 153 | - z1 = ( a0<<negCount ) | ( a1>>count ); | |
| 154 | - z0 = a0>>count; | |
| 155 | - } | |
| 156 | - else { | |
| 157 | - z1 = ( count < 64 ) ? ( a0>>( count & 63 ) ) : 0; | |
| 158 | - z0 = 0; | |
| 159 | - } | |
| 160 | - *z1Ptr = z1; | |
| 161 | - *z0Ptr = z0; | |
| 162 | - | |
| 163 | -} | |
| 164 | - | |
| 165 | -/* | |
| 166 | -------------------------------------------------------------------------------- | |
| 167 | -Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the | |
| 168 | -number of bits given in `count'. If any nonzero bits are shifted off, they | |
| 169 | -are ``jammed'' into the least significant bit of the result by setting the | |
| 170 | -least significant bit to 1. The value of `count' can be arbitrarily large; | |
| 171 | -in particular, if `count' is greater than 128, the result will be either 0 | |
| 172 | -or 1, depending on whether the concatenation of `a0' and `a1' is zero or | |
| 173 | -nonzero. The result is broken into two 64-bit pieces which are stored at | |
| 174 | -the locations pointed to by `z0Ptr' and `z1Ptr'. | |
| 175 | -------------------------------------------------------------------------------- | |
| 176 | -*/ | |
| 177 | -INLINE void | |
| 178 | - shift128RightJamming( | |
| 179 | - bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr ) | |
| 180 | -{ | |
| 181 | - bits64 z0, z1; | |
| 182 | - int8 negCount = ( - count ) & 63; | |
| 183 | - | |
| 184 | - if ( count == 0 ) { | |
| 185 | - z1 = a1; | |
| 186 | - z0 = a0; | |
| 187 | - } | |
| 188 | - else if ( count < 64 ) { | |
| 189 | - z1 = ( a0<<negCount ) | ( a1>>count ) | ( ( a1<<negCount ) != 0 ); | |
| 190 | - z0 = a0>>count; | |
| 191 | - } | |
| 192 | - else { | |
| 193 | - if ( count == 64 ) { | |
| 194 | - z1 = a0 | ( a1 != 0 ); | |
| 195 | - } | |
| 196 | - else if ( count < 128 ) { | |
| 197 | - z1 = ( a0>>( count & 63 ) ) | ( ( ( a0<<negCount ) | a1 ) != 0 ); | |
| 198 | - } | |
| 199 | - else { | |
| 200 | - z1 = ( ( a0 | a1 ) != 0 ); | |
| 201 | - } | |
| 202 | - z0 = 0; | |
| 203 | - } | |
| 204 | - *z1Ptr = z1; | |
| 205 | - *z0Ptr = z0; | |
| 206 | - | |
| 207 | -} | |
| 208 | - | |
| 209 | -/* | |
| 210 | -------------------------------------------------------------------------------- | |
| 211 | -Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' right | |
| 212 | -by 64 _plus_ the number of bits given in `count'. The shifted result is | |
| 213 | -at most 128 nonzero bits; these are broken into two 64-bit pieces which are | |
| 214 | -stored at the locations pointed to by `z0Ptr' and `z1Ptr'. The bits shifted | |
| 215 | -off form a third 64-bit result as follows: The _last_ bit shifted off is | |
| 216 | -the most-significant bit of the extra result, and the other 63 bits of the | |
| 217 | -extra result are all zero if and only if _all_but_the_last_ bits shifted off | |
| 218 | -were all zero. This extra result is stored in the location pointed to by | |
| 219 | -`z2Ptr'. The value of `count' can be arbitrarily large. | |
| 220 | - (This routine makes more sense if `a0', `a1', and `a2' are considered | |
| 221 | -to form a fixed-point value with binary point between `a1' and `a2'. This | |
| 222 | -fixed-point value is shifted right by the number of bits given in `count', | |
| 223 | -and the integer part of the result is returned at the locations pointed to | |
| 224 | -by `z0Ptr' and `z1Ptr'. The fractional part of the result may be slightly | |
| 225 | -corrupted as described above, and is returned at the location pointed to by | |
| 226 | -`z2Ptr'.) | |
| 227 | -------------------------------------------------------------------------------- | |
| 228 | -*/ | |
| 229 | -INLINE void | |
| 230 | - shift128ExtraRightJamming( | |
| 231 | - bits64 a0, | |
| 232 | - bits64 a1, | |
| 233 | - bits64 a2, | |
| 234 | - int16 count, | |
| 235 | - bits64 *z0Ptr, | |
| 236 | - bits64 *z1Ptr, | |
| 237 | - bits64 *z2Ptr | |
| 238 | - ) | |
| 239 | -{ | |
| 240 | - bits64 z0, z1, z2; | |
| 241 | - int8 negCount = ( - count ) & 63; | |
| 242 | - | |
| 243 | - if ( count == 0 ) { | |
| 244 | - z2 = a2; | |
| 245 | - z1 = a1; | |
| 246 | - z0 = a0; | |
| 247 | - } | |
| 248 | - else { | |
| 249 | - if ( count < 64 ) { | |
| 250 | - z2 = a1<<negCount; | |
| 251 | - z1 = ( a0<<negCount ) | ( a1>>count ); | |
| 252 | - z0 = a0>>count; | |
| 253 | - } | |
| 254 | - else { | |
| 255 | - if ( count == 64 ) { | |
| 256 | - z2 = a1; | |
| 257 | - z1 = a0; | |
| 258 | - } | |
| 259 | - else { | |
| 260 | - a2 |= a1; | |
| 261 | - if ( count < 128 ) { | |
| 262 | - z2 = a0<<negCount; | |
| 263 | - z1 = a0>>( count & 63 ); | |
| 264 | - } | |
| 265 | - else { | |
| 266 | - z2 = ( count == 128 ) ? a0 : ( a0 != 0 ); | |
| 267 | - z1 = 0; | |
| 268 | - } | |
| 269 | - } | |
| 270 | - z0 = 0; | |
| 271 | - } | |
| 272 | - z2 |= ( a2 != 0 ); | |
| 273 | - } | |
| 274 | - *z2Ptr = z2; | |
| 275 | - *z1Ptr = z1; | |
| 276 | - *z0Ptr = z0; | |
| 277 | - | |
| 278 | -} | |
| 279 | - | |
| 280 | -/* | |
| 281 | -------------------------------------------------------------------------------- | |
| 282 | -Shifts the 128-bit value formed by concatenating `a0' and `a1' left by the | |
| 283 | -number of bits given in `count'. Any bits shifted off are lost. The value | |
| 284 | -of `count' must be less than 64. The result is broken into two 64-bit | |
| 285 | -pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. | |
| 286 | -------------------------------------------------------------------------------- | |
| 287 | -*/ | |
| 288 | -INLINE void | |
| 289 | - shortShift128Left( | |
| 290 | - bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr ) | |
| 291 | -{ | |
| 292 | - | |
| 293 | - *z1Ptr = a1<<count; | |
| 294 | - *z0Ptr = | |
| 295 | - ( count == 0 ) ? a0 : ( a0<<count ) | ( a1>>( ( - count ) & 63 ) ); | |
| 296 | - | |
| 297 | -} | |
| 298 | - | |
| 299 | -/* | |
| 300 | -------------------------------------------------------------------------------- | |
| 301 | -Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' left | |
| 302 | -by the number of bits given in `count'. Any bits shifted off are lost. | |
| 303 | -The value of `count' must be less than 64. The result is broken into three | |
| 304 | -64-bit pieces which are stored at the locations pointed to by `z0Ptr', | |
| 305 | -`z1Ptr', and `z2Ptr'. | |
| 306 | -------------------------------------------------------------------------------- | |
| 307 | -*/ | |
| 308 | -INLINE void | |
| 309 | - shortShift192Left( | |
| 310 | - bits64 a0, | |
| 311 | - bits64 a1, | |
| 312 | - bits64 a2, | |
| 313 | - int16 count, | |
| 314 | - bits64 *z0Ptr, | |
| 315 | - bits64 *z1Ptr, | |
| 316 | - bits64 *z2Ptr | |
| 317 | - ) | |
| 318 | -{ | |
| 319 | - bits64 z0, z1, z2; | |
| 320 | - int8 negCount; | |
| 321 | - | |
| 322 | - z2 = a2<<count; | |
| 323 | - z1 = a1<<count; | |
| 324 | - z0 = a0<<count; | |
| 325 | - if ( 0 < count ) { | |
| 326 | - negCount = ( ( - count ) & 63 ); | |
| 327 | - z1 |= a2>>negCount; | |
| 328 | - z0 |= a1>>negCount; | |
| 329 | - } | |
| 330 | - *z2Ptr = z2; | |
| 331 | - *z1Ptr = z1; | |
| 332 | - *z0Ptr = z0; | |
| 333 | - | |
| 334 | -} | |
| 335 | - | |
| 336 | -/* | |
| 337 | -------------------------------------------------------------------------------- | |
| 338 | -Adds the 128-bit value formed by concatenating `a0' and `a1' to the 128-bit | |
| 339 | -value formed by concatenating `b0' and `b1'. Addition is modulo 2^128, so | |
| 340 | -any carry out is lost. The result is broken into two 64-bit pieces which | |
| 341 | -are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. | |
| 342 | -------------------------------------------------------------------------------- | |
| 343 | -*/ | |
| 344 | -INLINE void | |
| 345 | - add128( | |
| 346 | - bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr ) | |
| 347 | -{ | |
| 348 | - bits64 z1; | |
| 349 | - | |
| 350 | - z1 = a1 + b1; | |
| 351 | - *z1Ptr = z1; | |
| 352 | - *z0Ptr = a0 + b0 + ( z1 < a1 ); | |
| 353 | - | |
| 354 | -} | |
| 355 | - | |
| 356 | -/* | |
| 357 | -------------------------------------------------------------------------------- | |
| 358 | -Adds the 192-bit value formed by concatenating `a0', `a1', and `a2' to the | |
| 359 | -192-bit value formed by concatenating `b0', `b1', and `b2'. Addition is | |
| 360 | -modulo 2^192, so any carry out is lost. The result is broken into three | |
| 361 | -64-bit pieces which are stored at the locations pointed to by `z0Ptr', | |
| 362 | -`z1Ptr', and `z2Ptr'. | |
| 363 | -------------------------------------------------------------------------------- | |
| 364 | -*/ | |
| 365 | -INLINE void | |
| 366 | - add192( | |
| 367 | - bits64 a0, | |
| 368 | - bits64 a1, | |
| 369 | - bits64 a2, | |
| 370 | - bits64 b0, | |
| 371 | - bits64 b1, | |
| 372 | - bits64 b2, | |
| 373 | - bits64 *z0Ptr, | |
| 374 | - bits64 *z1Ptr, | |
| 375 | - bits64 *z2Ptr | |
| 376 | - ) | |
| 377 | -{ | |
| 378 | - bits64 z0, z1, z2; | |
| 379 | - int8 carry0, carry1; | |
| 380 | - | |
| 381 | - z2 = a2 + b2; | |
| 382 | - carry1 = ( z2 < a2 ); | |
| 383 | - z1 = a1 + b1; | |
| 384 | - carry0 = ( z1 < a1 ); | |
| 385 | - z0 = a0 + b0; | |
| 386 | - z1 += carry1; | |
| 387 | - z0 += ( z1 < carry1 ); | |
| 388 | - z0 += carry0; | |
| 389 | - *z2Ptr = z2; | |
| 390 | - *z1Ptr = z1; | |
| 391 | - *z0Ptr = z0; | |
| 392 | - | |
| 393 | -} | |
| 394 | - | |
| 395 | -/* | |
| 396 | -------------------------------------------------------------------------------- | |
| 397 | -Subtracts the 128-bit value formed by concatenating `b0' and `b1' from the | |
| 398 | -128-bit value formed by concatenating `a0' and `a1'. Subtraction is modulo | |
| 399 | -2^128, so any borrow out (carry out) is lost. The result is broken into two | |
| 400 | -64-bit pieces which are stored at the locations pointed to by `z0Ptr' and | |
| 401 | -`z1Ptr'. | |
| 402 | -------------------------------------------------------------------------------- | |
| 403 | -*/ | |
| 404 | -INLINE void | |
| 405 | - sub128( | |
| 406 | - bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr ) | |
| 407 | -{ | |
| 408 | - | |
| 409 | - *z1Ptr = a1 - b1; | |
| 410 | - *z0Ptr = a0 - b0 - ( a1 < b1 ); | |
| 411 | - | |
| 412 | -} | |
| 413 | - | |
| 414 | -/* | |
| 415 | -------------------------------------------------------------------------------- | |
| 416 | -Subtracts the 192-bit value formed by concatenating `b0', `b1', and `b2' | |
| 417 | -from the 192-bit value formed by concatenating `a0', `a1', and `a2'. | |
| 418 | -Subtraction is modulo 2^192, so any borrow out (carry out) is lost. The | |
| 419 | -result is broken into three 64-bit pieces which are stored at the locations | |
| 420 | -pointed to by `z0Ptr', `z1Ptr', and `z2Ptr'. | |
| 421 | -------------------------------------------------------------------------------- | |
| 422 | -*/ | |
| 423 | -INLINE void | |
| 424 | - sub192( | |
| 425 | - bits64 a0, | |
| 426 | - bits64 a1, | |
| 427 | - bits64 a2, | |
| 428 | - bits64 b0, | |
| 429 | - bits64 b1, | |
| 430 | - bits64 b2, | |
| 431 | - bits64 *z0Ptr, | |
| 432 | - bits64 *z1Ptr, | |
| 433 | - bits64 *z2Ptr | |
| 434 | - ) | |
| 435 | -{ | |
| 436 | - bits64 z0, z1, z2; | |
| 437 | - int8 borrow0, borrow1; | |
| 438 | - | |
| 439 | - z2 = a2 - b2; | |
| 440 | - borrow1 = ( a2 < b2 ); | |
| 441 | - z1 = a1 - b1; | |
| 442 | - borrow0 = ( a1 < b1 ); | |
| 443 | - z0 = a0 - b0; | |
| 444 | - z0 -= ( z1 < borrow1 ); | |
| 445 | - z1 -= borrow1; | |
| 446 | - z0 -= borrow0; | |
| 447 | - *z2Ptr = z2; | |
| 448 | - *z1Ptr = z1; | |
| 449 | - *z0Ptr = z0; | |
| 450 | - | |
| 451 | -} | |
| 452 | - | |
| 453 | -/* | |
| 454 | -------------------------------------------------------------------------------- | |
| 455 | -Multiplies `a' by `b' to obtain a 128-bit product. The product is broken | |
| 456 | -into two 64-bit pieces which are stored at the locations pointed to by | |
| 457 | -`z0Ptr' and `z1Ptr'. | |
| 458 | -------------------------------------------------------------------------------- | |
| 459 | -*/ | |
| 460 | -INLINE void mul64To128( bits64 a, bits64 b, bits64 *z0Ptr, bits64 *z1Ptr ) | |
| 461 | -{ | |
| 462 | - bits32 aHigh, aLow, bHigh, bLow; | |
| 463 | - bits64 z0, zMiddleA, zMiddleB, z1; | |
| 464 | - | |
| 465 | - aLow = a; | |
| 466 | - aHigh = a>>32; | |
| 467 | - bLow = b; | |
| 468 | - bHigh = b>>32; | |
| 469 | - z1 = ( (bits64) aLow ) * bLow; | |
| 470 | - zMiddleA = ( (bits64) aLow ) * bHigh; | |
| 471 | - zMiddleB = ( (bits64) aHigh ) * bLow; | |
| 472 | - z0 = ( (bits64) aHigh ) * bHigh; | |
| 473 | - zMiddleA += zMiddleB; | |
| 474 | - z0 += ( ( (bits64) ( zMiddleA < zMiddleB ) )<<32 ) + ( zMiddleA>>32 ); | |
| 475 | - zMiddleA <<= 32; | |
| 476 | - z1 += zMiddleA; | |
| 477 | - z0 += ( z1 < zMiddleA ); | |
| 478 | - *z1Ptr = z1; | |
| 479 | - *z0Ptr = z0; | |
| 480 | - | |
| 481 | -} | |
| 482 | - | |
| 483 | -/* | |
| 484 | -------------------------------------------------------------------------------- | |
| 485 | -Multiplies the 128-bit value formed by concatenating `a0' and `a1' by `b' to | |
| 486 | -obtain a 192-bit product. The product is broken into three 64-bit pieces | |
| 487 | -which are stored at the locations pointed to by `z0Ptr', `z1Ptr', and | |
| 488 | -`z2Ptr'. | |
| 489 | -------------------------------------------------------------------------------- | |
| 490 | -*/ | |
| 491 | -INLINE void | |
| 492 | - mul128By64To192( | |
| 493 | - bits64 a0, | |
| 494 | - bits64 a1, | |
| 495 | - bits64 b, | |
| 496 | - bits64 *z0Ptr, | |
| 497 | - bits64 *z1Ptr, | |
| 498 | - bits64 *z2Ptr | |
| 499 | - ) | |
| 500 | -{ | |
| 501 | - bits64 z0, z1, z2, more1; | |
| 502 | - | |
| 503 | - mul64To128( a1, b, &z1, &z2 ); | |
| 504 | - mul64To128( a0, b, &z0, &more1 ); | |
| 505 | - add128( z0, more1, 0, z1, &z0, &z1 ); | |
| 506 | - *z2Ptr = z2; | |
| 507 | - *z1Ptr = z1; | |
| 508 | - *z0Ptr = z0; | |
| 509 | - | |
| 510 | -} | |
| 511 | - | |
| 512 | -/* | |
| 513 | -------------------------------------------------------------------------------- | |
| 514 | -Multiplies the 128-bit value formed by concatenating `a0' and `a1' to the | |
| 515 | -128-bit value formed by concatenating `b0' and `b1' to obtain a 256-bit | |
| 516 | -product. The product is broken into four 64-bit pieces which are stored at | |
| 517 | -the locations pointed to by `z0Ptr', `z1Ptr', `z2Ptr', and `z3Ptr'. | |
| 518 | -------------------------------------------------------------------------------- | |
| 519 | -*/ | |
| 520 | -INLINE void | |
| 521 | - mul128To256( | |
| 522 | - bits64 a0, | |
| 523 | - bits64 a1, | |
| 524 | - bits64 b0, | |
| 525 | - bits64 b1, | |
| 526 | - bits64 *z0Ptr, | |
| 527 | - bits64 *z1Ptr, | |
| 528 | - bits64 *z2Ptr, | |
| 529 | - bits64 *z3Ptr | |
| 530 | - ) | |
| 531 | -{ | |
| 532 | - bits64 z0, z1, z2, z3; | |
| 533 | - bits64 more1, more2; | |
| 534 | - | |
| 535 | - mul64To128( a1, b1, &z2, &z3 ); | |
| 536 | - mul64To128( a1, b0, &z1, &more2 ); | |
| 537 | - add128( z1, more2, 0, z2, &z1, &z2 ); | |
| 538 | - mul64To128( a0, b0, &z0, &more1 ); | |
| 539 | - add128( z0, more1, 0, z1, &z0, &z1 ); | |
| 540 | - mul64To128( a0, b1, &more1, &more2 ); | |
| 541 | - add128( more1, more2, 0, z2, &more1, &z2 ); | |
| 542 | - add128( z0, z1, 0, more1, &z0, &z1 ); | |
| 543 | - *z3Ptr = z3; | |
| 544 | - *z2Ptr = z2; | |
| 545 | - *z1Ptr = z1; | |
| 546 | - *z0Ptr = z0; | |
| 547 | - | |
| 548 | -} | |
| 549 | - | |
| 550 | -/* | |
| 551 | -------------------------------------------------------------------------------- | |
| 552 | -Returns an approximation to the 64-bit integer quotient obtained by dividing | |
| 553 | -`b' into the 128-bit value formed by concatenating `a0' and `a1'. The | |
| 554 | -divisor `b' must be at least 2^63. If q is the exact quotient truncated | |
| 555 | -toward zero, the approximation returned lies between q and q + 2 inclusive. | |
| 556 | -If the exact quotient q is larger than 64 bits, the maximum positive 64-bit | |
| 557 | -unsigned integer is returned. | |
| 558 | -------------------------------------------------------------------------------- | |
| 559 | -*/ | |
| 560 | -static bits64 estimateDiv128To64( bits64 a0, bits64 a1, bits64 b ) | |
| 561 | -{ | |
| 562 | - bits64 b0, b1; | |
| 563 | - bits64 rem0, rem1, term0, term1; | |
| 564 | - bits64 z; | |
| 565 | - if ( b <= a0 ) return LIT64( 0xFFFFFFFFFFFFFFFF ); | |
| 566 | - b0 = b>>32; | |
| 567 | - z = ( b0<<32 <= a0 ) ? LIT64( 0xFFFFFFFF00000000 ) : ( a0 / b0 )<<32; | |
| 568 | - mul64To128( b, z, &term0, &term1 ); | |
| 569 | - sub128( a0, a1, term0, term1, &rem0, &rem1 ); | |
| 570 | - while ( ( (sbits64) rem0 ) < 0 ) { | |
| 571 | - z -= LIT64( 0x100000000 ); | |
| 572 | - b1 = b<<32; | |
| 573 | - add128( rem0, rem1, b0, b1, &rem0, &rem1 ); | |
| 574 | - } | |
| 575 | - rem0 = ( rem0<<32 ) | ( rem1>>32 ); | |
| 576 | - z |= ( b0<<32 <= rem0 ) ? 0xFFFFFFFF : rem0 / b0; | |
| 577 | - return z; | |
| 578 | - | |
| 579 | -} | |
| 580 | - | |
| 581 | -/* | |
| 582 | -------------------------------------------------------------------------------- | |
| 583 | -Returns an approximation to the square root of the 32-bit significand given | |
| 584 | -by `a'. Considered as an integer, `a' must be at least 2^31. If bit 0 of | |
| 585 | -`aExp' (the least significant bit) is 1, the integer returned approximates | |
| 586 | -2^31*sqrt(`a'/2^31), where `a' is considered an integer. If bit 0 of `aExp' | |
| 587 | -is 0, the integer returned approximates 2^31*sqrt(`a'/2^30). In either | |
| 588 | -case, the approximation returned lies strictly within +/-2 of the exact | |
| 589 | -value. | |
| 590 | -------------------------------------------------------------------------------- | |
| 591 | -*/ | |
| 592 | -static bits32 estimateSqrt32( int16 aExp, bits32 a ) | |
| 593 | -{ | |
| 594 | - static const bits16 sqrtOddAdjustments[] = { | |
| 595 | - 0x0004, 0x0022, 0x005D, 0x00B1, 0x011D, 0x019F, 0x0236, 0x02E0, | |
| 596 | - 0x039C, 0x0468, 0x0545, 0x0631, 0x072B, 0x0832, 0x0946, 0x0A67 | |
| 597 | - }; | |
| 598 | - static const bits16 sqrtEvenAdjustments[] = { | |
| 599 | - 0x0A2D, 0x08AF, 0x075A, 0x0629, 0x051A, 0x0429, 0x0356, 0x029E, | |
| 600 | - 0x0200, 0x0179, 0x0109, 0x00AF, 0x0068, 0x0034, 0x0012, 0x0002 | |
| 601 | - }; | |
| 602 | - int8 index; | |
| 603 | - bits32 z; | |
| 604 | - | |
| 605 | - index = ( a>>27 ) & 15; | |
| 606 | - if ( aExp & 1 ) { | |
| 607 | - z = 0x4000 + ( a>>17 ) - sqrtOddAdjustments[ index ]; | |
| 608 | - z = ( ( a / z )<<14 ) + ( z<<15 ); | |
| 609 | - a >>= 1; | |
| 610 | - } | |
| 611 | - else { | |
| 612 | - z = 0x8000 + ( a>>17 ) - sqrtEvenAdjustments[ index ]; | |
| 613 | - z = a / z + z; | |
| 614 | - z = ( 0x20000 <= z ) ? 0xFFFF8000 : ( z<<15 ); | |
| 615 | - if ( z <= a ) return (bits32) ( ( (sbits32) a )>>1 ); | |
| 616 | - } | |
| 617 | - return ( (bits32) ( ( ( (bits64) a )<<31 ) / z ) ) + ( z>>1 ); | |
| 618 | - | |
| 619 | -} | |
| 620 | - | |
| 621 | -/* | |
| 622 | -------------------------------------------------------------------------------- | |
| 623 | -Returns the number of leading 0 bits before the most-significant 1 bit | |
| 624 | -of `a'. If `a' is zero, 32 is returned. | |
| 625 | -------------------------------------------------------------------------------- | |
| 626 | -*/ | |
| 627 | -static int8 countLeadingZeros32( bits32 a ) | |
| 628 | -{ | |
| 629 | - static const int8 countLeadingZerosHigh[] = { | |
| 630 | - 8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, | |
| 631 | - 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, | |
| 632 | - 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, | |
| 633 | - 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, | |
| 634 | - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
| 635 | - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
| 636 | - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
| 637 | - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
| 638 | - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
| 639 | - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
| 640 | - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
| 641 | - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
| 642 | - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
| 643 | - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
| 644 | - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
| 645 | - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 | |
| 646 | - }; | |
| 647 | - int8 shiftCount; | |
| 648 | - | |
| 649 | - shiftCount = 0; | |
| 650 | - if ( a < 0x10000 ) { | |
| 651 | - shiftCount += 16; | |
| 652 | - a <<= 16; | |
| 653 | - } | |
| 654 | - if ( a < 0x1000000 ) { | |
| 655 | - shiftCount += 8; | |
| 656 | - a <<= 8; | |
| 657 | - } | |
| 658 | - shiftCount += countLeadingZerosHigh[ a>>24 ]; | |
| 659 | - return shiftCount; | |
| 660 | - | |
| 661 | -} | |
| 662 | - | |
| 663 | -/* | |
| 664 | -------------------------------------------------------------------------------- | |
| 665 | -Returns the number of leading 0 bits before the most-significant 1 bit | |
| 666 | -of `a'. If `a' is zero, 64 is returned. | |
| 667 | -------------------------------------------------------------------------------- | |
| 668 | -*/ | |
| 669 | -static int8 countLeadingZeros64( bits64 a ) | |
| 670 | -{ | |
| 671 | - int8 shiftCount; | |
| 672 | - | |
| 673 | - shiftCount = 0; | |
| 674 | - if ( a < ( (bits64) 1 )<<32 ) { | |
| 675 | - shiftCount += 32; | |
| 676 | - } | |
| 677 | - else { | |
| 678 | - a >>= 32; | |
| 679 | - } | |
| 680 | - shiftCount += countLeadingZeros32( a ); | |
| 681 | - return shiftCount; | |
| 682 | - | |
| 683 | -} | |
| 684 | - | |
| 685 | -/* | |
| 686 | -------------------------------------------------------------------------------- | |
| 687 | -Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' | |
| 688 | -is equal to the 128-bit value formed by concatenating `b0' and `b1'. | |
| 689 | -Otherwise, returns 0. | |
| 690 | -------------------------------------------------------------------------------- | |
| 691 | -*/ | |
| 692 | -INLINE flag eq128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 ) | |
| 693 | -{ | |
| 694 | - | |
| 695 | - return ( a0 == b0 ) && ( a1 == b1 ); | |
| 696 | - | |
| 697 | -} | |
| 698 | - | |
| 699 | -/* | |
| 700 | -------------------------------------------------------------------------------- | |
| 701 | -Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less | |
| 702 | -than or equal to the 128-bit value formed by concatenating `b0' and `b1'. | |
| 703 | -Otherwise, returns 0. | |
| 704 | -------------------------------------------------------------------------------- | |
| 705 | -*/ | |
| 706 | -INLINE flag le128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 ) | |
| 707 | -{ | |
| 708 | - | |
| 709 | - return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 <= b1 ) ); | |
| 710 | - | |
| 711 | -} | |
| 712 | - | |
| 713 | -/* | |
| 714 | -------------------------------------------------------------------------------- | |
| 715 | -Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less | |
| 716 | -than the 128-bit value formed by concatenating `b0' and `b1'. Otherwise, | |
| 717 | -returns 0. | |
| 718 | -------------------------------------------------------------------------------- | |
| 719 | -*/ | |
| 720 | -INLINE flag lt128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 ) | |
| 721 | -{ | |
| 722 | - | |
| 723 | - return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 < b1 ) ); | |
| 724 | - | |
| 725 | -} | |
| 726 | - | |
| 727 | -/* | |
| 728 | -------------------------------------------------------------------------------- | |
| 729 | -Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is | |
| 730 | -not equal to the 128-bit value formed by concatenating `b0' and `b1'. | |
| 731 | -Otherwise, returns 0. | |
| 732 | -------------------------------------------------------------------------------- | |
| 733 | -*/ | |
| 734 | -INLINE flag ne128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 ) | |
| 735 | -{ | |
| 736 | - | |
| 737 | - return ( a0 != b0 ) || ( a1 != b1 ); | |
| 738 | - | |
| 739 | -} | |
| 740 | - |
target-arm/nwfpe/softfloat-specialize deleted
100644 → 0
| 1 | - | |
| 2 | -/* | |
| 3 | -=============================================================================== | |
| 4 | - | |
| 5 | -This C source fragment is part of the SoftFloat IEC/IEEE Floating-point | |
| 6 | -Arithmetic Package, Release 2. | |
| 7 | - | |
| 8 | -Written by John R. Hauser. This work was made possible in part by the | |
| 9 | -International Computer Science Institute, located at Suite 600, 1947 Center | |
| 10 | -Street, Berkeley, California 94704. Funding was partially provided by the | |
| 11 | -National Science Foundation under grant MIP-9311980. The original version | |
| 12 | -of this code was written as part of a project to build a fixed-point vector | |
| 13 | -processor in collaboration with the University of California at Berkeley, | |
| 14 | -overseen by Profs. Nelson Morgan and John Wawrzynek. More information | |
| 15 | -is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ | |
| 16 | -arithmetic/softfloat.html'. | |
| 17 | - | |
| 18 | -THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort | |
| 19 | -has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT | |
| 20 | -TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO | |
| 21 | -PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY | |
| 22 | -AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. | |
| 23 | - | |
| 24 | -Derivative works are acceptable, even for commercial purposes, so long as | |
| 25 | -(1) they include prominent notice that the work is derivative, and (2) they | |
| 26 | -include prominent notice akin to these three paragraphs for those parts of | |
| 27 | -this code that are retained. | |
| 28 | - | |
| 29 | -=============================================================================== | |
| 30 | -*/ | |
| 31 | - | |
| 32 | -/* | |
| 33 | -------------------------------------------------------------------------------- | |
| 34 | -Underflow tininess-detection mode, statically initialized to default value. | |
| 35 | -(The declaration in `softfloat.h' must match the `int8' type here.) | |
| 36 | -------------------------------------------------------------------------------- | |
| 37 | -*/ | |
| 38 | -int8 float_detect_tininess = float_tininess_after_rounding; | |
| 39 | - | |
| 40 | -/* | |
| 41 | -------------------------------------------------------------------------------- | |
| 42 | -Raises the exceptions specified by `flags'. Floating-point traps can be | |
| 43 | -defined here if desired. It is currently not possible for such a trap to | |
| 44 | -substitute a result value. If traps are not implemented, this routine | |
| 45 | -should be simply `float_exception_flags |= flags;'. | |
| 46 | - | |
| 47 | -ScottB: November 4, 1998 | |
| 48 | -Moved this function out of softfloat-specialize into fpmodule.c. | |
| 49 | -This effectively isolates all the changes required for integrating with the | |
| 50 | -Linux kernel into fpmodule.c. Porting to NetBSD should only require modifying | |
| 51 | -fpmodule.c to integrate with the NetBSD kernel (I hope!). | |
| 52 | -------------------------------------------------------------------------------- | |
| 53 | -*/ | |
| 54 | -void float_raise( int8 flags ) | |
| 55 | -{ | |
| 56 | - float_exception_flags |= flags; | |
| 57 | -} | |
| 58 | - | |
| 59 | -/* | |
| 60 | -------------------------------------------------------------------------------- | |
| 61 | -Internal canonical NaN format. | |
| 62 | -------------------------------------------------------------------------------- | |
| 63 | -*/ | |
| 64 | -typedef struct { | |
| 65 | - flag sign; | |
| 66 | - bits64 high, low; | |
| 67 | -} commonNaNT; | |
| 68 | - | |
| 69 | -/* | |
| 70 | -------------------------------------------------------------------------------- | |
| 71 | -The pattern for a default generated single-precision NaN. | |
| 72 | -------------------------------------------------------------------------------- | |
| 73 | -*/ | |
| 74 | -#define float32_default_nan 0xFFFFFFFF | |
| 75 | - | |
| 76 | -/* | |
| 77 | -------------------------------------------------------------------------------- | |
| 78 | -Returns 1 if the single-precision floating-point value `a' is a NaN; | |
| 79 | -otherwise returns 0. | |
| 80 | -------------------------------------------------------------------------------- | |
| 81 | -*/ | |
| 82 | -flag float32_is_nan( float32 a ) | |
| 83 | -{ | |
| 84 | - | |
| 85 | - return ( 0xFF000000 < (bits32) ( a<<1 ) ); | |
| 86 | - | |
| 87 | -} | |
| 88 | - | |
| 89 | -/* | |
| 90 | -------------------------------------------------------------------------------- | |
| 91 | -Returns 1 if the single-precision floating-point value `a' is a signaling | |
| 92 | -NaN; otherwise returns 0. | |
| 93 | -------------------------------------------------------------------------------- | |
| 94 | -*/ | |
| 95 | -flag float32_is_signaling_nan( float32 a ) | |
| 96 | -{ | |
| 97 | - | |
| 98 | - return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF ); | |
| 99 | - | |
| 100 | -} | |
| 101 | - | |
| 102 | -/* | |
| 103 | -------------------------------------------------------------------------------- | |
| 104 | -Returns the result of converting the single-precision floating-point NaN | |
| 105 | -`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid | |
| 106 | -exception is raised. | |
| 107 | -------------------------------------------------------------------------------- | |
| 108 | -*/ | |
| 109 | -static commonNaNT float32ToCommonNaN( float32 a ) | |
| 110 | -{ | |
| 111 | - commonNaNT z; | |
| 112 | - | |
| 113 | - if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); | |
| 114 | - z.sign = a>>31; | |
| 115 | - z.low = 0; | |
| 116 | - z.high = ( (bits64) a )<<41; | |
| 117 | - return z; | |
| 118 | - | |
| 119 | -} | |
| 120 | - | |
| 121 | -/* | |
| 122 | -------------------------------------------------------------------------------- | |
| 123 | -Returns the result of converting the canonical NaN `a' to the single- | |
| 124 | -precision floating-point format. | |
| 125 | -------------------------------------------------------------------------------- | |
| 126 | -*/ | |
| 127 | -static float32 commonNaNToFloat32( commonNaNT a ) | |
| 128 | -{ | |
| 129 | - | |
| 130 | - return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 ); | |
| 131 | - | |
| 132 | -} | |
| 133 | - | |
| 134 | -/* | |
| 135 | -------------------------------------------------------------------------------- | |
| 136 | -Takes two single-precision floating-point values `a' and `b', one of which | |
| 137 | -is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a | |
| 138 | -signaling NaN, the invalid exception is raised. | |
| 139 | -------------------------------------------------------------------------------- | |
| 140 | -*/ | |
| 141 | -static float32 propagateFloat32NaN( float32 a, float32 b ) | |
| 142 | -{ | |
| 143 | - flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; | |
| 144 | - | |
| 145 | - aIsNaN = float32_is_nan( a ); | |
| 146 | - aIsSignalingNaN = float32_is_signaling_nan( a ); | |
| 147 | - bIsNaN = float32_is_nan( b ); | |
| 148 | - bIsSignalingNaN = float32_is_signaling_nan( b ); | |
| 149 | - a |= 0x00400000; | |
| 150 | - b |= 0x00400000; | |
| 151 | - if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); | |
| 152 | - if ( aIsNaN ) { | |
| 153 | - return ( aIsSignalingNaN & bIsNaN ) ? b : a; | |
| 154 | - } | |
| 155 | - else { | |
| 156 | - return b; | |
| 157 | - } | |
| 158 | - | |
| 159 | -} | |
| 160 | - | |
| 161 | -/* | |
| 162 | -------------------------------------------------------------------------------- | |
| 163 | -The pattern for a default generated double-precision NaN. | |
| 164 | -------------------------------------------------------------------------------- | |
| 165 | -*/ | |
| 166 | -#define float64_default_nan LIT64( 0xFFFFFFFFFFFFFFFF ) | |
| 167 | - | |
| 168 | -/* | |
| 169 | -------------------------------------------------------------------------------- | |
| 170 | -Returns 1 if the double-precision floating-point value `a' is a NaN; | |
| 171 | -otherwise returns 0. | |
| 172 | -------------------------------------------------------------------------------- | |
| 173 | -*/ | |
| 174 | -flag float64_is_nan( float64 a ) | |
| 175 | -{ | |
| 176 | - | |
| 177 | - return ( LIT64( 0xFFE0000000000000 ) < (bits64) ( a<<1 ) ); | |
| 178 | - | |
| 179 | -} | |
| 180 | - | |
| 181 | -/* | |
| 182 | -------------------------------------------------------------------------------- | |
| 183 | -Returns 1 if the double-precision floating-point value `a' is a signaling | |
| 184 | -NaN; otherwise returns 0. | |
| 185 | -------------------------------------------------------------------------------- | |
| 186 | -*/ | |
| 187 | -flag float64_is_signaling_nan( float64 a ) | |
| 188 | -{ | |
| 189 | - | |
| 190 | - return | |
| 191 | - ( ( ( a>>51 ) & 0xFFF ) == 0xFFE ) | |
| 192 | - && ( a & LIT64( 0x0007FFFFFFFFFFFF ) ); | |
| 193 | - | |
| 194 | -} | |
| 195 | - | |
| 196 | -/* | |
| 197 | -------------------------------------------------------------------------------- | |
| 198 | -Returns the result of converting the double-precision floating-point NaN | |
| 199 | -`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid | |
| 200 | -exception is raised. | |
| 201 | -------------------------------------------------------------------------------- | |
| 202 | -*/ | |
| 203 | -static commonNaNT float64ToCommonNaN( float64 a ) | |
| 204 | -{ | |
| 205 | - commonNaNT z; | |
| 206 | - | |
| 207 | - if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); | |
| 208 | - z.sign = a>>63; | |
| 209 | - z.low = 0; | |
| 210 | - z.high = a<<12; | |
| 211 | - return z; | |
| 212 | - | |
| 213 | -} | |
| 214 | - | |
| 215 | -/* | |
| 216 | -------------------------------------------------------------------------------- | |
| 217 | -Returns the result of converting the canonical NaN `a' to the double- | |
| 218 | -precision floating-point format. | |
| 219 | -------------------------------------------------------------------------------- | |
| 220 | -*/ | |
| 221 | -static float64 commonNaNToFloat64( commonNaNT a ) | |
| 222 | -{ | |
| 223 | - | |
| 224 | - return | |
| 225 | - ( ( (bits64) a.sign )<<63 ) | |
| 226 | - | LIT64( 0x7FF8000000000000 ) | |
| 227 | - | ( a.high>>12 ); | |
| 228 | - | |
| 229 | -} | |
| 230 | - | |
| 231 | -/* | |
| 232 | -------------------------------------------------------------------------------- | |
| 233 | -Takes two double-precision floating-point values `a' and `b', one of which | |
| 234 | -is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a | |
| 235 | -signaling NaN, the invalid exception is raised. | |
| 236 | -------------------------------------------------------------------------------- | |
| 237 | -*/ | |
| 238 | -static float64 propagateFloat64NaN( float64 a, float64 b ) | |
| 239 | -{ | |
| 240 | - flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; | |
| 241 | - | |
| 242 | - aIsNaN = float64_is_nan( a ); | |
| 243 | - aIsSignalingNaN = float64_is_signaling_nan( a ); | |
| 244 | - bIsNaN = float64_is_nan( b ); | |
| 245 | - bIsSignalingNaN = float64_is_signaling_nan( b ); | |
| 246 | - a |= LIT64( 0x0008000000000000 ); | |
| 247 | - b |= LIT64( 0x0008000000000000 ); | |
| 248 | - if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); | |
| 249 | - if ( aIsNaN ) { | |
| 250 | - return ( aIsSignalingNaN & bIsNaN ) ? b : a; | |
| 251 | - } | |
| 252 | - else { | |
| 253 | - return b; | |
| 254 | - } | |
| 255 | - | |
| 256 | -} | |
| 257 | - | |
| 258 | -#ifdef FLOATX80 | |
| 259 | - | |
| 260 | -/* | |
| 261 | -------------------------------------------------------------------------------- | |
| 262 | -The pattern for a default generated extended double-precision NaN. The | |
| 263 | -`high' and `low' values hold the most- and least-significant bits, | |
| 264 | -respectively. | |
| 265 | -------------------------------------------------------------------------------- | |
| 266 | -*/ | |
| 267 | -#define floatx80_default_nan_high 0xFFFF | |
| 268 | -#define floatx80_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF ) | |
| 269 | - | |
| 270 | -/* | |
| 271 | -------------------------------------------------------------------------------- | |
| 272 | -Returns 1 if the extended double-precision floating-point value `a' is a | |
| 273 | -NaN; otherwise returns 0. | |
| 274 | -------------------------------------------------------------------------------- | |
| 275 | -*/ | |
| 276 | -flag floatx80_is_nan( floatx80 a ) | |
| 277 | -{ | |
| 278 | - | |
| 279 | - return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 ); | |
| 280 | - | |
| 281 | -} | |
| 282 | - | |
| 283 | -/* | |
| 284 | -------------------------------------------------------------------------------- | |
| 285 | -Returns 1 if the extended double-precision floating-point value `a' is a | |
| 286 | -signaling NaN; otherwise returns 0. | |
| 287 | -------------------------------------------------------------------------------- | |
| 288 | -*/ | |
| 289 | -flag floatx80_is_signaling_nan( floatx80 a ) | |
| 290 | -{ | |
| 291 | - //register int lr; | |
| 292 | - bits64 aLow; | |
| 293 | - | |
| 294 | - //__asm__("mov %0, lr" : : "g" (lr)); | |
| 295 | - //fp_printk("floatx80_is_signalling_nan() called from 0x%08x\n",lr); | |
| 296 | - aLow = a.low & ~ LIT64( 0x4000000000000000 ); | |
| 297 | - return | |
| 298 | - ( ( a.high & 0x7FFF ) == 0x7FFF ) | |
| 299 | - && (bits64) ( aLow<<1 ) | |
| 300 | - && ( a.low == aLow ); | |
| 301 | - | |
| 302 | -} | |
| 303 | - | |
| 304 | -/* | |
| 305 | -------------------------------------------------------------------------------- | |
| 306 | -Returns the result of converting the extended double-precision floating- | |
| 307 | -point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the | |
| 308 | -invalid exception is raised. | |
| 309 | -------------------------------------------------------------------------------- | |
| 310 | -*/ | |
| 311 | -static commonNaNT floatx80ToCommonNaN( floatx80 a ) | |
| 312 | -{ | |
| 313 | - commonNaNT z; | |
| 314 | - | |
| 315 | - if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); | |
| 316 | - z.sign = a.high>>15; | |
| 317 | - z.low = 0; | |
| 318 | - z.high = a.low<<1; | |
| 319 | - return z; | |
| 320 | - | |
| 321 | -} | |
| 322 | - | |
| 323 | -/* | |
| 324 | -------------------------------------------------------------------------------- | |
| 325 | -Returns the result of converting the canonical NaN `a' to the extended | |
| 326 | -double-precision floating-point format. | |
| 327 | -------------------------------------------------------------------------------- | |
| 328 | -*/ | |
| 329 | -static floatx80 commonNaNToFloatx80( commonNaNT a ) | |
| 330 | -{ | |
| 331 | - floatx80 z; | |
| 332 | - | |
| 333 | - z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 ); | |
| 334 | - z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF; | |
| 335 | - return z; | |
| 336 | - | |
| 337 | -} | |
| 338 | - | |
| 339 | -/* | |
| 340 | -------------------------------------------------------------------------------- | |
| 341 | -Takes two extended double-precision floating-point values `a' and `b', one | |
| 342 | -of which is a NaN, and returns the appropriate NaN result. If either `a' or | |
| 343 | -`b' is a signaling NaN, the invalid exception is raised. | |
| 344 | -------------------------------------------------------------------------------- | |
| 345 | -*/ | |
| 346 | -static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b ) | |
| 347 | -{ | |
| 348 | - flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; | |
| 349 | - | |
| 350 | - aIsNaN = floatx80_is_nan( a ); | |
| 351 | - aIsSignalingNaN = floatx80_is_signaling_nan( a ); | |
| 352 | - bIsNaN = floatx80_is_nan( b ); | |
| 353 | - bIsSignalingNaN = floatx80_is_signaling_nan( b ); | |
| 354 | - a.low |= LIT64( 0xC000000000000000 ); | |
| 355 | - b.low |= LIT64( 0xC000000000000000 ); | |
| 356 | - if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); | |
| 357 | - if ( aIsNaN ) { | |
| 358 | - return ( aIsSignalingNaN & bIsNaN ) ? b : a; | |
| 359 | - } | |
| 360 | - else { | |
| 361 | - return b; | |
| 362 | - } | |
| 363 | - | |
| 364 | -} | |
| 365 | - | |
| 366 | -#endif |
target-arm/nwfpe/softfloat.c deleted
100644 → 0
| 1 | -/* | |
| 2 | -=============================================================================== | |
| 3 | - | |
| 4 | -This C source file is part of the SoftFloat IEC/IEEE Floating-point | |
| 5 | -Arithmetic Package, Release 2. | |
| 6 | - | |
| 7 | -Written by John R. Hauser. This work was made possible in part by the | |
| 8 | -International Computer Science Institute, located at Suite 600, 1947 Center | |
| 9 | -Street, Berkeley, California 94704. Funding was partially provided by the | |
| 10 | -National Science Foundation under grant MIP-9311980. The original version | |
| 11 | -of this code was written as part of a project to build a fixed-point vector | |
| 12 | -processor in collaboration with the University of California at Berkeley, | |
| 13 | -overseen by Profs. Nelson Morgan and John Wawrzynek. More information | |
| 14 | -is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ | |
| 15 | -arithmetic/softfloat.html'. | |
| 16 | - | |
| 17 | -THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort | |
| 18 | -has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT | |
| 19 | -TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO | |
| 20 | -PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY | |
| 21 | -AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. | |
| 22 | - | |
| 23 | -Derivative works are acceptable, even for commercial purposes, so long as | |
| 24 | -(1) they include prominent notice that the work is derivative, and (2) they | |
| 25 | -include prominent notice akin to these three paragraphs for those parts of | |
| 26 | -this code that are retained. | |
| 27 | - | |
| 28 | -=============================================================================== | |
| 29 | -*/ | |
| 30 | - | |
| 31 | -#include "fpa11.h" | |
| 32 | -#include "milieu.h" | |
| 33 | -#include "softfloat.h" | |
| 34 | - | |
| 35 | -/* | |
| 36 | -------------------------------------------------------------------------------- | |
| 37 | -Floating-point rounding mode, extended double-precision rounding precision, | |
| 38 | -and exception flags. | |
| 39 | -------------------------------------------------------------------------------- | |
| 40 | -*/ | |
| 41 | -int8 float_rounding_mode = float_round_nearest_even; | |
| 42 | -int8 floatx80_rounding_precision = 80; | |
| 43 | -int8 float_exception_flags; | |
| 44 | - | |
| 45 | -/* | |
| 46 | -------------------------------------------------------------------------------- | |
| 47 | -Primitive arithmetic functions, including multi-word arithmetic, and | |
| 48 | -division and square root approximations. (Can be specialized to target if | |
| 49 | -desired.) | |
| 50 | -------------------------------------------------------------------------------- | |
| 51 | -*/ | |
| 52 | -#include "softfloat-macros" | |
| 53 | - | |
| 54 | -/* | |
| 55 | -------------------------------------------------------------------------------- | |
| 56 | -Functions and definitions to determine: (1) whether tininess for underflow | |
| 57 | -is detected before or after rounding by default, (2) what (if anything) | |
| 58 | -happens when exceptions are raised, (3) how signaling NaNs are distinguished | |
| 59 | -from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs | |
| 60 | -are propagated from function inputs to output. These details are target- | |
| 61 | -specific. | |
| 62 | -------------------------------------------------------------------------------- | |
| 63 | -*/ | |
| 64 | -#include "softfloat-specialize" | |
| 65 | - | |
| 66 | -/* | |
| 67 | -------------------------------------------------------------------------------- | |
| 68 | -Takes a 64-bit fixed-point value `absZ' with binary point between bits 6 | |
| 69 | -and 7, and returns the properly rounded 32-bit integer corresponding to the | |
| 70 | -input. If `zSign' is nonzero, the input is negated before being converted | |
| 71 | -to an integer. Bit 63 of `absZ' must be zero. Ordinarily, the fixed-point | |
| 72 | -input is simply rounded to an integer, with the inexact exception raised if | |
| 73 | -the input cannot be represented exactly as an integer. If the fixed-point | |
| 74 | -input is too large, however, the invalid exception is raised and the largest | |
| 75 | -positive or negative integer is returned. | |
| 76 | -------------------------------------------------------------------------------- | |
| 77 | -*/ | |
| 78 | -static int32 roundAndPackInt32( flag zSign, bits64 absZ ) | |
| 79 | -{ | |
| 80 | - int8 roundingMode; | |
| 81 | - flag roundNearestEven; | |
| 82 | - int8 roundIncrement, roundBits; | |
| 83 | - int32 z; | |
| 84 | - | |
| 85 | - roundingMode = float_rounding_mode; | |
| 86 | - roundNearestEven = ( roundingMode == float_round_nearest_even ); | |
| 87 | - roundIncrement = 0x40; | |
| 88 | - if ( ! roundNearestEven ) { | |
| 89 | - if ( roundingMode == float_round_to_zero ) { | |
| 90 | - roundIncrement = 0; | |
| 91 | - } | |
| 92 | - else { | |
| 93 | - roundIncrement = 0x7F; | |
| 94 | - if ( zSign ) { | |
| 95 | - if ( roundingMode == float_round_up ) roundIncrement = 0; | |
| 96 | - } | |
| 97 | - else { | |
| 98 | - if ( roundingMode == float_round_down ) roundIncrement = 0; | |
| 99 | - } | |
| 100 | - } | |
| 101 | - } | |
| 102 | - roundBits = absZ & 0x7F; | |
| 103 | - absZ = ( absZ + roundIncrement )>>7; | |
| 104 | - absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); | |
| 105 | - z = absZ; | |
| 106 | - if ( zSign ) z = - z; | |
| 107 | - if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) { | |
| 108 | - float_exception_flags |= float_flag_invalid; | |
| 109 | - return zSign ? 0x80000000 : 0x7FFFFFFF; | |
| 110 | - } | |
| 111 | - if ( roundBits ) float_exception_flags |= float_flag_inexact; | |
| 112 | - return z; | |
| 113 | - | |
| 114 | -} | |
| 115 | - | |
| 116 | -/* | |
| 117 | -------------------------------------------------------------------------------- | |
| 118 | -Returns the fraction bits of the single-precision floating-point value `a'. | |
| 119 | -------------------------------------------------------------------------------- | |
| 120 | -*/ | |
| 121 | -INLINE bits32 extractFloat32Frac( float32 a ) | |
| 122 | -{ | |
| 123 | - | |
| 124 | - return a & 0x007FFFFF; | |
| 125 | - | |
| 126 | -} | |
| 127 | - | |
| 128 | -/* | |
| 129 | -------------------------------------------------------------------------------- | |
| 130 | -Returns the exponent bits of the single-precision floating-point value `a'. | |
| 131 | -------------------------------------------------------------------------------- | |
| 132 | -*/ | |
| 133 | -INLINE int16 extractFloat32Exp( float32 a ) | |
| 134 | -{ | |
| 135 | - | |
| 136 | - return ( a>>23 ) & 0xFF; | |
| 137 | - | |
| 138 | -} | |
| 139 | - | |
| 140 | -/* | |
| 141 | -------------------------------------------------------------------------------- | |
| 142 | -Returns the sign bit of the single-precision floating-point value `a'. | |
| 143 | -------------------------------------------------------------------------------- | |
| 144 | -*/ | |
| 145 | -INLINE flag extractFloat32Sign( float32 a ) | |
| 146 | -{ | |
| 147 | - | |
| 148 | - return a>>31; | |
| 149 | - | |
| 150 | -} | |
| 151 | - | |
| 152 | -/* | |
| 153 | -------------------------------------------------------------------------------- | |
| 154 | -Normalizes the subnormal single-precision floating-point value represented | |
| 155 | -by the denormalized significand `aSig'. The normalized exponent and | |
| 156 | -significand are stored at the locations pointed to by `zExpPtr' and | |
| 157 | -`zSigPtr', respectively. | |
| 158 | -------------------------------------------------------------------------------- | |
| 159 | -*/ | |
| 160 | -static void | |
| 161 | - normalizeFloat32Subnormal( bits32 aSig, int16 *zExpPtr, bits32 *zSigPtr ) | |
| 162 | -{ | |
| 163 | - int8 shiftCount; | |
| 164 | - | |
| 165 | - shiftCount = countLeadingZeros32( aSig ) - 8; | |
| 166 | - *zSigPtr = aSig<<shiftCount; | |
| 167 | - *zExpPtr = 1 - shiftCount; | |
| 168 | - | |
| 169 | -} | |
| 170 | - | |
| 171 | -/* | |
| 172 | -------------------------------------------------------------------------------- | |
| 173 | -Packs the sign `zSign', exponent `zExp', and significand `zSig' into a | |
| 174 | -single-precision floating-point value, returning the result. After being | |
| 175 | -shifted into the proper positions, the three fields are simply added | |
| 176 | -together to form the result. This means that any integer portion of `zSig' | |
| 177 | -will be added into the exponent. Since a properly normalized significand | |
| 178 | -will have an integer portion equal to 1, the `zExp' input should be 1 less | |
| 179 | -than the desired result exponent whenever `zSig' is a complete, normalized | |
| 180 | -significand. | |
| 181 | -------------------------------------------------------------------------------- | |
| 182 | -*/ | |
| 183 | -INLINE float32 packFloat32( flag zSign, int16 zExp, bits32 zSig ) | |
| 184 | -{ | |
| 185 | - return ( ( (bits32) zSign )<<31 ) + ( ( (bits32) zExp )<<23 ) + zSig; | |
| 186 | -} | |
| 187 | - | |
| 188 | -/* | |
| 189 | -------------------------------------------------------------------------------- | |
| 190 | -Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
| 191 | -and significand `zSig', and returns the proper single-precision floating- | |
| 192 | -point value corresponding to the abstract input. Ordinarily, the abstract | |
| 193 | -value is simply rounded and packed into the single-precision format, with | |
| 194 | -the inexact exception raised if the abstract input cannot be represented | |
| 195 | -exactly. If the abstract value is too large, however, the overflow and | |
| 196 | -inexact exceptions are raised and an infinity or maximal finite value is | |
| 197 | -returned. If the abstract value is too small, the input value is rounded to | |
| 198 | -a subnormal number, and the underflow and inexact exceptions are raised if | |
| 199 | -the abstract input cannot be represented exactly as a subnormal single- | |
| 200 | -precision floating-point number. | |
| 201 | - The input significand `zSig' has its binary point between bits 30 | |
| 202 | -and 29, which is 7 bits to the left of the usual location. This shifted | |
| 203 | -significand must be normalized or smaller. If `zSig' is not normalized, | |
| 204 | -`zExp' must be 0; in that case, the result returned is a subnormal number, | |
| 205 | -and it must not require rounding. In the usual case that `zSig' is | |
| 206 | -normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. | |
| 207 | -The handling of underflow and overflow follows the IEC/IEEE Standard for | |
| 208 | -Binary Floating-point Arithmetic. | |
| 209 | -------------------------------------------------------------------------------- | |
| 210 | -*/ | |
| 211 | -static float32 roundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig ) | |
| 212 | -{ | |
| 213 | - int8 roundingMode; | |
| 214 | - flag roundNearestEven; | |
| 215 | - int8 roundIncrement, roundBits; | |
| 216 | - flag isTiny; | |
| 217 | - | |
| 218 | - roundingMode = float_rounding_mode; | |
| 219 | - roundNearestEven = ( roundingMode == float_round_nearest_even ); | |
| 220 | - roundIncrement = 0x40; | |
| 221 | - if ( ! roundNearestEven ) { | |
| 222 | - if ( roundingMode == float_round_to_zero ) { | |
| 223 | - roundIncrement = 0; | |
| 224 | - } | |
| 225 | - else { | |
| 226 | - roundIncrement = 0x7F; | |
| 227 | - if ( zSign ) { | |
| 228 | - if ( roundingMode == float_round_up ) roundIncrement = 0; | |
| 229 | - } | |
| 230 | - else { | |
| 231 | - if ( roundingMode == float_round_down ) roundIncrement = 0; | |
| 232 | - } | |
| 233 | - } | |
| 234 | - } | |
| 235 | - roundBits = zSig & 0x7F; | |
| 236 | - if ( 0xFD <= (bits16) zExp ) { | |
| 237 | - if ( ( 0xFD < zExp ) | |
| 238 | - || ( ( zExp == 0xFD ) | |
| 239 | - && ( (sbits32) ( zSig + roundIncrement ) < 0 ) ) | |
| 240 | - ) { | |
| 241 | - float_raise( float_flag_overflow | float_flag_inexact ); | |
| 242 | - return packFloat32( zSign, 0xFF, 0 ) - ( roundIncrement == 0 ); | |
| 243 | - } | |
| 244 | - if ( zExp < 0 ) { | |
| 245 | - isTiny = | |
| 246 | - ( float_detect_tininess == float_tininess_before_rounding ) | |
| 247 | - || ( zExp < -1 ) | |
| 248 | - || ( zSig + roundIncrement < 0x80000000 ); | |
| 249 | - shift32RightJamming( zSig, - zExp, &zSig ); | |
| 250 | - zExp = 0; | |
| 251 | - roundBits = zSig & 0x7F; | |
| 252 | - if ( isTiny && roundBits ) float_raise( float_flag_underflow ); | |
| 253 | - } | |
| 254 | - } | |
| 255 | - if ( roundBits ) float_exception_flags |= float_flag_inexact; | |
| 256 | - zSig = ( zSig + roundIncrement )>>7; | |
| 257 | - zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); | |
| 258 | - if ( zSig == 0 ) zExp = 0; | |
| 259 | - return packFloat32( zSign, zExp, zSig ); | |
| 260 | - | |
| 261 | -} | |
| 262 | - | |
| 263 | -/* | |
| 264 | -------------------------------------------------------------------------------- | |
| 265 | -Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
| 266 | -and significand `zSig', and returns the proper single-precision floating- | |
| 267 | -point value corresponding to the abstract input. This routine is just like | |
| 268 | -`roundAndPackFloat32' except that `zSig' does not have to be normalized in | |
| 269 | -any way. In all cases, `zExp' must be 1 less than the ``true'' floating- | |
| 270 | -point exponent. | |
| 271 | -------------------------------------------------------------------------------- | |
| 272 | -*/ | |
| 273 | -static float32 | |
| 274 | - normalizeRoundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig ) | |
| 275 | -{ | |
| 276 | - int8 shiftCount; | |
| 277 | - | |
| 278 | - shiftCount = countLeadingZeros32( zSig ) - 1; | |
| 279 | - return roundAndPackFloat32( zSign, zExp - shiftCount, zSig<<shiftCount ); | |
| 280 | - | |
| 281 | -} | |
| 282 | - | |
| 283 | -/* | |
| 284 | -------------------------------------------------------------------------------- | |
| 285 | -Returns the fraction bits of the double-precision floating-point value `a'. | |
| 286 | -------------------------------------------------------------------------------- | |
| 287 | -*/ | |
| 288 | -INLINE bits64 extractFloat64Frac( float64 a ) | |
| 289 | -{ | |
| 290 | - | |
| 291 | - return a & LIT64( 0x000FFFFFFFFFFFFF ); | |
| 292 | - | |
| 293 | -} | |
| 294 | - | |
| 295 | -/* | |
| 296 | -------------------------------------------------------------------------------- | |
| 297 | -Returns the exponent bits of the double-precision floating-point value `a'. | |
| 298 | -------------------------------------------------------------------------------- | |
| 299 | -*/ | |
| 300 | -INLINE int16 extractFloat64Exp( float64 a ) | |
| 301 | -{ | |
| 302 | - | |
| 303 | - return ( a>>52 ) & 0x7FF; | |
| 304 | - | |
| 305 | -} | |
| 306 | - | |
| 307 | -/* | |
| 308 | -------------------------------------------------------------------------------- | |
| 309 | -Returns the sign bit of the double-precision floating-point value `a'. | |
| 310 | -------------------------------------------------------------------------------- | |
| 311 | -*/ | |
| 312 | -INLINE flag extractFloat64Sign( float64 a ) | |
| 313 | -{ | |
| 314 | - | |
| 315 | - return a>>63; | |
| 316 | - | |
| 317 | -} | |
| 318 | - | |
| 319 | -/* | |
| 320 | -------------------------------------------------------------------------------- | |
| 321 | -Normalizes the subnormal double-precision floating-point value represented | |
| 322 | -by the denormalized significand `aSig'. The normalized exponent and | |
| 323 | -significand are stored at the locations pointed to by `zExpPtr' and | |
| 324 | -`zSigPtr', respectively. | |
| 325 | -------------------------------------------------------------------------------- | |
| 326 | -*/ | |
| 327 | -static void | |
| 328 | - normalizeFloat64Subnormal( bits64 aSig, int16 *zExpPtr, bits64 *zSigPtr ) | |
| 329 | -{ | |
| 330 | - int8 shiftCount; | |
| 331 | - | |
| 332 | - shiftCount = countLeadingZeros64( aSig ) - 11; | |
| 333 | - *zSigPtr = aSig<<shiftCount; | |
| 334 | - *zExpPtr = 1 - shiftCount; | |
| 335 | - | |
| 336 | -} | |
| 337 | - | |
| 338 | -/* | |
| 339 | -------------------------------------------------------------------------------- | |
| 340 | -Packs the sign `zSign', exponent `zExp', and significand `zSig' into a | |
| 341 | -double-precision floating-point value, returning the result. After being | |
| 342 | -shifted into the proper positions, the three fields are simply added | |
| 343 | -together to form the result. This means that any integer portion of `zSig' | |
| 344 | -will be added into the exponent. Since a properly normalized significand | |
| 345 | -will have an integer portion equal to 1, the `zExp' input should be 1 less | |
| 346 | -than the desired result exponent whenever `zSig' is a complete, normalized | |
| 347 | -significand. | |
| 348 | -------------------------------------------------------------------------------- | |
| 349 | -*/ | |
| 350 | -INLINE float64 packFloat64( flag zSign, int16 zExp, bits64 zSig ) | |
| 351 | -{ | |
| 352 | - | |
| 353 | - return ( ( (bits64) zSign )<<63 ) + ( ( (bits64) zExp )<<52 ) + zSig; | |
| 354 | - | |
| 355 | -} | |
| 356 | - | |
| 357 | -/* | |
| 358 | -------------------------------------------------------------------------------- | |
| 359 | -Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
| 360 | -and significand `zSig', and returns the proper double-precision floating- | |
| 361 | -point value corresponding to the abstract input. Ordinarily, the abstract | |
| 362 | -value is simply rounded and packed into the double-precision format, with | |
| 363 | -the inexact exception raised if the abstract input cannot be represented | |
| 364 | -exactly. If the abstract value is too large, however, the overflow and | |
| 365 | -inexact exceptions are raised and an infinity or maximal finite value is | |
| 366 | -returned. If the abstract value is too small, the input value is rounded to | |
| 367 | -a subnormal number, and the underflow and inexact exceptions are raised if | |
| 368 | -the abstract input cannot be represented exactly as a subnormal double- | |
| 369 | -precision floating-point number. | |
| 370 | - The input significand `zSig' has its binary point between bits 62 | |
| 371 | -and 61, which is 10 bits to the left of the usual location. This shifted | |
| 372 | -significand must be normalized or smaller. If `zSig' is not normalized, | |
| 373 | -`zExp' must be 0; in that case, the result returned is a subnormal number, | |
| 374 | -and it must not require rounding. In the usual case that `zSig' is | |
| 375 | -normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. | |
| 376 | -The handling of underflow and overflow follows the IEC/IEEE Standard for | |
| 377 | -Binary Floating-point Arithmetic. | |
| 378 | -------------------------------------------------------------------------------- | |
| 379 | -*/ | |
| 380 | -static float64 roundAndPackFloat64( flag zSign, int16 zExp, bits64 zSig ) | |
| 381 | -{ | |
| 382 | - int8 roundingMode; | |
| 383 | - flag roundNearestEven; | |
| 384 | - int16 roundIncrement, roundBits; | |
| 385 | - flag isTiny; | |
| 386 | - | |
| 387 | - roundingMode = float_rounding_mode; | |
| 388 | - roundNearestEven = ( roundingMode == float_round_nearest_even ); | |
| 389 | - roundIncrement = 0x200; | |
| 390 | - if ( ! roundNearestEven ) { | |
| 391 | - if ( roundingMode == float_round_to_zero ) { | |
| 392 | - roundIncrement = 0; | |
| 393 | - } | |
| 394 | - else { | |
| 395 | - roundIncrement = 0x3FF; | |
| 396 | - if ( zSign ) { | |
| 397 | - if ( roundingMode == float_round_up ) roundIncrement = 0; | |
| 398 | - } | |
| 399 | - else { | |
| 400 | - if ( roundingMode == float_round_down ) roundIncrement = 0; | |
| 401 | - } | |
| 402 | - } | |
| 403 | - } | |
| 404 | - roundBits = zSig & 0x3FF; | |
| 405 | - if ( 0x7FD <= (bits16) zExp ) { | |
| 406 | - if ( ( 0x7FD < zExp ) | |
| 407 | - || ( ( zExp == 0x7FD ) | |
| 408 | - && ( (sbits64) ( zSig + roundIncrement ) < 0 ) ) | |
| 409 | - ) { | |
| 410 | - //register int lr = __builtin_return_address(0); | |
| 411 | - //printk("roundAndPackFloat64 called from 0x%08x\n",lr); | |
| 412 | - float_raise( float_flag_overflow | float_flag_inexact ); | |
| 413 | - return packFloat64( zSign, 0x7FF, 0 ) - ( roundIncrement == 0 ); | |
| 414 | - } | |
| 415 | - if ( zExp < 0 ) { | |
| 416 | - isTiny = | |
| 417 | - ( float_detect_tininess == float_tininess_before_rounding ) | |
| 418 | - || ( zExp < -1 ) | |
| 419 | - || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) ); | |
| 420 | - shift64RightJamming( zSig, - zExp, &zSig ); | |
| 421 | - zExp = 0; | |
| 422 | - roundBits = zSig & 0x3FF; | |
| 423 | - if ( isTiny && roundBits ) float_raise( float_flag_underflow ); | |
| 424 | - } | |
| 425 | - } | |
| 426 | - if ( roundBits ) float_exception_flags |= float_flag_inexact; | |
| 427 | - zSig = ( zSig + roundIncrement )>>10; | |
| 428 | - zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven ); | |
| 429 | - if ( zSig == 0 ) zExp = 0; | |
| 430 | - return packFloat64( zSign, zExp, zSig ); | |
| 431 | - | |
| 432 | -} | |
| 433 | - | |
| 434 | -/* | |
| 435 | -------------------------------------------------------------------------------- | |
| 436 | -Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
| 437 | -and significand `zSig', and returns the proper double-precision floating- | |
| 438 | -point value corresponding to the abstract input. This routine is just like | |
| 439 | -`roundAndPackFloat64' except that `zSig' does not have to be normalized in | |
| 440 | -any way. In all cases, `zExp' must be 1 less than the ``true'' floating- | |
| 441 | -point exponent. | |
| 442 | -------------------------------------------------------------------------------- | |
| 443 | -*/ | |
| 444 | -static float64 | |
| 445 | - normalizeRoundAndPackFloat64( flag zSign, int16 zExp, bits64 zSig ) | |
| 446 | -{ | |
| 447 | - int8 shiftCount; | |
| 448 | - | |
| 449 | - shiftCount = countLeadingZeros64( zSig ) - 1; | |
| 450 | - return roundAndPackFloat64( zSign, zExp - shiftCount, zSig<<shiftCount ); | |
| 451 | - | |
| 452 | -} | |
| 453 | - | |
| 454 | -#ifdef FLOATX80 | |
| 455 | - | |
| 456 | -/* | |
| 457 | -------------------------------------------------------------------------------- | |
| 458 | -Returns the fraction bits of the extended double-precision floating-point | |
| 459 | -value `a'. | |
| 460 | -------------------------------------------------------------------------------- | |
| 461 | -*/ | |
| 462 | -INLINE bits64 extractFloatx80Frac( floatx80 a ) | |
| 463 | -{ | |
| 464 | - | |
| 465 | - return a.low; | |
| 466 | - | |
| 467 | -} | |
| 468 | - | |
| 469 | -/* | |
| 470 | -------------------------------------------------------------------------------- | |
| 471 | -Returns the exponent bits of the extended double-precision floating-point | |
| 472 | -value `a'. | |
| 473 | -------------------------------------------------------------------------------- | |
| 474 | -*/ | |
| 475 | -INLINE int32 extractFloatx80Exp( floatx80 a ) | |
| 476 | -{ | |
| 477 | - | |
| 478 | - return a.high & 0x7FFF; | |
| 479 | - | |
| 480 | -} | |
| 481 | - | |
| 482 | -/* | |
| 483 | -------------------------------------------------------------------------------- | |
| 484 | -Returns the sign bit of the extended double-precision floating-point value | |
| 485 | -`a'. | |
| 486 | -------------------------------------------------------------------------------- | |
| 487 | -*/ | |
| 488 | -INLINE flag extractFloatx80Sign( floatx80 a ) | |
| 489 | -{ | |
| 490 | - | |
| 491 | - return a.high>>15; | |
| 492 | - | |
| 493 | -} | |
| 494 | - | |
| 495 | -/* | |
| 496 | -------------------------------------------------------------------------------- | |
| 497 | -Normalizes the subnormal extended double-precision floating-point value | |
| 498 | -represented by the denormalized significand `aSig'. The normalized exponent | |
| 499 | -and significand are stored at the locations pointed to by `zExpPtr' and | |
| 500 | -`zSigPtr', respectively. | |
| 501 | -------------------------------------------------------------------------------- | |
| 502 | -*/ | |
| 503 | -static void | |
| 504 | - normalizeFloatx80Subnormal( bits64 aSig, int32 *zExpPtr, bits64 *zSigPtr ) | |
| 505 | -{ | |
| 506 | - int8 shiftCount; | |
| 507 | - | |
| 508 | - shiftCount = countLeadingZeros64( aSig ); | |
| 509 | - *zSigPtr = aSig<<shiftCount; | |
| 510 | - *zExpPtr = 1 - shiftCount; | |
| 511 | - | |
| 512 | -} | |
| 513 | - | |
| 514 | -/* | |
| 515 | -------------------------------------------------------------------------------- | |
| 516 | -Packs the sign `zSign', exponent `zExp', and significand `zSig' into an | |
| 517 | -extended double-precision floating-point value, returning the result. | |
| 518 | -------------------------------------------------------------------------------- | |
| 519 | -*/ | |
| 520 | -INLINE floatx80 packFloatx80( flag zSign, int32 zExp, bits64 zSig ) | |
| 521 | -{ | |
| 522 | - floatx80 z; | |
| 523 | - | |
| 524 | - z.low = zSig; | |
| 525 | - z.high = ( ( (bits16) zSign )<<15 ) + zExp; | |
| 526 | - return z; | |
| 527 | - | |
| 528 | -} | |
| 529 | - | |
| 530 | -/* | |
| 531 | -------------------------------------------------------------------------------- | |
| 532 | -Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
| 533 | -and extended significand formed by the concatenation of `zSig0' and `zSig1', | |
| 534 | -and returns the proper extended double-precision floating-point value | |
| 535 | -corresponding to the abstract input. Ordinarily, the abstract value is | |
| 536 | -rounded and packed into the extended double-precision format, with the | |
| 537 | -inexact exception raised if the abstract input cannot be represented | |
| 538 | -exactly. If the abstract value is too large, however, the overflow and | |
| 539 | -inexact exceptions are raised and an infinity or maximal finite value is | |
| 540 | -returned. If the abstract value is too small, the input value is rounded to | |
| 541 | -a subnormal number, and the underflow and inexact exceptions are raised if | |
| 542 | -the abstract input cannot be represented exactly as a subnormal extended | |
| 543 | -double-precision floating-point number. | |
| 544 | - If `roundingPrecision' is 32 or 64, the result is rounded to the same | |
| 545 | -number of bits as single or double precision, respectively. Otherwise, the | |
| 546 | -result is rounded to the full precision of the extended double-precision | |
| 547 | -format. | |
| 548 | - The input significand must be normalized or smaller. If the input | |
| 549 | -significand is not normalized, `zExp' must be 0; in that case, the result | |
| 550 | -returned is a subnormal number, and it must not require rounding. The | |
| 551 | -handling of underflow and overflow follows the IEC/IEEE Standard for Binary | |
| 552 | -Floating-point Arithmetic. | |
| 553 | -------------------------------------------------------------------------------- | |
| 554 | -*/ | |
| 555 | -static floatx80 | |
| 556 | - roundAndPackFloatx80( | |
| 557 | - int8 roundingPrecision, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 | |
| 558 | - ) | |
| 559 | -{ | |
| 560 | - int8 roundingMode; | |
| 561 | - flag roundNearestEven, increment, isTiny; | |
| 562 | - int64 roundIncrement, roundMask, roundBits; | |
| 563 | - | |
| 564 | - roundingMode = float_rounding_mode; | |
| 565 | - roundNearestEven = ( roundingMode == float_round_nearest_even ); | |
| 566 | - if ( roundingPrecision == 80 ) goto precision80; | |
| 567 | - if ( roundingPrecision == 64 ) { | |
| 568 | - roundIncrement = LIT64( 0x0000000000000400 ); | |
| 569 | - roundMask = LIT64( 0x00000000000007FF ); | |
| 570 | - } | |
| 571 | - else if ( roundingPrecision == 32 ) { | |
| 572 | - roundIncrement = LIT64( 0x0000008000000000 ); | |
| 573 | - roundMask = LIT64( 0x000000FFFFFFFFFF ); | |
| 574 | - } | |
| 575 | - else { | |
| 576 | - goto precision80; | |
| 577 | - } | |
| 578 | - zSig0 |= ( zSig1 != 0 ); | |
| 579 | - if ( ! roundNearestEven ) { | |
| 580 | - if ( roundingMode == float_round_to_zero ) { | |
| 581 | - roundIncrement = 0; | |
| 582 | - } | |
| 583 | - else { | |
| 584 | - roundIncrement = roundMask; | |
| 585 | - if ( zSign ) { | |
| 586 | - if ( roundingMode == float_round_up ) roundIncrement = 0; | |
| 587 | - } | |
| 588 | - else { | |
| 589 | - if ( roundingMode == float_round_down ) roundIncrement = 0; | |
| 590 | - } | |
| 591 | - } | |
| 592 | - } | |
| 593 | - roundBits = zSig0 & roundMask; | |
| 594 | - if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) { | |
| 595 | - if ( ( 0x7FFE < zExp ) | |
| 596 | - || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) ) | |
| 597 | - ) { | |
| 598 | - goto overflow; | |
| 599 | - } | |
| 600 | - if ( zExp <= 0 ) { | |
| 601 | - isTiny = | |
| 602 | - ( float_detect_tininess == float_tininess_before_rounding ) | |
| 603 | - || ( zExp < 0 ) | |
| 604 | - || ( zSig0 <= zSig0 + roundIncrement ); | |
| 605 | - shift64RightJamming( zSig0, 1 - zExp, &zSig0 ); | |
| 606 | - zExp = 0; | |
| 607 | - roundBits = zSig0 & roundMask; | |
| 608 | - if ( isTiny && roundBits ) float_raise( float_flag_underflow ); | |
| 609 | - if ( roundBits ) float_exception_flags |= float_flag_inexact; | |
| 610 | - zSig0 += roundIncrement; | |
| 611 | - if ( (sbits64) zSig0 < 0 ) zExp = 1; | |
| 612 | - roundIncrement = roundMask + 1; | |
| 613 | - if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) { | |
| 614 | - roundMask |= roundIncrement; | |
| 615 | - } | |
| 616 | - zSig0 &= ~ roundMask; | |
| 617 | - return packFloatx80( zSign, zExp, zSig0 ); | |
| 618 | - } | |
| 619 | - } | |
| 620 | - if ( roundBits ) float_exception_flags |= float_flag_inexact; | |
| 621 | - zSig0 += roundIncrement; | |
| 622 | - if ( zSig0 < roundIncrement ) { | |
| 623 | - ++zExp; | |
| 624 | - zSig0 = LIT64( 0x8000000000000000 ); | |
| 625 | - } | |
| 626 | - roundIncrement = roundMask + 1; | |
| 627 | - if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) { | |
| 628 | - roundMask |= roundIncrement; | |
| 629 | - } | |
| 630 | - zSig0 &= ~ roundMask; | |
| 631 | - if ( zSig0 == 0 ) zExp = 0; | |
| 632 | - return packFloatx80( zSign, zExp, zSig0 ); | |
| 633 | - precision80: | |
| 634 | - increment = ( (sbits64) zSig1 < 0 ); | |
| 635 | - if ( ! roundNearestEven ) { | |
| 636 | - if ( roundingMode == float_round_to_zero ) { | |
| 637 | - increment = 0; | |
| 638 | - } | |
| 639 | - else { | |
| 640 | - if ( zSign ) { | |
| 641 | - increment = ( roundingMode == float_round_down ) && zSig1; | |
| 642 | - } | |
| 643 | - else { | |
| 644 | - increment = ( roundingMode == float_round_up ) && zSig1; | |
| 645 | - } | |
| 646 | - } | |
| 647 | - } | |
| 648 | - if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) { | |
| 649 | - if ( ( 0x7FFE < zExp ) | |
| 650 | - || ( ( zExp == 0x7FFE ) | |
| 651 | - && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) ) | |
| 652 | - && increment | |
| 653 | - ) | |
| 654 | - ) { | |
| 655 | - roundMask = 0; | |
| 656 | - overflow: | |
| 657 | - float_raise( float_flag_overflow | float_flag_inexact ); | |
| 658 | - if ( ( roundingMode == float_round_to_zero ) | |
| 659 | - || ( zSign && ( roundingMode == float_round_up ) ) | |
| 660 | - || ( ! zSign && ( roundingMode == float_round_down ) ) | |
| 661 | - ) { | |
| 662 | - return packFloatx80( zSign, 0x7FFE, ~ roundMask ); | |
| 663 | - } | |
| 664 | - return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
| 665 | - } | |
| 666 | - if ( zExp <= 0 ) { | |
| 667 | - isTiny = | |
| 668 | - ( float_detect_tininess == float_tininess_before_rounding ) | |
| 669 | - || ( zExp < 0 ) | |
| 670 | - || ! increment | |
| 671 | - || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) ); | |
| 672 | - shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 ); | |
| 673 | - zExp = 0; | |
| 674 | - if ( isTiny && zSig1 ) float_raise( float_flag_underflow ); | |
| 675 | - if ( zSig1 ) float_exception_flags |= float_flag_inexact; | |
| 676 | - if ( roundNearestEven ) { | |
| 677 | - increment = ( (sbits64) zSig1 < 0 ); | |
| 678 | - } | |
| 679 | - else { | |
| 680 | - if ( zSign ) { | |
| 681 | - increment = ( roundingMode == float_round_down ) && zSig1; | |
| 682 | - } | |
| 683 | - else { | |
| 684 | - increment = ( roundingMode == float_round_up ) && zSig1; | |
| 685 | - } | |
| 686 | - } | |
| 687 | - if ( increment ) { | |
| 688 | - ++zSig0; | |
| 689 | - zSig0 &= ~ ( ( zSig1 + zSig1 == 0 ) & roundNearestEven ); | |
| 690 | - if ( (sbits64) zSig0 < 0 ) zExp = 1; | |
| 691 | - } | |
| 692 | - return packFloatx80( zSign, zExp, zSig0 ); | |
| 693 | - } | |
| 694 | - } | |
| 695 | - if ( zSig1 ) float_exception_flags |= float_flag_inexact; | |
| 696 | - if ( increment ) { | |
| 697 | - ++zSig0; | |
| 698 | - if ( zSig0 == 0 ) { | |
| 699 | - ++zExp; | |
| 700 | - zSig0 = LIT64( 0x8000000000000000 ); | |
| 701 | - } | |
| 702 | - else { | |
| 703 | - zSig0 &= ~ ( ( zSig1 + zSig1 == 0 ) & roundNearestEven ); | |
| 704 | - } | |
| 705 | - } | |
| 706 | - else { | |
| 707 | - if ( zSig0 == 0 ) zExp = 0; | |
| 708 | - } | |
| 709 | - | |
| 710 | - return packFloatx80( zSign, zExp, zSig0 ); | |
| 711 | -} | |
| 712 | - | |
| 713 | -/* | |
| 714 | -------------------------------------------------------------------------------- | |
| 715 | -Takes an abstract floating-point value having sign `zSign', exponent | |
| 716 | -`zExp', and significand formed by the concatenation of `zSig0' and `zSig1', | |
| 717 | -and returns the proper extended double-precision floating-point value | |
| 718 | -corresponding to the abstract input. This routine is just like | |
| 719 | -`roundAndPackFloatx80' except that the input significand does not have to be | |
| 720 | -normalized. | |
| 721 | -------------------------------------------------------------------------------- | |
| 722 | -*/ | |
| 723 | -static floatx80 | |
| 724 | - normalizeRoundAndPackFloatx80( | |
| 725 | - int8 roundingPrecision, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 | |
| 726 | - ) | |
| 727 | -{ | |
| 728 | - int8 shiftCount; | |
| 729 | - | |
| 730 | - if ( zSig0 == 0 ) { | |
| 731 | - zSig0 = zSig1; | |
| 732 | - zSig1 = 0; | |
| 733 | - zExp -= 64; | |
| 734 | - } | |
| 735 | - shiftCount = countLeadingZeros64( zSig0 ); | |
| 736 | - shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); | |
| 737 | - zExp -= shiftCount; | |
| 738 | - return | |
| 739 | - roundAndPackFloatx80( roundingPrecision, zSign, zExp, zSig0, zSig1 ); | |
| 740 | - | |
| 741 | -} | |
| 742 | - | |
| 743 | -#endif | |
| 744 | - | |
| 745 | -/* | |
| 746 | -------------------------------------------------------------------------------- | |
| 747 | -Returns the result of converting the 32-bit two's complement integer `a' to | |
| 748 | -the single-precision floating-point format. The conversion is performed | |
| 749 | -according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | |
| 750 | -------------------------------------------------------------------------------- | |
| 751 | -*/ | |
| 752 | -float32 int32_to_float32( int32 a ) | |
| 753 | -{ | |
| 754 | - flag zSign; | |
| 755 | - | |
| 756 | - if ( a == 0 ) return 0; | |
| 757 | - if ( a == 0x80000000 ) return packFloat32( 1, 0x9E, 0 ); | |
| 758 | - zSign = ( a < 0 ); | |
| 759 | - return normalizeRoundAndPackFloat32( zSign, 0x9C, zSign ? - a : a ); | |
| 760 | - | |
| 761 | -} | |
| 762 | - | |
| 763 | -/* | |
| 764 | -------------------------------------------------------------------------------- | |
| 765 | -Returns the result of converting the 32-bit two's complement integer `a' to | |
| 766 | -the double-precision floating-point format. The conversion is performed | |
| 767 | -according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | |
| 768 | -------------------------------------------------------------------------------- | |
| 769 | -*/ | |
| 770 | -float64 int32_to_float64( int32 a ) | |
| 771 | -{ | |
| 772 | - flag aSign; | |
| 773 | - uint32 absA; | |
| 774 | - int8 shiftCount; | |
| 775 | - bits64 zSig; | |
| 776 | - | |
| 777 | - if ( a == 0 ) return 0; | |
| 778 | - aSign = ( a < 0 ); | |
| 779 | - absA = aSign ? - a : a; | |
| 780 | - shiftCount = countLeadingZeros32( absA ) + 21; | |
| 781 | - zSig = absA; | |
| 782 | - return packFloat64( aSign, 0x432 - shiftCount, zSig<<shiftCount ); | |
| 783 | - | |
| 784 | -} | |
| 785 | - | |
| 786 | -#ifdef FLOATX80 | |
| 787 | - | |
| 788 | -/* | |
| 789 | -------------------------------------------------------------------------------- | |
| 790 | -Returns the result of converting the 32-bit two's complement integer `a' | |
| 791 | -to the extended double-precision floating-point format. The conversion | |
| 792 | -is performed according to the IEC/IEEE Standard for Binary Floating-point | |
| 793 | -Arithmetic. | |
| 794 | -------------------------------------------------------------------------------- | |
| 795 | -*/ | |
| 796 | -floatx80 int32_to_floatx80( int32 a ) | |
| 797 | -{ | |
| 798 | - flag zSign; | |
| 799 | - uint32 absA; | |
| 800 | - int8 shiftCount; | |
| 801 | - bits64 zSig; | |
| 802 | - | |
| 803 | - if ( a == 0 ) return packFloatx80( 0, 0, 0 ); | |
| 804 | - zSign = ( a < 0 ); | |
| 805 | - absA = zSign ? - a : a; | |
| 806 | - shiftCount = countLeadingZeros32( absA ) + 32; | |
| 807 | - zSig = absA; | |
| 808 | - return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount ); | |
| 809 | - | |
| 810 | -} | |
| 811 | - | |
| 812 | -#endif | |
| 813 | - | |
| 814 | -/* | |
| 815 | -------------------------------------------------------------------------------- | |
| 816 | -Returns the result of converting the single-precision floating-point value | |
| 817 | -`a' to the 32-bit two's complement integer format. The conversion is | |
| 818 | -performed according to the IEC/IEEE Standard for Binary Floating-point | |
| 819 | -Arithmetic---which means in particular that the conversion is rounded | |
| 820 | -according to the current rounding mode. If `a' is a NaN, the largest | |
| 821 | -positive integer is returned. Otherwise, if the conversion overflows, the | |
| 822 | -largest integer with the same sign as `a' is returned. | |
| 823 | -------------------------------------------------------------------------------- | |
| 824 | -*/ | |
| 825 | -int32 float32_to_int32( float32 a ) | |
| 826 | -{ | |
| 827 | - flag aSign; | |
| 828 | - int16 aExp, shiftCount; | |
| 829 | - bits32 aSig; | |
| 830 | - bits64 zSig; | |
| 831 | - | |
| 832 | - aSig = extractFloat32Frac( a ); | |
| 833 | - aExp = extractFloat32Exp( a ); | |
| 834 | - aSign = extractFloat32Sign( a ); | |
| 835 | - if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; | |
| 836 | - if ( aExp ) aSig |= 0x00800000; | |
| 837 | - shiftCount = 0xAF - aExp; | |
| 838 | - zSig = aSig; | |
| 839 | - zSig <<= 32; | |
| 840 | - if ( 0 < shiftCount ) shift64RightJamming( zSig, shiftCount, &zSig ); | |
| 841 | - return roundAndPackInt32( aSign, zSig ); | |
| 842 | - | |
| 843 | -} | |
| 844 | - | |
| 845 | -/* | |
| 846 | -------------------------------------------------------------------------------- | |
| 847 | -Returns the result of converting the single-precision floating-point value | |
| 848 | -`a' to the 32-bit two's complement integer format. The conversion is | |
| 849 | -performed according to the IEC/IEEE Standard for Binary Floating-point | |
| 850 | -Arithmetic, except that the conversion is always rounded toward zero. If | |
| 851 | -`a' is a NaN, the largest positive integer is returned. Otherwise, if the | |
| 852 | -conversion overflows, the largest integer with the same sign as `a' is | |
| 853 | -returned. | |
| 854 | -------------------------------------------------------------------------------- | |
| 855 | -*/ | |
| 856 | -int32 float32_to_int32_round_to_zero( float32 a ) | |
| 857 | -{ | |
| 858 | - flag aSign; | |
| 859 | - int16 aExp, shiftCount; | |
| 860 | - bits32 aSig; | |
| 861 | - int32 z; | |
| 862 | - | |
| 863 | - aSig = extractFloat32Frac( a ); | |
| 864 | - aExp = extractFloat32Exp( a ); | |
| 865 | - aSign = extractFloat32Sign( a ); | |
| 866 | - shiftCount = aExp - 0x9E; | |
| 867 | - if ( 0 <= shiftCount ) { | |
| 868 | - if ( a == 0xCF000000 ) return 0x80000000; | |
| 869 | - float_raise( float_flag_invalid ); | |
| 870 | - if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF; | |
| 871 | - return 0x80000000; | |
| 872 | - } | |
| 873 | - else if ( aExp <= 0x7E ) { | |
| 874 | - if ( aExp | aSig ) float_exception_flags |= float_flag_inexact; | |
| 875 | - return 0; | |
| 876 | - } | |
| 877 | - aSig = ( aSig | 0x00800000 )<<8; | |
| 878 | - z = aSig>>( - shiftCount ); | |
| 879 | - if ( (bits32) ( aSig<<( shiftCount & 31 ) ) ) { | |
| 880 | - float_exception_flags |= float_flag_inexact; | |
| 881 | - } | |
| 882 | - return aSign ? - z : z; | |
| 883 | - | |
| 884 | -} | |
| 885 | - | |
| 886 | -/* | |
| 887 | -------------------------------------------------------------------------------- | |
| 888 | -Returns the result of converting the single-precision floating-point value | |
| 889 | -`a' to the double-precision floating-point format. The conversion is | |
| 890 | -performed according to the IEC/IEEE Standard for Binary Floating-point | |
| 891 | -Arithmetic. | |
| 892 | -------------------------------------------------------------------------------- | |
| 893 | -*/ | |
| 894 | -float64 float32_to_float64( float32 a ) | |
| 895 | -{ | |
| 896 | - flag aSign; | |
| 897 | - int16 aExp; | |
| 898 | - bits32 aSig; | |
| 899 | - | |
| 900 | - aSig = extractFloat32Frac( a ); | |
| 901 | - aExp = extractFloat32Exp( a ); | |
| 902 | - aSign = extractFloat32Sign( a ); | |
| 903 | - if ( aExp == 0xFF ) { | |
| 904 | - if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a ) ); | |
| 905 | - return packFloat64( aSign, 0x7FF, 0 ); | |
| 906 | - } | |
| 907 | - if ( aExp == 0 ) { | |
| 908 | - if ( aSig == 0 ) return packFloat64( aSign, 0, 0 ); | |
| 909 | - normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
| 910 | - --aExp; | |
| 911 | - } | |
| 912 | - return packFloat64( aSign, aExp + 0x380, ( (bits64) aSig )<<29 ); | |
| 913 | - | |
| 914 | -} | |
| 915 | - | |
| 916 | -#ifdef FLOATX80 | |
| 917 | - | |
| 918 | -/* | |
| 919 | -------------------------------------------------------------------------------- | |
| 920 | -Returns the result of converting the single-precision floating-point value | |
| 921 | -`a' to the extended double-precision floating-point format. The conversion | |
| 922 | -is performed according to the IEC/IEEE Standard for Binary Floating-point | |
| 923 | -Arithmetic. | |
| 924 | -------------------------------------------------------------------------------- | |
| 925 | -*/ | |
| 926 | -floatx80 float32_to_floatx80( float32 a ) | |
| 927 | -{ | |
| 928 | - flag aSign; | |
| 929 | - int16 aExp; | |
| 930 | - bits32 aSig; | |
| 931 | - | |
| 932 | - aSig = extractFloat32Frac( a ); | |
| 933 | - aExp = extractFloat32Exp( a ); | |
| 934 | - aSign = extractFloat32Sign( a ); | |
| 935 | - if ( aExp == 0xFF ) { | |
| 936 | - if ( aSig ) return commonNaNToFloatx80( float32ToCommonNaN( a ) ); | |
| 937 | - return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
| 938 | - } | |
| 939 | - if ( aExp == 0 ) { | |
| 940 | - if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); | |
| 941 | - normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
| 942 | - } | |
| 943 | - aSig |= 0x00800000; | |
| 944 | - return packFloatx80( aSign, aExp + 0x3F80, ( (bits64) aSig )<<40 ); | |
| 945 | - | |
| 946 | -} | |
| 947 | - | |
| 948 | -#endif | |
| 949 | - | |
| 950 | -/* | |
| 951 | -------------------------------------------------------------------------------- | |
| 952 | -Rounds the single-precision floating-point value `a' to an integer, and | |
| 953 | -returns the result as a single-precision floating-point value. The | |
| 954 | -operation is performed according to the IEC/IEEE Standard for Binary | |
| 955 | -Floating-point Arithmetic. | |
| 956 | -------------------------------------------------------------------------------- | |
| 957 | -*/ | |
| 958 | -float32 float32_round_to_int( float32 a ) | |
| 959 | -{ | |
| 960 | - flag aSign; | |
| 961 | - int16 aExp; | |
| 962 | - bits32 lastBitMask, roundBitsMask; | |
| 963 | - int8 roundingMode; | |
| 964 | - float32 z; | |
| 965 | - | |
| 966 | - aExp = extractFloat32Exp( a ); | |
| 967 | - if ( 0x96 <= aExp ) { | |
| 968 | - if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) { | |
| 969 | - return propagateFloat32NaN( a, a ); | |
| 970 | - } | |
| 971 | - return a; | |
| 972 | - } | |
| 973 | - if ( aExp <= 0x7E ) { | |
| 974 | - if ( (bits32) ( a<<1 ) == 0 ) return a; | |
| 975 | - float_exception_flags |= float_flag_inexact; | |
| 976 | - aSign = extractFloat32Sign( a ); | |
| 977 | - switch ( float_rounding_mode ) { | |
| 978 | - case float_round_nearest_even: | |
| 979 | - if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) { | |
| 980 | - return packFloat32( aSign, 0x7F, 0 ); | |
| 981 | - } | |
| 982 | - break; | |
| 983 | - case float_round_down: | |
| 984 | - return aSign ? 0xBF800000 : 0; | |
| 985 | - case float_round_up: | |
| 986 | - return aSign ? 0x80000000 : 0x3F800000; | |
| 987 | - } | |
| 988 | - return packFloat32( aSign, 0, 0 ); | |
| 989 | - } | |
| 990 | - lastBitMask = 1; | |
| 991 | - lastBitMask <<= 0x96 - aExp; | |
| 992 | - roundBitsMask = lastBitMask - 1; | |
| 993 | - z = a; | |
| 994 | - roundingMode = float_rounding_mode; | |
| 995 | - if ( roundingMode == float_round_nearest_even ) { | |
| 996 | - z += lastBitMask>>1; | |
| 997 | - if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask; | |
| 998 | - } | |
| 999 | - else if ( roundingMode != float_round_to_zero ) { | |
| 1000 | - if ( extractFloat32Sign( z ) ^ ( roundingMode == float_round_up ) ) { | |
| 1001 | - z += roundBitsMask; | |
| 1002 | - } | |
| 1003 | - } | |
| 1004 | - z &= ~ roundBitsMask; | |
| 1005 | - if ( z != a ) float_exception_flags |= float_flag_inexact; | |
| 1006 | - return z; | |
| 1007 | - | |
| 1008 | -} | |
| 1009 | - | |
| 1010 | -/* | |
| 1011 | -------------------------------------------------------------------------------- | |
| 1012 | -Returns the result of adding the absolute values of the single-precision | |
| 1013 | -floating-point values `a' and `b'. If `zSign' is true, the sum is negated | |
| 1014 | -before being returned. `zSign' is ignored if the result is a NaN. The | |
| 1015 | -addition is performed according to the IEC/IEEE Standard for Binary | |
| 1016 | -Floating-point Arithmetic. | |
| 1017 | -------------------------------------------------------------------------------- | |
| 1018 | -*/ | |
| 1019 | -static float32 addFloat32Sigs( float32 a, float32 b, flag zSign ) | |
| 1020 | -{ | |
| 1021 | - int16 aExp, bExp, zExp; | |
| 1022 | - bits32 aSig, bSig, zSig; | |
| 1023 | - int16 expDiff; | |
| 1024 | - | |
| 1025 | - aSig = extractFloat32Frac( a ); | |
| 1026 | - aExp = extractFloat32Exp( a ); | |
| 1027 | - bSig = extractFloat32Frac( b ); | |
| 1028 | - bExp = extractFloat32Exp( b ); | |
| 1029 | - expDiff = aExp - bExp; | |
| 1030 | - aSig <<= 6; | |
| 1031 | - bSig <<= 6; | |
| 1032 | - if ( 0 < expDiff ) { | |
| 1033 | - if ( aExp == 0xFF ) { | |
| 1034 | - if ( aSig ) return propagateFloat32NaN( a, b ); | |
| 1035 | - return a; | |
| 1036 | - } | |
| 1037 | - if ( bExp == 0 ) { | |
| 1038 | - --expDiff; | |
| 1039 | - } | |
| 1040 | - else { | |
| 1041 | - bSig |= 0x20000000; | |
| 1042 | - } | |
| 1043 | - shift32RightJamming( bSig, expDiff, &bSig ); | |
| 1044 | - zExp = aExp; | |
| 1045 | - } | |
| 1046 | - else if ( expDiff < 0 ) { | |
| 1047 | - if ( bExp == 0xFF ) { | |
| 1048 | - if ( bSig ) return propagateFloat32NaN( a, b ); | |
| 1049 | - return packFloat32( zSign, 0xFF, 0 ); | |
| 1050 | - } | |
| 1051 | - if ( aExp == 0 ) { | |
| 1052 | - ++expDiff; | |
| 1053 | - } | |
| 1054 | - else { | |
| 1055 | - aSig |= 0x20000000; | |
| 1056 | - } | |
| 1057 | - shift32RightJamming( aSig, - expDiff, &aSig ); | |
| 1058 | - zExp = bExp; | |
| 1059 | - } | |
| 1060 | - else { | |
| 1061 | - if ( aExp == 0xFF ) { | |
| 1062 | - if ( aSig | bSig ) return propagateFloat32NaN( a, b ); | |
| 1063 | - return a; | |
| 1064 | - } | |
| 1065 | - if ( aExp == 0 ) return packFloat32( zSign, 0, ( aSig + bSig )>>6 ); | |
| 1066 | - zSig = 0x40000000 + aSig + bSig; | |
| 1067 | - zExp = aExp; | |
| 1068 | - goto roundAndPack; | |
| 1069 | - } | |
| 1070 | - aSig |= 0x20000000; | |
| 1071 | - zSig = ( aSig + bSig )<<1; | |
| 1072 | - --zExp; | |
| 1073 | - if ( (sbits32) zSig < 0 ) { | |
| 1074 | - zSig = aSig + bSig; | |
| 1075 | - ++zExp; | |
| 1076 | - } | |
| 1077 | - roundAndPack: | |
| 1078 | - return roundAndPackFloat32( zSign, zExp, zSig ); | |
| 1079 | - | |
| 1080 | -} | |
| 1081 | - | |
| 1082 | -/* | |
| 1083 | -------------------------------------------------------------------------------- | |
| 1084 | -Returns the result of subtracting the absolute values of the single- | |
| 1085 | -precision floating-point values `a' and `b'. If `zSign' is true, the | |
| 1086 | -difference is negated before being returned. `zSign' is ignored if the | |
| 1087 | -result is a NaN. The subtraction is performed according to the IEC/IEEE | |
| 1088 | -Standard for Binary Floating-point Arithmetic. | |
| 1089 | -------------------------------------------------------------------------------- | |
| 1090 | -*/ | |
| 1091 | -static float32 subFloat32Sigs( float32 a, float32 b, flag zSign ) | |
| 1092 | -{ | |
| 1093 | - int16 aExp, bExp, zExp; | |
| 1094 | - bits32 aSig, bSig, zSig; | |
| 1095 | - int16 expDiff; | |
| 1096 | - | |
| 1097 | - aSig = extractFloat32Frac( a ); | |
| 1098 | - aExp = extractFloat32Exp( a ); | |
| 1099 | - bSig = extractFloat32Frac( b ); | |
| 1100 | - bExp = extractFloat32Exp( b ); | |
| 1101 | - expDiff = aExp - bExp; | |
| 1102 | - aSig <<= 7; | |
| 1103 | - bSig <<= 7; | |
| 1104 | - if ( 0 < expDiff ) goto aExpBigger; | |
| 1105 | - if ( expDiff < 0 ) goto bExpBigger; | |
| 1106 | - if ( aExp == 0xFF ) { | |
| 1107 | - if ( aSig | bSig ) return propagateFloat32NaN( a, b ); | |
| 1108 | - float_raise( float_flag_invalid ); | |
| 1109 | - return float32_default_nan; | |
| 1110 | - } | |
| 1111 | - if ( aExp == 0 ) { | |
| 1112 | - aExp = 1; | |
| 1113 | - bExp = 1; | |
| 1114 | - } | |
| 1115 | - if ( bSig < aSig ) goto aBigger; | |
| 1116 | - if ( aSig < bSig ) goto bBigger; | |
| 1117 | - return packFloat32( float_rounding_mode == float_round_down, 0, 0 ); | |
| 1118 | - bExpBigger: | |
| 1119 | - if ( bExp == 0xFF ) { | |
| 1120 | - if ( bSig ) return propagateFloat32NaN( a, b ); | |
| 1121 | - return packFloat32( zSign ^ 1, 0xFF, 0 ); | |
| 1122 | - } | |
| 1123 | - if ( aExp == 0 ) { | |
| 1124 | - ++expDiff; | |
| 1125 | - } | |
| 1126 | - else { | |
| 1127 | - aSig |= 0x40000000; | |
| 1128 | - } | |
| 1129 | - shift32RightJamming( aSig, - expDiff, &aSig ); | |
| 1130 | - bSig |= 0x40000000; | |
| 1131 | - bBigger: | |
| 1132 | - zSig = bSig - aSig; | |
| 1133 | - zExp = bExp; | |
| 1134 | - zSign ^= 1; | |
| 1135 | - goto normalizeRoundAndPack; | |
| 1136 | - aExpBigger: | |
| 1137 | - if ( aExp == 0xFF ) { | |
| 1138 | - if ( aSig ) return propagateFloat32NaN( a, b ); | |
| 1139 | - return a; | |
| 1140 | - } | |
| 1141 | - if ( bExp == 0 ) { | |
| 1142 | - --expDiff; | |
| 1143 | - } | |
| 1144 | - else { | |
| 1145 | - bSig |= 0x40000000; | |
| 1146 | - } | |
| 1147 | - shift32RightJamming( bSig, expDiff, &bSig ); | |
| 1148 | - aSig |= 0x40000000; | |
| 1149 | - aBigger: | |
| 1150 | - zSig = aSig - bSig; | |
| 1151 | - zExp = aExp; | |
| 1152 | - normalizeRoundAndPack: | |
| 1153 | - --zExp; | |
| 1154 | - return normalizeRoundAndPackFloat32( zSign, zExp, zSig ); | |
| 1155 | - | |
| 1156 | -} | |
| 1157 | - | |
| 1158 | -/* | |
| 1159 | -------------------------------------------------------------------------------- | |
| 1160 | -Returns the result of adding the single-precision floating-point values `a' | |
| 1161 | -and `b'. The operation is performed according to the IEC/IEEE Standard for | |
| 1162 | -Binary Floating-point Arithmetic. | |
| 1163 | -------------------------------------------------------------------------------- | |
| 1164 | -*/ | |
| 1165 | -float32 float32_add( float32 a, float32 b ) | |
| 1166 | -{ | |
| 1167 | - flag aSign, bSign; | |
| 1168 | - | |
| 1169 | - aSign = extractFloat32Sign( a ); | |
| 1170 | - bSign = extractFloat32Sign( b ); | |
| 1171 | - if ( aSign == bSign ) { | |
| 1172 | - return addFloat32Sigs( a, b, aSign ); | |
| 1173 | - } | |
| 1174 | - else { | |
| 1175 | - return subFloat32Sigs( a, b, aSign ); | |
| 1176 | - } | |
| 1177 | - | |
| 1178 | -} | |
| 1179 | - | |
| 1180 | -/* | |
| 1181 | -------------------------------------------------------------------------------- | |
| 1182 | -Returns the result of subtracting the single-precision floating-point values | |
| 1183 | -`a' and `b'. The operation is performed according to the IEC/IEEE Standard | |
| 1184 | -for Binary Floating-point Arithmetic. | |
| 1185 | -------------------------------------------------------------------------------- | |
| 1186 | -*/ | |
| 1187 | -float32 float32_sub( float32 a, float32 b ) | |
| 1188 | -{ | |
| 1189 | - flag aSign, bSign; | |
| 1190 | - | |
| 1191 | - aSign = extractFloat32Sign( a ); | |
| 1192 | - bSign = extractFloat32Sign( b ); | |
| 1193 | - if ( aSign == bSign ) { | |
| 1194 | - return subFloat32Sigs( a, b, aSign ); | |
| 1195 | - } | |
| 1196 | - else { | |
| 1197 | - return addFloat32Sigs( a, b, aSign ); | |
| 1198 | - } | |
| 1199 | - | |
| 1200 | -} | |
| 1201 | - | |
| 1202 | -/* | |
| 1203 | -------------------------------------------------------------------------------- | |
| 1204 | -Returns the result of multiplying the single-precision floating-point values | |
| 1205 | -`a' and `b'. The operation is performed according to the IEC/IEEE Standard | |
| 1206 | -for Binary Floating-point Arithmetic. | |
| 1207 | -------------------------------------------------------------------------------- | |
| 1208 | -*/ | |
| 1209 | -float32 float32_mul( float32 a, float32 b ) | |
| 1210 | -{ | |
| 1211 | - flag aSign, bSign, zSign; | |
| 1212 | - int16 aExp, bExp, zExp; | |
| 1213 | - bits32 aSig, bSig; | |
| 1214 | - bits64 zSig64; | |
| 1215 | - bits32 zSig; | |
| 1216 | - | |
| 1217 | - aSig = extractFloat32Frac( a ); | |
| 1218 | - aExp = extractFloat32Exp( a ); | |
| 1219 | - aSign = extractFloat32Sign( a ); | |
| 1220 | - bSig = extractFloat32Frac( b ); | |
| 1221 | - bExp = extractFloat32Exp( b ); | |
| 1222 | - bSign = extractFloat32Sign( b ); | |
| 1223 | - zSign = aSign ^ bSign; | |
| 1224 | - if ( aExp == 0xFF ) { | |
| 1225 | - if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { | |
| 1226 | - return propagateFloat32NaN( a, b ); | |
| 1227 | - } | |
| 1228 | - if ( ( bExp | bSig ) == 0 ) { | |
| 1229 | - float_raise( float_flag_invalid ); | |
| 1230 | - return float32_default_nan; | |
| 1231 | - } | |
| 1232 | - return packFloat32( zSign, 0xFF, 0 ); | |
| 1233 | - } | |
| 1234 | - if ( bExp == 0xFF ) { | |
| 1235 | - if ( bSig ) return propagateFloat32NaN( a, b ); | |
| 1236 | - if ( ( aExp | aSig ) == 0 ) { | |
| 1237 | - float_raise( float_flag_invalid ); | |
| 1238 | - return float32_default_nan; | |
| 1239 | - } | |
| 1240 | - return packFloat32( zSign, 0xFF, 0 ); | |
| 1241 | - } | |
| 1242 | - if ( aExp == 0 ) { | |
| 1243 | - if ( aSig == 0 ) return packFloat32( zSign, 0, 0 ); | |
| 1244 | - normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
| 1245 | - } | |
| 1246 | - if ( bExp == 0 ) { | |
| 1247 | - if ( bSig == 0 ) return packFloat32( zSign, 0, 0 ); | |
| 1248 | - normalizeFloat32Subnormal( bSig, &bExp, &bSig ); | |
| 1249 | - } | |
| 1250 | - zExp = aExp + bExp - 0x7F; | |
| 1251 | - aSig = ( aSig | 0x00800000 )<<7; | |
| 1252 | - bSig = ( bSig | 0x00800000 )<<8; | |
| 1253 | - shift64RightJamming( ( (bits64) aSig ) * bSig, 32, &zSig64 ); | |
| 1254 | - zSig = zSig64; | |
| 1255 | - if ( 0 <= (sbits32) ( zSig<<1 ) ) { | |
| 1256 | - zSig <<= 1; | |
| 1257 | - --zExp; | |
| 1258 | - } | |
| 1259 | - return roundAndPackFloat32( zSign, zExp, zSig ); | |
| 1260 | - | |
| 1261 | -} | |
| 1262 | - | |
| 1263 | -/* | |
| 1264 | -------------------------------------------------------------------------------- | |
| 1265 | -Returns the result of dividing the single-precision floating-point value `a' | |
| 1266 | -by the corresponding value `b'. The operation is performed according to the | |
| 1267 | -IEC/IEEE Standard for Binary Floating-point Arithmetic. | |
| 1268 | -------------------------------------------------------------------------------- | |
| 1269 | -*/ | |
| 1270 | -float32 float32_div( float32 a, float32 b ) | |
| 1271 | -{ | |
| 1272 | - flag aSign, bSign, zSign; | |
| 1273 | - int16 aExp, bExp, zExp; | |
| 1274 | - bits32 aSig, bSig, zSig; | |
| 1275 | - | |
| 1276 | - aSig = extractFloat32Frac( a ); | |
| 1277 | - aExp = extractFloat32Exp( a ); | |
| 1278 | - aSign = extractFloat32Sign( a ); | |
| 1279 | - bSig = extractFloat32Frac( b ); | |
| 1280 | - bExp = extractFloat32Exp( b ); | |
| 1281 | - bSign = extractFloat32Sign( b ); | |
| 1282 | - zSign = aSign ^ bSign; | |
| 1283 | - if ( aExp == 0xFF ) { | |
| 1284 | - if ( aSig ) return propagateFloat32NaN( a, b ); | |
| 1285 | - if ( bExp == 0xFF ) { | |
| 1286 | - if ( bSig ) return propagateFloat32NaN( a, b ); | |
| 1287 | - float_raise( float_flag_invalid ); | |
| 1288 | - return float32_default_nan; | |
| 1289 | - } | |
| 1290 | - return packFloat32( zSign, 0xFF, 0 ); | |
| 1291 | - } | |
| 1292 | - if ( bExp == 0xFF ) { | |
| 1293 | - if ( bSig ) return propagateFloat32NaN( a, b ); | |
| 1294 | - return packFloat32( zSign, 0, 0 ); | |
| 1295 | - } | |
| 1296 | - if ( bExp == 0 ) { | |
| 1297 | - if ( bSig == 0 ) { | |
| 1298 | - if ( ( aExp | aSig ) == 0 ) { | |
| 1299 | - float_raise( float_flag_invalid ); | |
| 1300 | - return float32_default_nan; | |
| 1301 | - } | |
| 1302 | - float_raise( float_flag_divbyzero ); | |
| 1303 | - return packFloat32( zSign, 0xFF, 0 ); | |
| 1304 | - } | |
| 1305 | - normalizeFloat32Subnormal( bSig, &bExp, &bSig ); | |
| 1306 | - } | |
| 1307 | - if ( aExp == 0 ) { | |
| 1308 | - if ( aSig == 0 ) return packFloat32( zSign, 0, 0 ); | |
| 1309 | - normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
| 1310 | - } | |
| 1311 | - zExp = aExp - bExp + 0x7D; | |
| 1312 | - aSig = ( aSig | 0x00800000 )<<7; | |
| 1313 | - bSig = ( bSig | 0x00800000 )<<8; | |
| 1314 | - if ( bSig <= ( aSig + aSig ) ) { | |
| 1315 | - aSig >>= 1; | |
| 1316 | - ++zExp; | |
| 1317 | - } | |
| 1318 | - zSig = ( ( (bits64) aSig )<<32 ) / bSig; | |
| 1319 | - if ( ( zSig & 0x3F ) == 0 ) { | |
| 1320 | - zSig |= ( ( (bits64) bSig ) * zSig != ( (bits64) aSig )<<32 ); | |
| 1321 | - } | |
| 1322 | - return roundAndPackFloat32( zSign, zExp, zSig ); | |
| 1323 | - | |
| 1324 | -} | |
| 1325 | - | |
| 1326 | -/* | |
| 1327 | -------------------------------------------------------------------------------- | |
| 1328 | -Returns the remainder of the single-precision floating-point value `a' | |
| 1329 | -with respect to the corresponding value `b'. The operation is performed | |
| 1330 | -according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | |
| 1331 | -------------------------------------------------------------------------------- | |
| 1332 | -*/ | |
| 1333 | -float32 float32_rem( float32 a, float32 b ) | |
| 1334 | -{ | |
| 1335 | - flag aSign, bSign, zSign; | |
| 1336 | - int16 aExp, bExp, expDiff; | |
| 1337 | - bits32 aSig, bSig; | |
| 1338 | - bits32 q; | |
| 1339 | - bits64 aSig64, bSig64, q64; | |
| 1340 | - bits32 alternateASig; | |
| 1341 | - sbits32 sigMean; | |
| 1342 | - | |
| 1343 | - aSig = extractFloat32Frac( a ); | |
| 1344 | - aExp = extractFloat32Exp( a ); | |
| 1345 | - aSign = extractFloat32Sign( a ); | |
| 1346 | - bSig = extractFloat32Frac( b ); | |
| 1347 | - bExp = extractFloat32Exp( b ); | |
| 1348 | - bSign = extractFloat32Sign( b ); | |
| 1349 | - if ( aExp == 0xFF ) { | |
| 1350 | - if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { | |
| 1351 | - return propagateFloat32NaN( a, b ); | |
| 1352 | - } | |
| 1353 | - float_raise( float_flag_invalid ); | |
| 1354 | - return float32_default_nan; | |
| 1355 | - } | |
| 1356 | - if ( bExp == 0xFF ) { | |
| 1357 | - if ( bSig ) return propagateFloat32NaN( a, b ); | |
| 1358 | - return a; | |
| 1359 | - } | |
| 1360 | - if ( bExp == 0 ) { | |
| 1361 | - if ( bSig == 0 ) { | |
| 1362 | - float_raise( float_flag_invalid ); | |
| 1363 | - return float32_default_nan; | |
| 1364 | - } | |
| 1365 | - normalizeFloat32Subnormal( bSig, &bExp, &bSig ); | |
| 1366 | - } | |
| 1367 | - if ( aExp == 0 ) { | |
| 1368 | - if ( aSig == 0 ) return a; | |
| 1369 | - normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
| 1370 | - } | |
| 1371 | - expDiff = aExp - bExp; | |
| 1372 | - aSig |= 0x00800000; | |
| 1373 | - bSig |= 0x00800000; | |
| 1374 | - if ( expDiff < 32 ) { | |
| 1375 | - aSig <<= 8; | |
| 1376 | - bSig <<= 8; | |
| 1377 | - if ( expDiff < 0 ) { | |
| 1378 | - if ( expDiff < -1 ) return a; | |
| 1379 | - aSig >>= 1; | |
| 1380 | - } | |
| 1381 | - q = ( bSig <= aSig ); | |
| 1382 | - if ( q ) aSig -= bSig; | |
| 1383 | - if ( 0 < expDiff ) { | |
| 1384 | - q = ( ( (bits64) aSig )<<32 ) / bSig; | |
| 1385 | - q >>= 32 - expDiff; | |
| 1386 | - bSig >>= 2; | |
| 1387 | - aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; | |
| 1388 | - } | |
| 1389 | - else { | |
| 1390 | - aSig >>= 2; | |
| 1391 | - bSig >>= 2; | |
| 1392 | - } | |
| 1393 | - } | |
| 1394 | - else { | |
| 1395 | - if ( bSig <= aSig ) aSig -= bSig; | |
| 1396 | - aSig64 = ( (bits64) aSig )<<40; | |
| 1397 | - bSig64 = ( (bits64) bSig )<<40; | |
| 1398 | - expDiff -= 64; | |
| 1399 | - while ( 0 < expDiff ) { | |
| 1400 | - q64 = estimateDiv128To64( aSig64, 0, bSig64 ); | |
| 1401 | - q64 = ( 2 < q64 ) ? q64 - 2 : 0; | |
| 1402 | - aSig64 = - ( ( bSig * q64 )<<38 ); | |
| 1403 | - expDiff -= 62; | |
| 1404 | - } | |
| 1405 | - expDiff += 64; | |
| 1406 | - q64 = estimateDiv128To64( aSig64, 0, bSig64 ); | |
| 1407 | - q64 = ( 2 < q64 ) ? q64 - 2 : 0; | |
| 1408 | - q = q64>>( 64 - expDiff ); | |
| 1409 | - bSig <<= 6; | |
| 1410 | - aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q; | |
| 1411 | - } | |
| 1412 | - do { | |
| 1413 | - alternateASig = aSig; | |
| 1414 | - ++q; | |
| 1415 | - aSig -= bSig; | |
| 1416 | - } while ( 0 <= (sbits32) aSig ); | |
| 1417 | - sigMean = aSig + alternateASig; | |
| 1418 | - if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { | |
| 1419 | - aSig = alternateASig; | |
| 1420 | - } | |
| 1421 | - zSign = ( (sbits32) aSig < 0 ); | |
| 1422 | - if ( zSign ) aSig = - aSig; | |
| 1423 | - return normalizeRoundAndPackFloat32( aSign ^ zSign, bExp, aSig ); | |
| 1424 | - | |
| 1425 | -} | |
| 1426 | - | |
| 1427 | -/* | |
| 1428 | -------------------------------------------------------------------------------- | |
| 1429 | -Returns the square root of the single-precision floating-point value `a'. | |
| 1430 | -The operation is performed according to the IEC/IEEE Standard for Binary | |
| 1431 | -Floating-point Arithmetic. | |
| 1432 | -------------------------------------------------------------------------------- | |
| 1433 | -*/ | |
| 1434 | -float32 float32_sqrt( float32 a ) | |
| 1435 | -{ | |
| 1436 | - flag aSign; | |
| 1437 | - int16 aExp, zExp; | |
| 1438 | - bits32 aSig, zSig; | |
| 1439 | - bits64 rem, term; | |
| 1440 | - | |
| 1441 | - aSig = extractFloat32Frac( a ); | |
| 1442 | - aExp = extractFloat32Exp( a ); | |
| 1443 | - aSign = extractFloat32Sign( a ); | |
| 1444 | - if ( aExp == 0xFF ) { | |
| 1445 | - if ( aSig ) return propagateFloat32NaN( a, 0 ); | |
| 1446 | - if ( ! aSign ) return a; | |
| 1447 | - float_raise( float_flag_invalid ); | |
| 1448 | - return float32_default_nan; | |
| 1449 | - } | |
| 1450 | - if ( aSign ) { | |
| 1451 | - if ( ( aExp | aSig ) == 0 ) return a; | |
| 1452 | - float_raise( float_flag_invalid ); | |
| 1453 | - return float32_default_nan; | |
| 1454 | - } | |
| 1455 | - if ( aExp == 0 ) { | |
| 1456 | - if ( aSig == 0 ) return 0; | |
| 1457 | - normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
| 1458 | - } | |
| 1459 | - zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E; | |
| 1460 | - aSig = ( aSig | 0x00800000 )<<8; | |
| 1461 | - zSig = estimateSqrt32( aExp, aSig ) + 2; | |
| 1462 | - if ( ( zSig & 0x7F ) <= 5 ) { | |
| 1463 | - if ( zSig < 2 ) { | |
| 1464 | - zSig = 0xFFFFFFFF; | |
| 1465 | - } | |
| 1466 | - else { | |
| 1467 | - aSig >>= aExp & 1; | |
| 1468 | - term = ( (bits64) zSig ) * zSig; | |
| 1469 | - rem = ( ( (bits64) aSig )<<32 ) - term; | |
| 1470 | - while ( (sbits64) rem < 0 ) { | |
| 1471 | - --zSig; | |
| 1472 | - rem += ( ( (bits64) zSig )<<1 ) | 1; | |
| 1473 | - } | |
| 1474 | - zSig |= ( rem != 0 ); | |
| 1475 | - } | |
| 1476 | - } | |
| 1477 | - shift32RightJamming( zSig, 1, &zSig ); | |
| 1478 | - return roundAndPackFloat32( 0, zExp, zSig ); | |
| 1479 | - | |
| 1480 | -} | |
| 1481 | - | |
| 1482 | -/* | |
| 1483 | -------------------------------------------------------------------------------- | |
| 1484 | -Returns 1 if the single-precision floating-point value `a' is equal to the | |
| 1485 | -corresponding value `b', and 0 otherwise. The comparison is performed | |
| 1486 | -according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | |
| 1487 | -------------------------------------------------------------------------------- | |
| 1488 | -*/ | |
| 1489 | -flag float32_eq( float32 a, float32 b ) | |
| 1490 | -{ | |
| 1491 | - | |
| 1492 | - if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
| 1493 | - || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
| 1494 | - ) { | |
| 1495 | - if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { | |
| 1496 | - float_raise( float_flag_invalid ); | |
| 1497 | - } | |
| 1498 | - return 0; | |
| 1499 | - } | |
| 1500 | - return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 ); | |
| 1501 | - | |
| 1502 | -} | |
| 1503 | - | |
| 1504 | -/* | |
| 1505 | -------------------------------------------------------------------------------- | |
| 1506 | -Returns 1 if the single-precision floating-point value `a' is less than or | |
| 1507 | -equal to the corresponding value `b', and 0 otherwise. The comparison is | |
| 1508 | -performed according to the IEC/IEEE Standard for Binary Floating-point | |
| 1509 | -Arithmetic. | |
| 1510 | -------------------------------------------------------------------------------- | |
| 1511 | -*/ | |
| 1512 | -flag float32_le( float32 a, float32 b ) | |
| 1513 | -{ | |
| 1514 | - flag aSign, bSign; | |
| 1515 | - | |
| 1516 | - if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
| 1517 | - || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
| 1518 | - ) { | |
| 1519 | - float_raise( float_flag_invalid ); | |
| 1520 | - return 0; | |
| 1521 | - } | |
| 1522 | - aSign = extractFloat32Sign( a ); | |
| 1523 | - bSign = extractFloat32Sign( b ); | |
| 1524 | - if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 ); | |
| 1525 | - return ( a == b ) || ( aSign ^ ( a < b ) ); | |
| 1526 | - | |
| 1527 | -} | |
| 1528 | - | |
| 1529 | -/* | |
| 1530 | -------------------------------------------------------------------------------- | |
| 1531 | -Returns 1 if the single-precision floating-point value `a' is less than | |
| 1532 | -the corresponding value `b', and 0 otherwise. The comparison is performed | |
| 1533 | -according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | |
| 1534 | -------------------------------------------------------------------------------- | |
| 1535 | -*/ | |
| 1536 | -flag float32_lt( float32 a, float32 b ) | |
| 1537 | -{ | |
| 1538 | - flag aSign, bSign; | |
| 1539 | - | |
| 1540 | - if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
| 1541 | - || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
| 1542 | - ) { | |
| 1543 | - float_raise( float_flag_invalid ); | |
| 1544 | - return 0; | |
| 1545 | - } | |
| 1546 | - aSign = extractFloat32Sign( a ); | |
| 1547 | - bSign = extractFloat32Sign( b ); | |
| 1548 | - if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 ); | |
| 1549 | - return ( a != b ) && ( aSign ^ ( a < b ) ); | |
| 1550 | - | |
| 1551 | -} | |
| 1552 | - | |
| 1553 | -/* | |
| 1554 | -------------------------------------------------------------------------------- | |
| 1555 | -Returns 1 if the single-precision floating-point value `a' is equal to the | |
| 1556 | -corresponding value `b', and 0 otherwise. The invalid exception is raised | |
| 1557 | -if either operand is a NaN. Otherwise, the comparison is performed | |
| 1558 | -according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | |
| 1559 | -------------------------------------------------------------------------------- | |
| 1560 | -*/ | |
| 1561 | -flag float32_eq_signaling( float32 a, float32 b ) | |
| 1562 | -{ | |
| 1563 | - | |
| 1564 | - if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
| 1565 | - || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
| 1566 | - ) { | |
| 1567 | - float_raise( float_flag_invalid ); | |
| 1568 | - return 0; | |
| 1569 | - } | |
| 1570 | - return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 ); | |
| 1571 | - | |
| 1572 | -} | |
| 1573 | - | |
| 1574 | -/* | |
| 1575 | -------------------------------------------------------------------------------- | |
| 1576 | -Returns 1 if the single-precision floating-point value `a' is less than or | |
| 1577 | -equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not | |
| 1578 | -cause an exception. Otherwise, the comparison is performed according to the | |
| 1579 | -IEC/IEEE Standard for Binary Floating-point Arithmetic. | |
| 1580 | -------------------------------------------------------------------------------- | |
| 1581 | -*/ | |
| 1582 | -flag float32_le_quiet( float32 a, float32 b ) | |
| 1583 | -{ | |
| 1584 | - flag aSign, bSign; | |
| 1585 | - //int16 aExp, bExp; | |
| 1586 | - | |
| 1587 | - if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
| 1588 | - || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
| 1589 | - ) { | |
| 1590 | - if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { | |
| 1591 | - float_raise( float_flag_invalid ); | |
| 1592 | - } | |
| 1593 | - return 0; | |
| 1594 | - } | |
| 1595 | - aSign = extractFloat32Sign( a ); | |
| 1596 | - bSign = extractFloat32Sign( b ); | |
| 1597 | - if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 ); | |
| 1598 | - return ( a == b ) || ( aSign ^ ( a < b ) ); | |
| 1599 | - | |
| 1600 | -} | |
| 1601 | - | |
| 1602 | -/* | |
| 1603 | -------------------------------------------------------------------------------- | |
| 1604 | -Returns 1 if the single-precision floating-point value `a' is less than | |
| 1605 | -the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an | |
| 1606 | -exception. Otherwise, the comparison is performed according to the IEC/IEEE | |
| 1607 | -Standard for Binary Floating-point Arithmetic. | |
| 1608 | -------------------------------------------------------------------------------- | |
| 1609 | -*/ | |
| 1610 | -flag float32_lt_quiet( float32 a, float32 b ) | |
| 1611 | -{ | |
| 1612 | - flag aSign, bSign; | |
| 1613 | - | |
| 1614 | - if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
| 1615 | - || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
| 1616 | - ) { | |
| 1617 | - if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { | |
| 1618 | - float_raise( float_flag_invalid ); | |
| 1619 | - } | |
| 1620 | - return 0; | |
| 1621 | - } | |
| 1622 | - aSign = extractFloat32Sign( a ); | |
| 1623 | - bSign = extractFloat32Sign( b ); | |
| 1624 | - if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 ); | |
| 1625 | - return ( a != b ) && ( aSign ^ ( a < b ) ); | |
| 1626 | - | |
| 1627 | -} | |
| 1628 | - | |
| 1629 | -/* | |
| 1630 | -------------------------------------------------------------------------------- | |
| 1631 | -Returns the result of converting the double-precision floating-point value | |
| 1632 | -`a' to the 32-bit two's complement integer format. The conversion is | |
| 1633 | -performed according to the IEC/IEEE Standard for Binary Floating-point | |
| 1634 | -Arithmetic---which means in particular that the conversion is rounded | |
| 1635 | -according to the current rounding mode. If `a' is a NaN, the largest | |
| 1636 | -positive integer is returned. Otherwise, if the conversion overflows, the | |
| 1637 | -largest integer with the same sign as `a' is returned. | |
| 1638 | -------------------------------------------------------------------------------- | |
| 1639 | -*/ | |
| 1640 | -int32 float64_to_int32( float64 a ) | |
| 1641 | -{ | |
| 1642 | - flag aSign; | |
| 1643 | - int16 aExp, shiftCount; | |
| 1644 | - bits64 aSig; | |
| 1645 | - | |
| 1646 | - aSig = extractFloat64Frac( a ); | |
| 1647 | - aExp = extractFloat64Exp( a ); | |
| 1648 | - aSign = extractFloat64Sign( a ); | |
| 1649 | - if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; | |
| 1650 | - if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); | |
| 1651 | - shiftCount = 0x42C - aExp; | |
| 1652 | - if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig ); | |
| 1653 | - return roundAndPackInt32( aSign, aSig ); | |
| 1654 | - | |
| 1655 | -} | |
| 1656 | - | |
| 1657 | -/* | |
| 1658 | -------------------------------------------------------------------------------- | |
| 1659 | -Returns the result of converting the double-precision floating-point value | |
| 1660 | -`a' to the 32-bit two's complement integer format. The conversion is | |
| 1661 | -performed according to the IEC/IEEE Standard for Binary Floating-point | |
| 1662 | -Arithmetic, except that the conversion is always rounded toward zero. If | |
| 1663 | -`a' is a NaN, the largest positive integer is returned. Otherwise, if the | |
| 1664 | -conversion overflows, the largest integer with the same sign as `a' is | |
| 1665 | -returned. | |
| 1666 | -------------------------------------------------------------------------------- | |
| 1667 | -*/ | |
| 1668 | -int32 float64_to_int32_round_to_zero( float64 a ) | |
| 1669 | -{ | |
| 1670 | - flag aSign; | |
| 1671 | - int16 aExp, shiftCount; | |
| 1672 | - bits64 aSig, savedASig; | |
| 1673 | - int32 z; | |
| 1674 | - | |
| 1675 | - aSig = extractFloat64Frac( a ); | |
| 1676 | - aExp = extractFloat64Exp( a ); | |
| 1677 | - aSign = extractFloat64Sign( a ); | |
| 1678 | - shiftCount = 0x433 - aExp; | |
| 1679 | - if ( shiftCount < 21 ) { | |
| 1680 | - if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; | |
| 1681 | - goto invalid; | |
| 1682 | - } | |
| 1683 | - else if ( 52 < shiftCount ) { | |
| 1684 | - if ( aExp || aSig ) float_exception_flags |= float_flag_inexact; | |
| 1685 | - return 0; | |
| 1686 | - } | |
| 1687 | - aSig |= LIT64( 0x0010000000000000 ); | |
| 1688 | - savedASig = aSig; | |
| 1689 | - aSig >>= shiftCount; | |
| 1690 | - z = aSig; | |
| 1691 | - if ( aSign ) z = - z; | |
| 1692 | - if ( ( z < 0 ) ^ aSign ) { | |
| 1693 | - invalid: | |
| 1694 | - float_exception_flags |= float_flag_invalid; | |
| 1695 | - return aSign ? 0x80000000 : 0x7FFFFFFF; | |
| 1696 | - } | |
| 1697 | - if ( ( aSig<<shiftCount ) != savedASig ) { | |
| 1698 | - float_exception_flags |= float_flag_inexact; | |
| 1699 | - } | |
| 1700 | - return z; | |
| 1701 | - | |
| 1702 | -} | |
| 1703 | - | |
| 1704 | -/* | |
| 1705 | -------------------------------------------------------------------------------- | |
| 1706 | -Returns the result of converting the double-precision floating-point value | |
| 1707 | -`a' to the 32-bit two's complement unsigned integer format. The conversion | |
| 1708 | -is performed according to the IEC/IEEE Standard for Binary Floating-point | |
| 1709 | -Arithmetic---which means in particular that the conversion is rounded | |
| 1710 | -according to the current rounding mode. If `a' is a NaN, the largest | |
| 1711 | -positive integer is returned. Otherwise, if the conversion overflows, the | |
| 1712 | -largest positive integer is returned. | |
| 1713 | -------------------------------------------------------------------------------- | |
| 1714 | -*/ | |
| 1715 | -int32 float64_to_uint32( float64 a ) | |
| 1716 | -{ | |
| 1717 | - flag aSign; | |
| 1718 | - int16 aExp, shiftCount; | |
| 1719 | - bits64 aSig; | |
| 1720 | - | |
| 1721 | - aSig = extractFloat64Frac( a ); | |
| 1722 | - aExp = extractFloat64Exp( a ); | |
| 1723 | - aSign = 0; //extractFloat64Sign( a ); | |
| 1724 | - //if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; | |
| 1725 | - if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); | |
| 1726 | - shiftCount = 0x42C - aExp; | |
| 1727 | - if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig ); | |
| 1728 | - return roundAndPackInt32( aSign, aSig ); | |
| 1729 | -} | |
| 1730 | - | |
| 1731 | -/* | |
| 1732 | -------------------------------------------------------------------------------- | |
| 1733 | -Returns the result of converting the double-precision floating-point value | |
| 1734 | -`a' to the 32-bit two's complement integer format. The conversion is | |
| 1735 | -performed according to the IEC/IEEE Standard for Binary Floating-point | |
| 1736 | -Arithmetic, except that the conversion is always rounded toward zero. If | |
| 1737 | -`a' is a NaN, the largest positive integer is returned. Otherwise, if the | |
| 1738 | -conversion overflows, the largest positive integer is returned. | |
| 1739 | -------------------------------------------------------------------------------- | |
| 1740 | -*/ | |
| 1741 | -int32 float64_to_uint32_round_to_zero( float64 a ) | |
| 1742 | -{ | |
| 1743 | - flag aSign; | |
| 1744 | - int16 aExp, shiftCount; | |
| 1745 | - bits64 aSig, savedASig; | |
| 1746 | - int32 z; | |
| 1747 | - | |
| 1748 | - aSig = extractFloat64Frac( a ); | |
| 1749 | - aExp = extractFloat64Exp( a ); | |
| 1750 | - aSign = extractFloat64Sign( a ); | |
| 1751 | - shiftCount = 0x433 - aExp; | |
| 1752 | - if ( shiftCount < 21 ) { | |
| 1753 | - if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; | |
| 1754 | - goto invalid; | |
| 1755 | - } | |
| 1756 | - else if ( 52 < shiftCount ) { | |
| 1757 | - if ( aExp || aSig ) float_exception_flags |= float_flag_inexact; | |
| 1758 | - return 0; | |
| 1759 | - } | |
| 1760 | - aSig |= LIT64( 0x0010000000000000 ); | |
| 1761 | - savedASig = aSig; | |
| 1762 | - aSig >>= shiftCount; | |
| 1763 | - z = aSig; | |
| 1764 | - if ( aSign ) z = - z; | |
| 1765 | - if ( ( z < 0 ) ^ aSign ) { | |
| 1766 | - invalid: | |
| 1767 | - float_exception_flags |= float_flag_invalid; | |
| 1768 | - return aSign ? 0x80000000 : 0x7FFFFFFF; | |
| 1769 | - } | |
| 1770 | - if ( ( aSig<<shiftCount ) != savedASig ) { | |
| 1771 | - float_exception_flags |= float_flag_inexact; | |
| 1772 | - } | |
| 1773 | - return z; | |
| 1774 | -} | |
| 1775 | - | |
| 1776 | -/* | |
| 1777 | -------------------------------------------------------------------------------- | |
| 1778 | -Returns the result of converting the double-precision floating-point value | |
| 1779 | -`a' to the single-precision floating-point format. The conversion is | |
| 1780 | -performed according to the IEC/IEEE Standard for Binary Floating-point | |
| 1781 | -Arithmetic. | |
| 1782 | -------------------------------------------------------------------------------- | |
| 1783 | -*/ | |
| 1784 | -float32 float64_to_float32( float64 a ) | |
| 1785 | -{ | |
| 1786 | - flag aSign; | |
| 1787 | - int16 aExp; | |
| 1788 | - bits64 aSig; | |
| 1789 | - bits32 zSig; | |
| 1790 | - | |
| 1791 | - aSig = extractFloat64Frac( a ); | |
| 1792 | - aExp = extractFloat64Exp( a ); | |
| 1793 | - aSign = extractFloat64Sign( a ); | |
| 1794 | - if ( aExp == 0x7FF ) { | |
| 1795 | - if ( aSig ) return commonNaNToFloat32( float64ToCommonNaN( a ) ); | |
| 1796 | - return packFloat32( aSign, 0xFF, 0 ); | |
| 1797 | - } | |
| 1798 | - shift64RightJamming( aSig, 22, &aSig ); | |
| 1799 | - zSig = aSig; | |
| 1800 | - if ( aExp || zSig ) { | |
| 1801 | - zSig |= 0x40000000; | |
| 1802 | - aExp -= 0x381; | |
| 1803 | - } | |
| 1804 | - return roundAndPackFloat32( aSign, aExp, zSig ); | |
| 1805 | - | |
| 1806 | -} | |
| 1807 | - | |
| 1808 | -#ifdef FLOATX80 | |
| 1809 | - | |
| 1810 | -/* | |
| 1811 | -------------------------------------------------------------------------------- | |
| 1812 | -Returns the result of converting the double-precision floating-point value | |
| 1813 | -`a' to the extended double-precision floating-point format. The conversion | |
| 1814 | -is performed according to the IEC/IEEE Standard for Binary Floating-point | |
| 1815 | -Arithmetic. | |
| 1816 | -------------------------------------------------------------------------------- | |
| 1817 | -*/ | |
| 1818 | -floatx80 float64_to_floatx80( float64 a ) | |
| 1819 | -{ | |
| 1820 | - flag aSign; | |
| 1821 | - int16 aExp; | |
| 1822 | - bits64 aSig; | |
| 1823 | - | |
| 1824 | - aSig = extractFloat64Frac( a ); | |
| 1825 | - aExp = extractFloat64Exp( a ); | |
| 1826 | - aSign = extractFloat64Sign( a ); | |
| 1827 | - if ( aExp == 0x7FF ) { | |
| 1828 | - if ( aSig ) return commonNaNToFloatx80( float64ToCommonNaN( a ) ); | |
| 1829 | - return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
| 1830 | - } | |
| 1831 | - if ( aExp == 0 ) { | |
| 1832 | - if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); | |
| 1833 | - normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
| 1834 | - } | |
| 1835 | - return | |
| 1836 | - packFloatx80( | |
| 1837 | - aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 ); | |
| 1838 | - | |
| 1839 | -} | |
| 1840 | - | |
| 1841 | -#endif | |
| 1842 | - | |
| 1843 | -/* | |
| 1844 | -------------------------------------------------------------------------------- | |
| 1845 | -Rounds the double-precision floating-point value `a' to an integer, and | |
| 1846 | -returns the result as a double-precision floating-point value. The | |
| 1847 | -operation is performed according to the IEC/IEEE Standard for Binary | |
| 1848 | -Floating-point Arithmetic. | |
| 1849 | -------------------------------------------------------------------------------- | |
| 1850 | -*/ | |
| 1851 | -float64 float64_round_to_int( float64 a ) | |
| 1852 | -{ | |
| 1853 | - flag aSign; | |
| 1854 | - int16 aExp; | |
| 1855 | - bits64 lastBitMask, roundBitsMask; | |
| 1856 | - int8 roundingMode; | |
| 1857 | - float64 z; | |
| 1858 | - | |
| 1859 | - aExp = extractFloat64Exp( a ); | |
| 1860 | - if ( 0x433 <= aExp ) { | |
| 1861 | - if ( ( aExp == 0x7FF ) && extractFloat64Frac( a ) ) { | |
| 1862 | - return propagateFloat64NaN( a, a ); | |
| 1863 | - } | |
| 1864 | - return a; | |
| 1865 | - } | |
| 1866 | - if ( aExp <= 0x3FE ) { | |
| 1867 | - if ( (bits64) ( a<<1 ) == 0 ) return a; | |
| 1868 | - float_exception_flags |= float_flag_inexact; | |
| 1869 | - aSign = extractFloat64Sign( a ); | |
| 1870 | - switch ( float_rounding_mode ) { | |
| 1871 | - case float_round_nearest_even: | |
| 1872 | - if ( ( aExp == 0x3FE ) && extractFloat64Frac( a ) ) { | |
| 1873 | - return packFloat64( aSign, 0x3FF, 0 ); | |
| 1874 | - } | |
| 1875 | - break; | |
| 1876 | - case float_round_down: | |
| 1877 | - return aSign ? LIT64( 0xBFF0000000000000 ) : 0; | |
| 1878 | - case float_round_up: | |
| 1879 | - return | |
| 1880 | - aSign ? LIT64( 0x8000000000000000 ) : LIT64( 0x3FF0000000000000 ); | |
| 1881 | - } | |
| 1882 | - return packFloat64( aSign, 0, 0 ); | |
| 1883 | - } | |
| 1884 | - lastBitMask = 1; | |
| 1885 | - lastBitMask <<= 0x433 - aExp; | |
| 1886 | - roundBitsMask = lastBitMask - 1; | |
| 1887 | - z = a; | |
| 1888 | - roundingMode = float_rounding_mode; | |
| 1889 | - if ( roundingMode == float_round_nearest_even ) { | |
| 1890 | - z += lastBitMask>>1; | |
| 1891 | - if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask; | |
| 1892 | - } | |
| 1893 | - else if ( roundingMode != float_round_to_zero ) { | |
| 1894 | - if ( extractFloat64Sign( z ) ^ ( roundingMode == float_round_up ) ) { | |
| 1895 | - z += roundBitsMask; | |
| 1896 | - } | |
| 1897 | - } | |
| 1898 | - z &= ~ roundBitsMask; | |
| 1899 | - if ( z != a ) float_exception_flags |= float_flag_inexact; | |
| 1900 | - return z; | |
| 1901 | - | |
| 1902 | -} | |
| 1903 | - | |
| 1904 | -/* | |
| 1905 | -------------------------------------------------------------------------------- | |
| 1906 | -Returns the result of adding the absolute values of the double-precision | |
| 1907 | -floating-point values `a' and `b'. If `zSign' is true, the sum is negated | |
| 1908 | -before being returned. `zSign' is ignored if the result is a NaN. The | |
| 1909 | -addition is performed according to the IEC/IEEE Standard for Binary | |
| 1910 | -Floating-point Arithmetic. | |
| 1911 | -------------------------------------------------------------------------------- | |
| 1912 | -*/ | |
| 1913 | -static float64 addFloat64Sigs( float64 a, float64 b, flag zSign ) | |
| 1914 | -{ | |
| 1915 | - int16 aExp, bExp, zExp; | |
| 1916 | - bits64 aSig, bSig, zSig; | |
| 1917 | - int16 expDiff; | |
| 1918 | - | |
| 1919 | - aSig = extractFloat64Frac( a ); | |
| 1920 | - aExp = extractFloat64Exp( a ); | |
| 1921 | - bSig = extractFloat64Frac( b ); | |
| 1922 | - bExp = extractFloat64Exp( b ); | |
| 1923 | - expDiff = aExp - bExp; | |
| 1924 | - aSig <<= 9; | |
| 1925 | - bSig <<= 9; | |
| 1926 | - if ( 0 < expDiff ) { | |
| 1927 | - if ( aExp == 0x7FF ) { | |
| 1928 | - if ( aSig ) return propagateFloat64NaN( a, b ); | |
| 1929 | - return a; | |
| 1930 | - } | |
| 1931 | - if ( bExp == 0 ) { | |
| 1932 | - --expDiff; | |
| 1933 | - } | |
| 1934 | - else { | |
| 1935 | - bSig |= LIT64( 0x2000000000000000 ); | |
| 1936 | - } | |
| 1937 | - shift64RightJamming( bSig, expDiff, &bSig ); | |
| 1938 | - zExp = aExp; | |
| 1939 | - } | |
| 1940 | - else if ( expDiff < 0 ) { | |
| 1941 | - if ( bExp == 0x7FF ) { | |
| 1942 | - if ( bSig ) return propagateFloat64NaN( a, b ); | |
| 1943 | - return packFloat64( zSign, 0x7FF, 0 ); | |
| 1944 | - } | |
| 1945 | - if ( aExp == 0 ) { | |
| 1946 | - ++expDiff; | |
| 1947 | - } | |
| 1948 | - else { | |
| 1949 | - aSig |= LIT64( 0x2000000000000000 ); | |
| 1950 | - } | |
| 1951 | - shift64RightJamming( aSig, - expDiff, &aSig ); | |
| 1952 | - zExp = bExp; | |
| 1953 | - } | |
| 1954 | - else { | |
| 1955 | - if ( aExp == 0x7FF ) { | |
| 1956 | - if ( aSig | bSig ) return propagateFloat64NaN( a, b ); | |
| 1957 | - return a; | |
| 1958 | - } | |
| 1959 | - if ( aExp == 0 ) return packFloat64( zSign, 0, ( aSig + bSig )>>9 ); | |
| 1960 | - zSig = LIT64( 0x4000000000000000 ) + aSig + bSig; | |
| 1961 | - zExp = aExp; | |
| 1962 | - goto roundAndPack; | |
| 1963 | - } | |
| 1964 | - aSig |= LIT64( 0x2000000000000000 ); | |
| 1965 | - zSig = ( aSig + bSig )<<1; | |
| 1966 | - --zExp; | |
| 1967 | - if ( (sbits64) zSig < 0 ) { | |
| 1968 | - zSig = aSig + bSig; | |
| 1969 | - ++zExp; | |
| 1970 | - } | |
| 1971 | - roundAndPack: | |
| 1972 | - return roundAndPackFloat64( zSign, zExp, zSig ); | |
| 1973 | - | |
| 1974 | -} | |
| 1975 | - | |
| 1976 | -/* | |
| 1977 | -------------------------------------------------------------------------------- | |
| 1978 | -Returns the result of subtracting the absolute values of the double- | |
| 1979 | -precision floating-point values `a' and `b'. If `zSign' is true, the | |
| 1980 | -difference is negated before being returned. `zSign' is ignored if the | |
| 1981 | -result is a NaN. The subtraction is performed according to the IEC/IEEE | |
| 1982 | -Standard for Binary Floating-point Arithmetic. | |
| 1983 | -------------------------------------------------------------------------------- | |
| 1984 | -*/ | |
| 1985 | -static float64 subFloat64Sigs( float64 a, float64 b, flag zSign ) | |
| 1986 | -{ | |
| 1987 | - int16 aExp, bExp, zExp; | |
| 1988 | - bits64 aSig, bSig, zSig; | |
| 1989 | - int16 expDiff; | |
| 1990 | - | |
| 1991 | - aSig = extractFloat64Frac( a ); | |
| 1992 | - aExp = extractFloat64Exp( a ); | |
| 1993 | - bSig = extractFloat64Frac( b ); | |
| 1994 | - bExp = extractFloat64Exp( b ); | |
| 1995 | - expDiff = aExp - bExp; | |
| 1996 | - aSig <<= 10; | |
| 1997 | - bSig <<= 10; | |
| 1998 | - if ( 0 < expDiff ) goto aExpBigger; | |
| 1999 | - if ( expDiff < 0 ) goto bExpBigger; | |
| 2000 | - if ( aExp == 0x7FF ) { | |
| 2001 | - if ( aSig | bSig ) return propagateFloat64NaN( a, b ); | |
| 2002 | - float_raise( float_flag_invalid ); | |
| 2003 | - return float64_default_nan; | |
| 2004 | - } | |
| 2005 | - if ( aExp == 0 ) { | |
| 2006 | - aExp = 1; | |
| 2007 | - bExp = 1; | |
| 2008 | - } | |
| 2009 | - if ( bSig < aSig ) goto aBigger; | |
| 2010 | - if ( aSig < bSig ) goto bBigger; | |
| 2011 | - return packFloat64( float_rounding_mode == float_round_down, 0, 0 ); | |
| 2012 | - bExpBigger: | |
| 2013 | - if ( bExp == 0x7FF ) { | |
| 2014 | - if ( bSig ) return propagateFloat64NaN( a, b ); | |
| 2015 | - return packFloat64( zSign ^ 1, 0x7FF, 0 ); | |
| 2016 | - } | |
| 2017 | - if ( aExp == 0 ) { | |
| 2018 | - ++expDiff; | |
| 2019 | - } | |
| 2020 | - else { | |
| 2021 | - aSig |= LIT64( 0x4000000000000000 ); | |
| 2022 | - } | |
| 2023 | - shift64RightJamming( aSig, - expDiff, &aSig ); | |
| 2024 | - bSig |= LIT64( 0x4000000000000000 ); | |
| 2025 | - bBigger: | |
| 2026 | - zSig = bSig - aSig; | |
| 2027 | - zExp = bExp; | |
| 2028 | - zSign ^= 1; | |
| 2029 | - goto normalizeRoundAndPack; | |
| 2030 | - aExpBigger: | |
| 2031 | - if ( aExp == 0x7FF ) { | |
| 2032 | - if ( aSig ) return propagateFloat64NaN( a, b ); | |
| 2033 | - return a; | |
| 2034 | - } | |
| 2035 | - if ( bExp == 0 ) { | |
| 2036 | - --expDiff; | |
| 2037 | - } | |
| 2038 | - else { | |
| 2039 | - bSig |= LIT64( 0x4000000000000000 ); | |
| 2040 | - } | |
| 2041 | - shift64RightJamming( bSig, expDiff, &bSig ); | |
| 2042 | - aSig |= LIT64( 0x4000000000000000 ); | |
| 2043 | - aBigger: | |
| 2044 | - zSig = aSig - bSig; | |
| 2045 | - zExp = aExp; | |
| 2046 | - normalizeRoundAndPack: | |
| 2047 | - --zExp; | |
| 2048 | - return normalizeRoundAndPackFloat64( zSign, zExp, zSig ); | |
| 2049 | - | |
| 2050 | -} | |
| 2051 | - | |
| 2052 | -/* | |
| 2053 | -------------------------------------------------------------------------------- | |
| 2054 | -Returns the result of adding the double-precision floating-point values `a' | |
| 2055 | -and `b'. The operation is performed according to the IEC/IEEE Standard for | |
| 2056 | -Binary Floating-point Arithmetic. | |
| 2057 | -------------------------------------------------------------------------------- | |
| 2058 | -*/ | |
| 2059 | -float64 float64_add( float64 a, float64 b ) | |
| 2060 | -{ | |
| 2061 | - flag aSign, bSign; | |
| 2062 | - | |
| 2063 | - aSign = extractFloat64Sign( a ); | |
| 2064 | - bSign = extractFloat64Sign( b ); | |
| 2065 | - if ( aSign == bSign ) { | |
| 2066 | - return addFloat64Sigs( a, b, aSign ); | |
| 2067 | - } | |
| 2068 | - else { | |
| 2069 | - return subFloat64Sigs( a, b, aSign ); | |
| 2070 | - } | |
| 2071 | - | |
| 2072 | -} | |
| 2073 | - | |
| 2074 | -/* | |
| 2075 | -------------------------------------------------------------------------------- | |
| 2076 | -Returns the result of subtracting the double-precision floating-point values | |
| 2077 | -`a' and `b'. The operation is performed according to the IEC/IEEE Standard | |
| 2078 | -for Binary Floating-point Arithmetic. | |
| 2079 | -------------------------------------------------------------------------------- | |
| 2080 | -*/ | |
| 2081 | -float64 float64_sub( float64 a, float64 b ) | |
| 2082 | -{ | |
| 2083 | - flag aSign, bSign; | |
| 2084 | - | |
| 2085 | - aSign = extractFloat64Sign( a ); | |
| 2086 | - bSign = extractFloat64Sign( b ); | |
| 2087 | - if ( aSign == bSign ) { | |
| 2088 | - return subFloat64Sigs( a, b, aSign ); | |
| 2089 | - } | |
| 2090 | - else { | |
| 2091 | - return addFloat64Sigs( a, b, aSign ); | |
| 2092 | - } | |
| 2093 | - | |
| 2094 | -} | |
| 2095 | - | |
| 2096 | -/* | |
| 2097 | -------------------------------------------------------------------------------- | |
| 2098 | -Returns the result of multiplying the double-precision floating-point values | |
| 2099 | -`a' and `b'. The operation is performed according to the IEC/IEEE Standard | |
| 2100 | -for Binary Floating-point Arithmetic. | |
| 2101 | -------------------------------------------------------------------------------- | |
| 2102 | -*/ | |
| 2103 | -float64 float64_mul( float64 a, float64 b ) | |
| 2104 | -{ | |
| 2105 | - flag aSign, bSign, zSign; | |
| 2106 | - int16 aExp, bExp, zExp; | |
| 2107 | - bits64 aSig, bSig, zSig0, zSig1; | |
| 2108 | - | |
| 2109 | - aSig = extractFloat64Frac( a ); | |
| 2110 | - aExp = extractFloat64Exp( a ); | |
| 2111 | - aSign = extractFloat64Sign( a ); | |
| 2112 | - bSig = extractFloat64Frac( b ); | |
| 2113 | - bExp = extractFloat64Exp( b ); | |
| 2114 | - bSign = extractFloat64Sign( b ); | |
| 2115 | - zSign = aSign ^ bSign; | |
| 2116 | - if ( aExp == 0x7FF ) { | |
| 2117 | - if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) { | |
| 2118 | - return propagateFloat64NaN( a, b ); | |
| 2119 | - } | |
| 2120 | - if ( ( bExp | bSig ) == 0 ) { | |
| 2121 | - float_raise( float_flag_invalid ); | |
| 2122 | - return float64_default_nan; | |
| 2123 | - } | |
| 2124 | - return packFloat64( zSign, 0x7FF, 0 ); | |
| 2125 | - } | |
| 2126 | - if ( bExp == 0x7FF ) { | |
| 2127 | - if ( bSig ) return propagateFloat64NaN( a, b ); | |
| 2128 | - if ( ( aExp | aSig ) == 0 ) { | |
| 2129 | - float_raise( float_flag_invalid ); | |
| 2130 | - return float64_default_nan; | |
| 2131 | - } | |
| 2132 | - return packFloat64( zSign, 0x7FF, 0 ); | |
| 2133 | - } | |
| 2134 | - if ( aExp == 0 ) { | |
| 2135 | - if ( aSig == 0 ) return packFloat64( zSign, 0, 0 ); | |
| 2136 | - normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
| 2137 | - } | |
| 2138 | - if ( bExp == 0 ) { | |
| 2139 | - if ( bSig == 0 ) return packFloat64( zSign, 0, 0 ); | |
| 2140 | - normalizeFloat64Subnormal( bSig, &bExp, &bSig ); | |
| 2141 | - } | |
| 2142 | - zExp = aExp + bExp - 0x3FF; | |
| 2143 | - aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10; | |
| 2144 | - bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; | |
| 2145 | - mul64To128( aSig, bSig, &zSig0, &zSig1 ); | |
| 2146 | - zSig0 |= ( zSig1 != 0 ); | |
| 2147 | - if ( 0 <= (sbits64) ( zSig0<<1 ) ) { | |
| 2148 | - zSig0 <<= 1; | |
| 2149 | - --zExp; | |
| 2150 | - } | |
| 2151 | - return roundAndPackFloat64( zSign, zExp, zSig0 ); | |
| 2152 | - | |
| 2153 | -} | |
| 2154 | - | |
| 2155 | -/* | |
| 2156 | -------------------------------------------------------------------------------- | |
| 2157 | -Returns the result of dividing the double-precision floating-point value `a' | |
| 2158 | -by the corresponding value `b'. The operation is performed according to | |
| 2159 | -the IEC/IEEE Standard for Binary Floating-point Arithmetic. | |
| 2160 | -------------------------------------------------------------------------------- | |
| 2161 | -*/ | |
| 2162 | -float64 float64_div( float64 a, float64 b ) | |
| 2163 | -{ | |
| 2164 | - flag aSign, bSign, zSign; | |
| 2165 | - int16 aExp, bExp, zExp; | |
| 2166 | - bits64 aSig, bSig, zSig; | |
| 2167 | - bits64 rem0, rem1; | |
| 2168 | - bits64 term0, term1; | |
| 2169 | - | |
| 2170 | - aSig = extractFloat64Frac( a ); | |
| 2171 | - aExp = extractFloat64Exp( a ); | |
| 2172 | - aSign = extractFloat64Sign( a ); | |
| 2173 | - bSig = extractFloat64Frac( b ); | |
| 2174 | - bExp = extractFloat64Exp( b ); | |
| 2175 | - bSign = extractFloat64Sign( b ); | |
| 2176 | - zSign = aSign ^ bSign; | |
| 2177 | - if ( aExp == 0x7FF ) { | |
| 2178 | - if ( aSig ) return propagateFloat64NaN( a, b ); | |
| 2179 | - if ( bExp == 0x7FF ) { | |
| 2180 | - if ( bSig ) return propagateFloat64NaN( a, b ); | |
| 2181 | - float_raise( float_flag_invalid ); | |
| 2182 | - return float64_default_nan; | |
| 2183 | - } | |
| 2184 | - return packFloat64( zSign, 0x7FF, 0 ); | |
| 2185 | - } | |
| 2186 | - if ( bExp == 0x7FF ) { | |
| 2187 | - if ( bSig ) return propagateFloat64NaN( a, b ); | |
| 2188 | - return packFloat64( zSign, 0, 0 ); | |
| 2189 | - } | |
| 2190 | - if ( bExp == 0 ) { | |
| 2191 | - if ( bSig == 0 ) { | |
| 2192 | - if ( ( aExp | aSig ) == 0 ) { | |
| 2193 | - float_raise( float_flag_invalid ); | |
| 2194 | - return float64_default_nan; | |
| 2195 | - } | |
| 2196 | - float_raise( float_flag_divbyzero ); | |
| 2197 | - return packFloat64( zSign, 0x7FF, 0 ); | |
| 2198 | - } | |
| 2199 | - normalizeFloat64Subnormal( bSig, &bExp, &bSig ); | |
| 2200 | - } | |
| 2201 | - if ( aExp == 0 ) { | |
| 2202 | - if ( aSig == 0 ) return packFloat64( zSign, 0, 0 ); | |
| 2203 | - normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
| 2204 | - } | |
| 2205 | - zExp = aExp - bExp + 0x3FD; | |
| 2206 | - aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10; | |
| 2207 | - bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; | |
| 2208 | - if ( bSig <= ( aSig + aSig ) ) { | |
| 2209 | - aSig >>= 1; | |
| 2210 | - ++zExp; | |
| 2211 | - } | |
| 2212 | - zSig = estimateDiv128To64( aSig, 0, bSig ); | |
| 2213 | - if ( ( zSig & 0x1FF ) <= 2 ) { | |
| 2214 | - mul64To128( bSig, zSig, &term0, &term1 ); | |
| 2215 | - sub128( aSig, 0, term0, term1, &rem0, &rem1 ); | |
| 2216 | - while ( (sbits64) rem0 < 0 ) { | |
| 2217 | - --zSig; | |
| 2218 | - add128( rem0, rem1, 0, bSig, &rem0, &rem1 ); | |
| 2219 | - } | |
| 2220 | - zSig |= ( rem1 != 0 ); | |
| 2221 | - } | |
| 2222 | - return roundAndPackFloat64( zSign, zExp, zSig ); | |
| 2223 | - | |
| 2224 | -} | |
| 2225 | - | |
| 2226 | -/* | |
| 2227 | -------------------------------------------------------------------------------- | |
| 2228 | -Returns the remainder of the double-precision floating-point value `a' | |
| 2229 | -with respect to the corresponding value `b'. The operation is performed | |
| 2230 | -according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | |
| 2231 | -------------------------------------------------------------------------------- | |
| 2232 | -*/ | |
| 2233 | -float64 float64_rem( float64 a, float64 b ) | |
| 2234 | -{ | |
| 2235 | - flag aSign, bSign, zSign; | |
| 2236 | - int16 aExp, bExp, expDiff; | |
| 2237 | - bits64 aSig, bSig; | |
| 2238 | - bits64 q, alternateASig; | |
| 2239 | - sbits64 sigMean; | |
| 2240 | - | |
| 2241 | - aSig = extractFloat64Frac( a ); | |
| 2242 | - aExp = extractFloat64Exp( a ); | |
| 2243 | - aSign = extractFloat64Sign( a ); | |
| 2244 | - bSig = extractFloat64Frac( b ); | |
| 2245 | - bExp = extractFloat64Exp( b ); | |
| 2246 | - bSign = extractFloat64Sign( b ); | |
| 2247 | - if ( aExp == 0x7FF ) { | |
| 2248 | - if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) { | |
| 2249 | - return propagateFloat64NaN( a, b ); | |
| 2250 | - } | |
| 2251 | - float_raise( float_flag_invalid ); | |
| 2252 | - return float64_default_nan; | |
| 2253 | - } | |
| 2254 | - if ( bExp == 0x7FF ) { | |
| 2255 | - if ( bSig ) return propagateFloat64NaN( a, b ); | |
| 2256 | - return a; | |
| 2257 | - } | |
| 2258 | - if ( bExp == 0 ) { | |
| 2259 | - if ( bSig == 0 ) { | |
| 2260 | - float_raise( float_flag_invalid ); | |
| 2261 | - return float64_default_nan; | |
| 2262 | - } | |
| 2263 | - normalizeFloat64Subnormal( bSig, &bExp, &bSig ); | |
| 2264 | - } | |
| 2265 | - if ( aExp == 0 ) { | |
| 2266 | - if ( aSig == 0 ) return a; | |
| 2267 | - normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
| 2268 | - } | |
| 2269 | - expDiff = aExp - bExp; | |
| 2270 | - aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11; | |
| 2271 | - bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; | |
| 2272 | - if ( expDiff < 0 ) { | |
| 2273 | - if ( expDiff < -1 ) return a; | |
| 2274 | - aSig >>= 1; | |
| 2275 | - } | |
| 2276 | - q = ( bSig <= aSig ); | |
| 2277 | - if ( q ) aSig -= bSig; | |
| 2278 | - expDiff -= 64; | |
| 2279 | - while ( 0 < expDiff ) { | |
| 2280 | - q = estimateDiv128To64( aSig, 0, bSig ); | |
| 2281 | - q = ( 2 < q ) ? q - 2 : 0; | |
| 2282 | - aSig = - ( ( bSig>>2 ) * q ); | |
| 2283 | - expDiff -= 62; | |
| 2284 | - } | |
| 2285 | - expDiff += 64; | |
| 2286 | - if ( 0 < expDiff ) { | |
| 2287 | - q = estimateDiv128To64( aSig, 0, bSig ); | |
| 2288 | - q = ( 2 < q ) ? q - 2 : 0; | |
| 2289 | - q >>= 64 - expDiff; | |
| 2290 | - bSig >>= 2; | |
| 2291 | - aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; | |
| 2292 | - } | |
| 2293 | - else { | |
| 2294 | - aSig >>= 2; | |
| 2295 | - bSig >>= 2; | |
| 2296 | - } | |
| 2297 | - do { | |
| 2298 | - alternateASig = aSig; | |
| 2299 | - ++q; | |
| 2300 | - aSig -= bSig; | |
| 2301 | - } while ( 0 <= (sbits64) aSig ); | |
| 2302 | - sigMean = aSig + alternateASig; | |
| 2303 | - if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { | |
| 2304 | - aSig = alternateASig; | |
| 2305 | - } | |
| 2306 | - zSign = ( (sbits64) aSig < 0 ); | |
| 2307 | - if ( zSign ) aSig = - aSig; | |
| 2308 | - return normalizeRoundAndPackFloat64( aSign ^ zSign, bExp, aSig ); | |
| 2309 | - | |
| 2310 | -} | |
| 2311 | - | |
| 2312 | -/* | |
| 2313 | -------------------------------------------------------------------------------- | |
| 2314 | -Returns the square root of the double-precision floating-point value `a'. | |
| 2315 | -The operation is performed according to the IEC/IEEE Standard for Binary | |
| 2316 | -Floating-point Arithmetic. | |
| 2317 | -------------------------------------------------------------------------------- | |
| 2318 | -*/ | |
| 2319 | -float64 float64_sqrt( float64 a ) | |
| 2320 | -{ | |
| 2321 | - flag aSign; | |
| 2322 | - int16 aExp, zExp; | |
| 2323 | - bits64 aSig, zSig; | |
| 2324 | - bits64 rem0, rem1, term0, term1; //, shiftedRem; | |
| 2325 | - //float64 z; | |
| 2326 | - | |
| 2327 | - aSig = extractFloat64Frac( a ); | |
| 2328 | - aExp = extractFloat64Exp( a ); | |
| 2329 | - aSign = extractFloat64Sign( a ); | |
| 2330 | - if ( aExp == 0x7FF ) { | |
| 2331 | - if ( aSig ) return propagateFloat64NaN( a, a ); | |
| 2332 | - if ( ! aSign ) return a; | |
| 2333 | - float_raise( float_flag_invalid ); | |
| 2334 | - return float64_default_nan; | |
| 2335 | - } | |
| 2336 | - if ( aSign ) { | |
| 2337 | - if ( ( aExp | aSig ) == 0 ) return a; | |
| 2338 | - float_raise( float_flag_invalid ); | |
| 2339 | - return float64_default_nan; | |
| 2340 | - } | |
| 2341 | - if ( aExp == 0 ) { | |
| 2342 | - if ( aSig == 0 ) return 0; | |
| 2343 | - normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
| 2344 | - } | |
| 2345 | - zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE; | |
| 2346 | - aSig |= LIT64( 0x0010000000000000 ); | |
| 2347 | - zSig = estimateSqrt32( aExp, aSig>>21 ); | |
| 2348 | - zSig <<= 31; | |
| 2349 | - aSig <<= 9 - ( aExp & 1 ); | |
| 2350 | - zSig = estimateDiv128To64( aSig, 0, zSig ) + zSig + 2; | |
| 2351 | - if ( ( zSig & 0x3FF ) <= 5 ) { | |
| 2352 | - if ( zSig < 2 ) { | |
| 2353 | - zSig = LIT64( 0xFFFFFFFFFFFFFFFF ); | |
| 2354 | - } | |
| 2355 | - else { | |
| 2356 | - aSig <<= 2; | |
| 2357 | - mul64To128( zSig, zSig, &term0, &term1 ); | |
| 2358 | - sub128( aSig, 0, term0, term1, &rem0, &rem1 ); | |
| 2359 | - while ( (sbits64) rem0 < 0 ) { | |
| 2360 | - --zSig; | |
| 2361 | - shortShift128Left( 0, zSig, 1, &term0, &term1 ); | |
| 2362 | - term1 |= 1; | |
| 2363 | - add128( rem0, rem1, term0, term1, &rem0, &rem1 ); | |
| 2364 | - } | |
| 2365 | - zSig |= ( ( rem0 | rem1 ) != 0 ); | |
| 2366 | - } | |
| 2367 | - } | |
| 2368 | - shift64RightJamming( zSig, 1, &zSig ); | |
| 2369 | - return roundAndPackFloat64( 0, zExp, zSig ); | |
| 2370 | - | |
| 2371 | -} | |
| 2372 | - | |
| 2373 | -/* | |
| 2374 | -------------------------------------------------------------------------------- | |
| 2375 | -Returns 1 if the double-precision floating-point value `a' is equal to the | |
| 2376 | -corresponding value `b', and 0 otherwise. The comparison is performed | |
| 2377 | -according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | |
| 2378 | -------------------------------------------------------------------------------- | |
| 2379 | -*/ | |
| 2380 | -flag float64_eq( float64 a, float64 b ) | |
| 2381 | -{ | |
| 2382 | - | |
| 2383 | - if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
| 2384 | - || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
| 2385 | - ) { | |
| 2386 | - if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { | |
| 2387 | - float_raise( float_flag_invalid ); | |
| 2388 | - } | |
| 2389 | - return 0; | |
| 2390 | - } | |
| 2391 | - return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 ); | |
| 2392 | - | |
| 2393 | -} | |
| 2394 | - | |
| 2395 | -/* | |
| 2396 | -------------------------------------------------------------------------------- | |
| 2397 | -Returns 1 if the double-precision floating-point value `a' is less than or | |
| 2398 | -equal to the corresponding value `b', and 0 otherwise. The comparison is | |
| 2399 | -performed according to the IEC/IEEE Standard for Binary Floating-point | |
| 2400 | -Arithmetic. | |
| 2401 | -------------------------------------------------------------------------------- | |
| 2402 | -*/ | |
| 2403 | -flag float64_le( float64 a, float64 b ) | |
| 2404 | -{ | |
| 2405 | - flag aSign, bSign; | |
| 2406 | - | |
| 2407 | - if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
| 2408 | - || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
| 2409 | - ) { | |
| 2410 | - float_raise( float_flag_invalid ); | |
| 2411 | - return 0; | |
| 2412 | - } | |
| 2413 | - aSign = extractFloat64Sign( a ); | |
| 2414 | - bSign = extractFloat64Sign( b ); | |
| 2415 | - if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 ); | |
| 2416 | - return ( a == b ) || ( aSign ^ ( a < b ) ); | |
| 2417 | - | |
| 2418 | -} | |
| 2419 | - | |
| 2420 | -/* | |
| 2421 | -------------------------------------------------------------------------------- | |
| 2422 | -Returns 1 if the double-precision floating-point value `a' is less than | |
| 2423 | -the corresponding value `b', and 0 otherwise. The comparison is performed | |
| 2424 | -according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | |
| 2425 | -------------------------------------------------------------------------------- | |
| 2426 | -*/ | |
| 2427 | -flag float64_lt( float64 a, float64 b ) | |
| 2428 | -{ | |
| 2429 | - flag aSign, bSign; | |
| 2430 | - | |
| 2431 | - if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
| 2432 | - || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
| 2433 | - ) { | |
| 2434 | - float_raise( float_flag_invalid ); | |
| 2435 | - return 0; | |
| 2436 | - } | |
| 2437 | - aSign = extractFloat64Sign( a ); | |
| 2438 | - bSign = extractFloat64Sign( b ); | |
| 2439 | - if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 ); | |
| 2440 | - return ( a != b ) && ( aSign ^ ( a < b ) ); | |
| 2441 | - | |
| 2442 | -} | |
| 2443 | - | |
| 2444 | -/* | |
| 2445 | -------------------------------------------------------------------------------- | |
| 2446 | -Returns 1 if the double-precision floating-point value `a' is equal to the | |
| 2447 | -corresponding value `b', and 0 otherwise. The invalid exception is raised | |
| 2448 | -if either operand is a NaN. Otherwise, the comparison is performed | |
| 2449 | -according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | |
| 2450 | -------------------------------------------------------------------------------- | |
| 2451 | -*/ | |
| 2452 | -flag float64_eq_signaling( float64 a, float64 b ) | |
| 2453 | -{ | |
| 2454 | - | |
| 2455 | - if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
| 2456 | - || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
| 2457 | - ) { | |
| 2458 | - float_raise( float_flag_invalid ); | |
| 2459 | - return 0; | |
| 2460 | - } | |
| 2461 | - return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 ); | |
| 2462 | - | |
| 2463 | -} | |
| 2464 | - | |
| 2465 | -/* | |
| 2466 | -------------------------------------------------------------------------------- | |
| 2467 | -Returns 1 if the double-precision floating-point value `a' is less than or | |
| 2468 | -equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not | |
| 2469 | -cause an exception. Otherwise, the comparison is performed according to the | |
| 2470 | -IEC/IEEE Standard for Binary Floating-point Arithmetic. | |
| 2471 | -------------------------------------------------------------------------------- | |
| 2472 | -*/ | |
| 2473 | -flag float64_le_quiet( float64 a, float64 b ) | |
| 2474 | -{ | |
| 2475 | - flag aSign, bSign; | |
| 2476 | - //int16 aExp, bExp; | |
| 2477 | - | |
| 2478 | - if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
| 2479 | - || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
| 2480 | - ) { | |
| 2481 | - if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { | |
| 2482 | - float_raise( float_flag_invalid ); | |
| 2483 | - } | |
| 2484 | - return 0; | |
| 2485 | - } | |
| 2486 | - aSign = extractFloat64Sign( a ); | |
| 2487 | - bSign = extractFloat64Sign( b ); | |
| 2488 | - if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 ); | |
| 2489 | - return ( a == b ) || ( aSign ^ ( a < b ) ); | |
| 2490 | - | |
| 2491 | -} | |
| 2492 | - | |
| 2493 | -/* | |
| 2494 | -------------------------------------------------------------------------------- | |
| 2495 | -Returns 1 if the double-precision floating-point value `a' is less than | |
| 2496 | -the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an | |
| 2497 | -exception. Otherwise, the comparison is performed according to the IEC/IEEE | |
| 2498 | -Standard for Binary Floating-point Arithmetic. | |
| 2499 | -------------------------------------------------------------------------------- | |
| 2500 | -*/ | |
| 2501 | -flag float64_lt_quiet( float64 a, float64 b ) | |
| 2502 | -{ | |
| 2503 | - flag aSign, bSign; | |
| 2504 | - | |
| 2505 | - if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
| 2506 | - || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
| 2507 | - ) { | |
| 2508 | - if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { | |
| 2509 | - float_raise( float_flag_invalid ); | |
| 2510 | - } | |
| 2511 | - return 0; | |
| 2512 | - } | |
| 2513 | - aSign = extractFloat64Sign( a ); | |
| 2514 | - bSign = extractFloat64Sign( b ); | |
| 2515 | - if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 ); | |
| 2516 | - return ( a != b ) && ( aSign ^ ( a < b ) ); | |
| 2517 | - | |
| 2518 | -} | |
| 2519 | - | |
| 2520 | -#ifdef FLOATX80 | |
| 2521 | - | |
| 2522 | -/* | |
| 2523 | -------------------------------------------------------------------------------- | |
| 2524 | -Returns the result of converting the extended double-precision floating- | |
| 2525 | -point value `a' to the 32-bit two's complement integer format. The | |
| 2526 | -conversion is performed according to the IEC/IEEE Standard for Binary | |
| 2527 | -Floating-point Arithmetic---which means in particular that the conversion | |
| 2528 | -is rounded according to the current rounding mode. If `a' is a NaN, the | |
| 2529 | -largest positive integer is returned. Otherwise, if the conversion | |
| 2530 | -overflows, the largest integer with the same sign as `a' is returned. | |
| 2531 | -------------------------------------------------------------------------------- | |
| 2532 | -*/ | |
| 2533 | -int32 floatx80_to_int32( floatx80 a ) | |
| 2534 | -{ | |
| 2535 | - flag aSign; | |
| 2536 | - int32 aExp, shiftCount; | |
| 2537 | - bits64 aSig; | |
| 2538 | - | |
| 2539 | - aSig = extractFloatx80Frac( a ); | |
| 2540 | - aExp = extractFloatx80Exp( a ); | |
| 2541 | - aSign = extractFloatx80Sign( a ); | |
| 2542 | - if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0; | |
| 2543 | - shiftCount = 0x4037 - aExp; | |
| 2544 | - if ( shiftCount <= 0 ) shiftCount = 1; | |
| 2545 | - shift64RightJamming( aSig, shiftCount, &aSig ); | |
| 2546 | - return roundAndPackInt32( aSign, aSig ); | |
| 2547 | - | |
| 2548 | -} | |
| 2549 | - | |
| 2550 | -/* | |
| 2551 | -------------------------------------------------------------------------------- | |
| 2552 | -Returns the result of converting the extended double-precision floating- | |
| 2553 | -point value `a' to the 32-bit two's complement integer format. The | |
| 2554 | -conversion is performed according to the IEC/IEEE Standard for Binary | |
| 2555 | -Floating-point Arithmetic, except that the conversion is always rounded | |
| 2556 | -toward zero. If `a' is a NaN, the largest positive integer is returned. | |
| 2557 | -Otherwise, if the conversion overflows, the largest integer with the same | |
| 2558 | -sign as `a' is returned. | |
| 2559 | -------------------------------------------------------------------------------- | |
| 2560 | -*/ | |
| 2561 | -int32 floatx80_to_int32_round_to_zero( floatx80 a ) | |
| 2562 | -{ | |
| 2563 | - flag aSign; | |
| 2564 | - int32 aExp, shiftCount; | |
| 2565 | - bits64 aSig, savedASig; | |
| 2566 | - int32 z; | |
| 2567 | - | |
| 2568 | - aSig = extractFloatx80Frac( a ); | |
| 2569 | - aExp = extractFloatx80Exp( a ); | |
| 2570 | - aSign = extractFloatx80Sign( a ); | |
| 2571 | - shiftCount = 0x403E - aExp; | |
| 2572 | - if ( shiftCount < 32 ) { | |
| 2573 | - if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0; | |
| 2574 | - goto invalid; | |
| 2575 | - } | |
| 2576 | - else if ( 63 < shiftCount ) { | |
| 2577 | - if ( aExp || aSig ) float_exception_flags |= float_flag_inexact; | |
| 2578 | - return 0; | |
| 2579 | - } | |
| 2580 | - savedASig = aSig; | |
| 2581 | - aSig >>= shiftCount; | |
| 2582 | - z = aSig; | |
| 2583 | - if ( aSign ) z = - z; | |
| 2584 | - if ( ( z < 0 ) ^ aSign ) { | |
| 2585 | - invalid: | |
| 2586 | - float_exception_flags |= float_flag_invalid; | |
| 2587 | - return aSign ? 0x80000000 : 0x7FFFFFFF; | |
| 2588 | - } | |
| 2589 | - if ( ( aSig<<shiftCount ) != savedASig ) { | |
| 2590 | - float_exception_flags |= float_flag_inexact; | |
| 2591 | - } | |
| 2592 | - return z; | |
| 2593 | - | |
| 2594 | -} | |
| 2595 | - | |
| 2596 | -/* | |
| 2597 | -------------------------------------------------------------------------------- | |
| 2598 | -Returns the result of converting the extended double-precision floating- | |
| 2599 | -point value `a' to the single-precision floating-point format. The | |
| 2600 | -conversion is performed according to the IEC/IEEE Standard for Binary | |
| 2601 | -Floating-point Arithmetic. | |
| 2602 | -------------------------------------------------------------------------------- | |
| 2603 | -*/ | |
| 2604 | -float32 floatx80_to_float32( floatx80 a ) | |
| 2605 | -{ | |
| 2606 | - flag aSign; | |
| 2607 | - int32 aExp; | |
| 2608 | - bits64 aSig; | |
| 2609 | - | |
| 2610 | - aSig = extractFloatx80Frac( a ); | |
| 2611 | - aExp = extractFloatx80Exp( a ); | |
| 2612 | - aSign = extractFloatx80Sign( a ); | |
| 2613 | - if ( aExp == 0x7FFF ) { | |
| 2614 | - if ( (bits64) ( aSig<<1 ) ) { | |
| 2615 | - return commonNaNToFloat32( floatx80ToCommonNaN( a ) ); | |
| 2616 | - } | |
| 2617 | - return packFloat32( aSign, 0xFF, 0 ); | |
| 2618 | - } | |
| 2619 | - shift64RightJamming( aSig, 33, &aSig ); | |
| 2620 | - if ( aExp || aSig ) aExp -= 0x3F81; | |
| 2621 | - return roundAndPackFloat32( aSign, aExp, aSig ); | |
| 2622 | - | |
| 2623 | -} | |
| 2624 | - | |
| 2625 | -/* | |
| 2626 | -------------------------------------------------------------------------------- | |
| 2627 | -Returns the result of converting the extended double-precision floating- | |
| 2628 | -point value `a' to the double-precision floating-point format. The | |
| 2629 | -conversion is performed according to the IEC/IEEE Standard for Binary | |
| 2630 | -Floating-point Arithmetic. | |
| 2631 | -------------------------------------------------------------------------------- | |
| 2632 | -*/ | |
| 2633 | -float64 floatx80_to_float64( floatx80 a ) | |
| 2634 | -{ | |
| 2635 | - flag aSign; | |
| 2636 | - int32 aExp; | |
| 2637 | - bits64 aSig, zSig; | |
| 2638 | - | |
| 2639 | - aSig = extractFloatx80Frac( a ); | |
| 2640 | - aExp = extractFloatx80Exp( a ); | |
| 2641 | - aSign = extractFloatx80Sign( a ); | |
| 2642 | - if ( aExp == 0x7FFF ) { | |
| 2643 | - if ( (bits64) ( aSig<<1 ) ) { | |
| 2644 | - return commonNaNToFloat64( floatx80ToCommonNaN( a ) ); | |
| 2645 | - } | |
| 2646 | - return packFloat64( aSign, 0x7FF, 0 ); | |
| 2647 | - } | |
| 2648 | - shift64RightJamming( aSig, 1, &zSig ); | |
| 2649 | - if ( aExp || aSig ) aExp -= 0x3C01; | |
| 2650 | - return roundAndPackFloat64( aSign, aExp, zSig ); | |
| 2651 | - | |
| 2652 | -} | |
| 2653 | - | |
| 2654 | -/* | |
| 2655 | -------------------------------------------------------------------------------- | |
| 2656 | -Rounds the extended double-precision floating-point value `a' to an integer, | |
| 2657 | -and returns the result as an extended quadruple-precision floating-point | |
| 2658 | -value. The operation is performed according to the IEC/IEEE Standard for | |
| 2659 | -Binary Floating-point Arithmetic. | |
| 2660 | -------------------------------------------------------------------------------- | |
| 2661 | -*/ | |
| 2662 | -floatx80 floatx80_round_to_int( floatx80 a ) | |
| 2663 | -{ | |
| 2664 | - flag aSign; | |
| 2665 | - int32 aExp; | |
| 2666 | - bits64 lastBitMask, roundBitsMask; | |
| 2667 | - int8 roundingMode; | |
| 2668 | - floatx80 z; | |
| 2669 | - | |
| 2670 | - aExp = extractFloatx80Exp( a ); | |
| 2671 | - if ( 0x403E <= aExp ) { | |
| 2672 | - if ( ( aExp == 0x7FFF ) && (bits64) ( extractFloatx80Frac( a )<<1 ) ) { | |
| 2673 | - return propagateFloatx80NaN( a, a ); | |
| 2674 | - } | |
| 2675 | - return a; | |
| 2676 | - } | |
| 2677 | - if ( aExp <= 0x3FFE ) { | |
| 2678 | - if ( ( aExp == 0 ) | |
| 2679 | - && ( (bits64) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) { | |
| 2680 | - return a; | |
| 2681 | - } | |
| 2682 | - float_exception_flags |= float_flag_inexact; | |
| 2683 | - aSign = extractFloatx80Sign( a ); | |
| 2684 | - switch ( float_rounding_mode ) { | |
| 2685 | - case float_round_nearest_even: | |
| 2686 | - if ( ( aExp == 0x3FFE ) && (bits64) ( extractFloatx80Frac( a )<<1 ) | |
| 2687 | - ) { | |
| 2688 | - return | |
| 2689 | - packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) ); | |
| 2690 | - } | |
| 2691 | - break; | |
| 2692 | - case float_round_down: | |
| 2693 | - return | |
| 2694 | - aSign ? | |
| 2695 | - packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) ) | |
| 2696 | - : packFloatx80( 0, 0, 0 ); | |
| 2697 | - case float_round_up: | |
| 2698 | - return | |
| 2699 | - aSign ? packFloatx80( 1, 0, 0 ) | |
| 2700 | - : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) ); | |
| 2701 | - } | |
| 2702 | - return packFloatx80( aSign, 0, 0 ); | |
| 2703 | - } | |
| 2704 | - lastBitMask = 1; | |
| 2705 | - lastBitMask <<= 0x403E - aExp; | |
| 2706 | - roundBitsMask = lastBitMask - 1; | |
| 2707 | - z = a; | |
| 2708 | - roundingMode = float_rounding_mode; | |
| 2709 | - if ( roundingMode == float_round_nearest_even ) { | |
| 2710 | - z.low += lastBitMask>>1; | |
| 2711 | - if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask; | |
| 2712 | - } | |
| 2713 | - else if ( roundingMode != float_round_to_zero ) { | |
| 2714 | - if ( extractFloatx80Sign( z ) ^ ( roundingMode == float_round_up ) ) { | |
| 2715 | - z.low += roundBitsMask; | |
| 2716 | - } | |
| 2717 | - } | |
| 2718 | - z.low &= ~ roundBitsMask; | |
| 2719 | - if ( z.low == 0 ) { | |
| 2720 | - ++z.high; | |
| 2721 | - z.low = LIT64( 0x8000000000000000 ); | |
| 2722 | - } | |
| 2723 | - if ( z.low != a.low ) float_exception_flags |= float_flag_inexact; | |
| 2724 | - return z; | |
| 2725 | - | |
| 2726 | -} | |
| 2727 | - | |
| 2728 | -/* | |
| 2729 | -------------------------------------------------------------------------------- | |
| 2730 | -Returns the result of adding the absolute values of the extended double- | |
| 2731 | -precision floating-point values `a' and `b'. If `zSign' is true, the sum is | |
| 2732 | -negated before being returned. `zSign' is ignored if the result is a NaN. | |
| 2733 | -The addition is performed according to the IEC/IEEE Standard for Binary | |
| 2734 | -Floating-point Arithmetic. | |
| 2735 | -------------------------------------------------------------------------------- | |
| 2736 | -*/ | |
| 2737 | -static floatx80 addFloatx80Sigs( floatx80 a, floatx80 b, flag zSign ) | |
| 2738 | -{ | |
| 2739 | - int32 aExp, bExp, zExp; | |
| 2740 | - bits64 aSig, bSig, zSig0, zSig1; | |
| 2741 | - int32 expDiff; | |
| 2742 | - | |
| 2743 | - aSig = extractFloatx80Frac( a ); | |
| 2744 | - aExp = extractFloatx80Exp( a ); | |
| 2745 | - bSig = extractFloatx80Frac( b ); | |
| 2746 | - bExp = extractFloatx80Exp( b ); | |
| 2747 | - expDiff = aExp - bExp; | |
| 2748 | - if ( 0 < expDiff ) { | |
| 2749 | - if ( aExp == 0x7FFF ) { | |
| 2750 | - if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b ); | |
| 2751 | - return a; | |
| 2752 | - } | |
| 2753 | - if ( bExp == 0 ) --expDiff; | |
| 2754 | - shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); | |
| 2755 | - zExp = aExp; | |
| 2756 | - } | |
| 2757 | - else if ( expDiff < 0 ) { | |
| 2758 | - if ( bExp == 0x7FFF ) { | |
| 2759 | - if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); | |
| 2760 | - return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
| 2761 | - } | |
| 2762 | - if ( aExp == 0 ) ++expDiff; | |
| 2763 | - shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); | |
| 2764 | - zExp = bExp; | |
| 2765 | - } | |
| 2766 | - else { | |
| 2767 | - if ( aExp == 0x7FFF ) { | |
| 2768 | - if ( (bits64) ( ( aSig | bSig )<<1 ) ) { | |
| 2769 | - return propagateFloatx80NaN( a, b ); | |
| 2770 | - } | |
| 2771 | - return a; | |
| 2772 | - } | |
| 2773 | - zSig1 = 0; | |
| 2774 | - zSig0 = aSig + bSig; | |
| 2775 | - if ( aExp == 0 ) { | |
| 2776 | - normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 ); | |
| 2777 | - goto roundAndPack; | |
| 2778 | - } | |
| 2779 | - zExp = aExp; | |
| 2780 | - goto shiftRight1; | |
| 2781 | - } | |
| 2782 | - | |
| 2783 | - zSig0 = aSig + bSig; | |
| 2784 | - | |
| 2785 | - if ( (sbits64) zSig0 < 0 ) goto roundAndPack; | |
| 2786 | - shiftRight1: | |
| 2787 | - shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 ); | |
| 2788 | - zSig0 |= LIT64( 0x8000000000000000 ); | |
| 2789 | - ++zExp; | |
| 2790 | - roundAndPack: | |
| 2791 | - return | |
| 2792 | - roundAndPackFloatx80( | |
| 2793 | - floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 ); | |
| 2794 | - | |
| 2795 | -} | |
| 2796 | - | |
| 2797 | -/* | |
| 2798 | -------------------------------------------------------------------------------- | |
| 2799 | -Returns the result of subtracting the absolute values of the extended | |
| 2800 | -double-precision floating-point values `a' and `b'. If `zSign' is true, | |
| 2801 | -the difference is negated before being returned. `zSign' is ignored if the | |
| 2802 | -result is a NaN. The subtraction is performed according to the IEC/IEEE | |
| 2803 | -Standard for Binary Floating-point Arithmetic. | |
| 2804 | -------------------------------------------------------------------------------- | |
| 2805 | -*/ | |
| 2806 | -static floatx80 subFloatx80Sigs( floatx80 a, floatx80 b, flag zSign ) | |
| 2807 | -{ | |
| 2808 | - int32 aExp, bExp, zExp; | |
| 2809 | - bits64 aSig, bSig, zSig0, zSig1; | |
| 2810 | - int32 expDiff; | |
| 2811 | - floatx80 z; | |
| 2812 | - | |
| 2813 | - aSig = extractFloatx80Frac( a ); | |
| 2814 | - aExp = extractFloatx80Exp( a ); | |
| 2815 | - bSig = extractFloatx80Frac( b ); | |
| 2816 | - bExp = extractFloatx80Exp( b ); | |
| 2817 | - expDiff = aExp - bExp; | |
| 2818 | - if ( 0 < expDiff ) goto aExpBigger; | |
| 2819 | - if ( expDiff < 0 ) goto bExpBigger; | |
| 2820 | - if ( aExp == 0x7FFF ) { | |
| 2821 | - if ( (bits64) ( ( aSig | bSig )<<1 ) ) { | |
| 2822 | - return propagateFloatx80NaN( a, b ); | |
| 2823 | - } | |
| 2824 | - float_raise( float_flag_invalid ); | |
| 2825 | - z.low = floatx80_default_nan_low; | |
| 2826 | - z.high = floatx80_default_nan_high; | |
| 2827 | - return z; | |
| 2828 | - } | |
| 2829 | - if ( aExp == 0 ) { | |
| 2830 | - aExp = 1; | |
| 2831 | - bExp = 1; | |
| 2832 | - } | |
| 2833 | - zSig1 = 0; | |
| 2834 | - if ( bSig < aSig ) goto aBigger; | |
| 2835 | - if ( aSig < bSig ) goto bBigger; | |
| 2836 | - return packFloatx80( float_rounding_mode == float_round_down, 0, 0 ); | |
| 2837 | - bExpBigger: | |
| 2838 | - if ( bExp == 0x7FFF ) { | |
| 2839 | - if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); | |
| 2840 | - return packFloatx80( zSign ^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
| 2841 | - } | |
| 2842 | - if ( aExp == 0 ) ++expDiff; | |
| 2843 | - shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); | |
| 2844 | - bBigger: | |
| 2845 | - sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 ); | |
| 2846 | - zExp = bExp; | |
| 2847 | - zSign ^= 1; | |
| 2848 | - goto normalizeRoundAndPack; | |
| 2849 | - aExpBigger: | |
| 2850 | - if ( aExp == 0x7FFF ) { | |
| 2851 | - if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b ); | |
| 2852 | - return a; | |
| 2853 | - } | |
| 2854 | - if ( bExp == 0 ) --expDiff; | |
| 2855 | - shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); | |
| 2856 | - aBigger: | |
| 2857 | - sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 ); | |
| 2858 | - zExp = aExp; | |
| 2859 | - normalizeRoundAndPack: | |
| 2860 | - return | |
| 2861 | - normalizeRoundAndPackFloatx80( | |
| 2862 | - floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 ); | |
| 2863 | - | |
| 2864 | -} | |
| 2865 | - | |
| 2866 | -/* | |
| 2867 | -------------------------------------------------------------------------------- | |
| 2868 | -Returns the result of adding the extended double-precision floating-point | |
| 2869 | -values `a' and `b'. The operation is performed according to the IEC/IEEE | |
| 2870 | -Standard for Binary Floating-point Arithmetic. | |
| 2871 | -------------------------------------------------------------------------------- | |
| 2872 | -*/ | |
| 2873 | -floatx80 floatx80_add( floatx80 a, floatx80 b ) | |
| 2874 | -{ | |
| 2875 | - flag aSign, bSign; | |
| 2876 | - | |
| 2877 | - aSign = extractFloatx80Sign( a ); | |
| 2878 | - bSign = extractFloatx80Sign( b ); | |
| 2879 | - if ( aSign == bSign ) { | |
| 2880 | - return addFloatx80Sigs( a, b, aSign ); | |
| 2881 | - } | |
| 2882 | - else { | |
| 2883 | - return subFloatx80Sigs( a, b, aSign ); | |
| 2884 | - } | |
| 2885 | - | |
| 2886 | -} | |
| 2887 | - | |
| 2888 | -/* | |
| 2889 | -------------------------------------------------------------------------------- | |
| 2890 | -Returns the result of subtracting the extended double-precision floating- | |
| 2891 | -point values `a' and `b'. The operation is performed according to the | |
| 2892 | -IEC/IEEE Standard for Binary Floating-point Arithmetic. | |
| 2893 | -------------------------------------------------------------------------------- | |
| 2894 | -*/ | |
| 2895 | -floatx80 floatx80_sub( floatx80 a, floatx80 b ) | |
| 2896 | -{ | |
| 2897 | - flag aSign, bSign; | |
| 2898 | - | |
| 2899 | - aSign = extractFloatx80Sign( a ); | |
| 2900 | - bSign = extractFloatx80Sign( b ); | |
| 2901 | - if ( aSign == bSign ) { | |
| 2902 | - return subFloatx80Sigs( a, b, aSign ); | |
| 2903 | - } | |
| 2904 | - else { | |
| 2905 | - return addFloatx80Sigs( a, b, aSign ); | |
| 2906 | - } | |
| 2907 | - | |
| 2908 | -} | |
| 2909 | - | |
| 2910 | -/* | |
| 2911 | -------------------------------------------------------------------------------- | |
| 2912 | -Returns the result of multiplying the extended double-precision floating- | |
| 2913 | -point values `a' and `b'. The operation is performed according to the | |
| 2914 | -IEC/IEEE Standard for Binary Floating-point Arithmetic. | |
| 2915 | -------------------------------------------------------------------------------- | |
| 2916 | -*/ | |
| 2917 | -floatx80 floatx80_mul( floatx80 a, floatx80 b ) | |
| 2918 | -{ | |
| 2919 | - flag aSign, bSign, zSign; | |
| 2920 | - int32 aExp, bExp, zExp; | |
| 2921 | - bits64 aSig, bSig, zSig0, zSig1; | |
| 2922 | - floatx80 z; | |
| 2923 | - | |
| 2924 | - aSig = extractFloatx80Frac( a ); | |
| 2925 | - aExp = extractFloatx80Exp( a ); | |
| 2926 | - aSign = extractFloatx80Sign( a ); | |
| 2927 | - bSig = extractFloatx80Frac( b ); | |
| 2928 | - bExp = extractFloatx80Exp( b ); | |
| 2929 | - bSign = extractFloatx80Sign( b ); | |
| 2930 | - zSign = aSign ^ bSign; | |
| 2931 | - if ( aExp == 0x7FFF ) { | |
| 2932 | - if ( (bits64) ( aSig<<1 ) | |
| 2933 | - || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) { | |
| 2934 | - return propagateFloatx80NaN( a, b ); | |
| 2935 | - } | |
| 2936 | - if ( ( bExp | bSig ) == 0 ) goto invalid; | |
| 2937 | - return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
| 2938 | - } | |
| 2939 | - if ( bExp == 0x7FFF ) { | |
| 2940 | - if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); | |
| 2941 | - if ( ( aExp | aSig ) == 0 ) { | |
| 2942 | - invalid: | |
| 2943 | - float_raise( float_flag_invalid ); | |
| 2944 | - z.low = floatx80_default_nan_low; | |
| 2945 | - z.high = floatx80_default_nan_high; | |
| 2946 | - return z; | |
| 2947 | - } | |
| 2948 | - return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
| 2949 | - } | |
| 2950 | - if ( aExp == 0 ) { | |
| 2951 | - if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); | |
| 2952 | - normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); | |
| 2953 | - } | |
| 2954 | - if ( bExp == 0 ) { | |
| 2955 | - if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 ); | |
| 2956 | - normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); | |
| 2957 | - } | |
| 2958 | - zExp = aExp + bExp - 0x3FFE; | |
| 2959 | - mul64To128( aSig, bSig, &zSig0, &zSig1 ); | |
| 2960 | - if ( 0 < (sbits64) zSig0 ) { | |
| 2961 | - shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 ); | |
| 2962 | - --zExp; | |
| 2963 | - } | |
| 2964 | - return | |
| 2965 | - roundAndPackFloatx80( | |
| 2966 | - floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 ); | |
| 2967 | - | |
| 2968 | -} | |
| 2969 | - | |
| 2970 | -/* | |
| 2971 | -------------------------------------------------------------------------------- | |
| 2972 | -Returns the result of dividing the extended double-precision floating-point | |
| 2973 | -value `a' by the corresponding value `b'. The operation is performed | |
| 2974 | -according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | |
| 2975 | -------------------------------------------------------------------------------- | |
| 2976 | -*/ | |
| 2977 | -floatx80 floatx80_div( floatx80 a, floatx80 b ) | |
| 2978 | -{ | |
| 2979 | - flag aSign, bSign, zSign; | |
| 2980 | - int32 aExp, bExp, zExp; | |
| 2981 | - bits64 aSig, bSig, zSig0, zSig1; | |
| 2982 | - bits64 rem0, rem1, rem2, term0, term1, term2; | |
| 2983 | - floatx80 z; | |
| 2984 | - | |
| 2985 | - aSig = extractFloatx80Frac( a ); | |
| 2986 | - aExp = extractFloatx80Exp( a ); | |
| 2987 | - aSign = extractFloatx80Sign( a ); | |
| 2988 | - bSig = extractFloatx80Frac( b ); | |
| 2989 | - bExp = extractFloatx80Exp( b ); | |
| 2990 | - bSign = extractFloatx80Sign( b ); | |
| 2991 | - zSign = aSign ^ bSign; | |
| 2992 | - if ( aExp == 0x7FFF ) { | |
| 2993 | - if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b ); | |
| 2994 | - if ( bExp == 0x7FFF ) { | |
| 2995 | - if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); | |
| 2996 | - goto invalid; | |
| 2997 | - } | |
| 2998 | - return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
| 2999 | - } | |
| 3000 | - if ( bExp == 0x7FFF ) { | |
| 3001 | - if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); | |
| 3002 | - return packFloatx80( zSign, 0, 0 ); | |
| 3003 | - } | |
| 3004 | - if ( bExp == 0 ) { | |
| 3005 | - if ( bSig == 0 ) { | |
| 3006 | - if ( ( aExp | aSig ) == 0 ) { | |
| 3007 | - invalid: | |
| 3008 | - float_raise( float_flag_invalid ); | |
| 3009 | - z.low = floatx80_default_nan_low; | |
| 3010 | - z.high = floatx80_default_nan_high; | |
| 3011 | - return z; | |
| 3012 | - } | |
| 3013 | - float_raise( float_flag_divbyzero ); | |
| 3014 | - return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
| 3015 | - } | |
| 3016 | - normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); | |
| 3017 | - } | |
| 3018 | - if ( aExp == 0 ) { | |
| 3019 | - if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); | |
| 3020 | - normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); | |
| 3021 | - } | |
| 3022 | - zExp = aExp - bExp + 0x3FFE; | |
| 3023 | - rem1 = 0; | |
| 3024 | - if ( bSig <= aSig ) { | |
| 3025 | - shift128Right( aSig, 0, 1, &aSig, &rem1 ); | |
| 3026 | - ++zExp; | |
| 3027 | - } | |
| 3028 | - zSig0 = estimateDiv128To64( aSig, rem1, bSig ); | |
| 3029 | - mul64To128( bSig, zSig0, &term0, &term1 ); | |
| 3030 | - sub128( aSig, rem1, term0, term1, &rem0, &rem1 ); | |
| 3031 | - while ( (sbits64) rem0 < 0 ) { | |
| 3032 | - --zSig0; | |
| 3033 | - add128( rem0, rem1, 0, bSig, &rem0, &rem1 ); | |
| 3034 | - } | |
| 3035 | - zSig1 = estimateDiv128To64( rem1, 0, bSig ); | |
| 3036 | - if ( (bits64) ( zSig1<<1 ) <= 8 ) { | |
| 3037 | - mul64To128( bSig, zSig1, &term1, &term2 ); | |
| 3038 | - sub128( rem1, 0, term1, term2, &rem1, &rem2 ); | |
| 3039 | - while ( (sbits64) rem1 < 0 ) { | |
| 3040 | - --zSig1; | |
| 3041 | - add128( rem1, rem2, 0, bSig, &rem1, &rem2 ); | |
| 3042 | - } | |
| 3043 | - zSig1 |= ( ( rem1 | rem2 ) != 0 ); | |
| 3044 | - } | |
| 3045 | - return | |
| 3046 | - roundAndPackFloatx80( | |
| 3047 | - floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 ); | |
| 3048 | - | |
| 3049 | -} | |
| 3050 | - | |
| 3051 | -/* | |
| 3052 | -------------------------------------------------------------------------------- | |
| 3053 | -Returns the remainder of the extended double-precision floating-point value | |
| 3054 | -`a' with respect to the corresponding value `b'. The operation is performed | |
| 3055 | -according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | |
| 3056 | -------------------------------------------------------------------------------- | |
| 3057 | -*/ | |
| 3058 | -floatx80 floatx80_rem( floatx80 a, floatx80 b ) | |
| 3059 | -{ | |
| 3060 | - flag aSign, bSign, zSign; | |
| 3061 | - int32 aExp, bExp, expDiff; | |
| 3062 | - bits64 aSig0, aSig1, bSig; | |
| 3063 | - bits64 q, term0, term1, alternateASig0, alternateASig1; | |
| 3064 | - floatx80 z; | |
| 3065 | - | |
| 3066 | - aSig0 = extractFloatx80Frac( a ); | |
| 3067 | - aExp = extractFloatx80Exp( a ); | |
| 3068 | - aSign = extractFloatx80Sign( a ); | |
| 3069 | - bSig = extractFloatx80Frac( b ); | |
| 3070 | - bExp = extractFloatx80Exp( b ); | |
| 3071 | - bSign = extractFloatx80Sign( b ); | |
| 3072 | - if ( aExp == 0x7FFF ) { | |
| 3073 | - if ( (bits64) ( aSig0<<1 ) | |
| 3074 | - || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) { | |
| 3075 | - return propagateFloatx80NaN( a, b ); | |
| 3076 | - } | |
| 3077 | - goto invalid; | |
| 3078 | - } | |
| 3079 | - if ( bExp == 0x7FFF ) { | |
| 3080 | - if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); | |
| 3081 | - return a; | |
| 3082 | - } | |
| 3083 | - if ( bExp == 0 ) { | |
| 3084 | - if ( bSig == 0 ) { | |
| 3085 | - invalid: | |
| 3086 | - float_raise( float_flag_invalid ); | |
| 3087 | - z.low = floatx80_default_nan_low; | |
| 3088 | - z.high = floatx80_default_nan_high; | |
| 3089 | - return z; | |
| 3090 | - } | |
| 3091 | - normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); | |
| 3092 | - } | |
| 3093 | - if ( aExp == 0 ) { | |
| 3094 | - if ( (bits64) ( aSig0<<1 ) == 0 ) return a; | |
| 3095 | - normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); | |
| 3096 | - } | |
| 3097 | - bSig |= LIT64( 0x8000000000000000 ); | |
| 3098 | - zSign = aSign; | |
| 3099 | - expDiff = aExp - bExp; | |
| 3100 | - aSig1 = 0; | |
| 3101 | - if ( expDiff < 0 ) { | |
| 3102 | - if ( expDiff < -1 ) return a; | |
| 3103 | - shift128Right( aSig0, 0, 1, &aSig0, &aSig1 ); | |
| 3104 | - expDiff = 0; | |
| 3105 | - } | |
| 3106 | - q = ( bSig <= aSig0 ); | |
| 3107 | - if ( q ) aSig0 -= bSig; | |
| 3108 | - expDiff -= 64; | |
| 3109 | - while ( 0 < expDiff ) { | |
| 3110 | - q = estimateDiv128To64( aSig0, aSig1, bSig ); | |
| 3111 | - q = ( 2 < q ) ? q - 2 : 0; | |
| 3112 | - mul64To128( bSig, q, &term0, &term1 ); | |
| 3113 | - sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); | |
| 3114 | - shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 ); | |
| 3115 | - expDiff -= 62; | |
| 3116 | - } | |
| 3117 | - expDiff += 64; | |
| 3118 | - if ( 0 < expDiff ) { | |
| 3119 | - q = estimateDiv128To64( aSig0, aSig1, bSig ); | |
| 3120 | - q = ( 2 < q ) ? q - 2 : 0; | |
| 3121 | - q >>= 64 - expDiff; | |
| 3122 | - mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 ); | |
| 3123 | - sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); | |
| 3124 | - shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 ); | |
| 3125 | - while ( le128( term0, term1, aSig0, aSig1 ) ) { | |
| 3126 | - ++q; | |
| 3127 | - sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); | |
| 3128 | - } | |
| 3129 | - } | |
| 3130 | - else { | |
| 3131 | - term1 = 0; | |
| 3132 | - term0 = bSig; | |
| 3133 | - } | |
| 3134 | - sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 ); | |
| 3135 | - if ( lt128( alternateASig0, alternateASig1, aSig0, aSig1 ) | |
| 3136 | - || ( eq128( alternateASig0, alternateASig1, aSig0, aSig1 ) | |
| 3137 | - && ( q & 1 ) ) | |
| 3138 | - ) { | |
| 3139 | - aSig0 = alternateASig0; | |
| 3140 | - aSig1 = alternateASig1; | |
| 3141 | - zSign = ! zSign; | |
| 3142 | - } | |
| 3143 | - return | |
| 3144 | - normalizeRoundAndPackFloatx80( | |
| 3145 | - 80, zSign, bExp + expDiff, aSig0, aSig1 ); | |
| 3146 | - | |
| 3147 | -} | |
| 3148 | - | |
| 3149 | -/* | |
| 3150 | -------------------------------------------------------------------------------- | |
| 3151 | -Returns the square root of the extended double-precision floating-point | |
| 3152 | -value `a'. The operation is performed according to the IEC/IEEE Standard | |
| 3153 | -for Binary Floating-point Arithmetic. | |
| 3154 | -------------------------------------------------------------------------------- | |
| 3155 | -*/ | |
| 3156 | -floatx80 floatx80_sqrt( floatx80 a ) | |
| 3157 | -{ | |
| 3158 | - flag aSign; | |
| 3159 | - int32 aExp, zExp; | |
| 3160 | - bits64 aSig0, aSig1, zSig0, zSig1; | |
| 3161 | - bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3; | |
| 3162 | - bits64 shiftedRem0, shiftedRem1; | |
| 3163 | - floatx80 z; | |
| 3164 | - | |
| 3165 | - aSig0 = extractFloatx80Frac( a ); | |
| 3166 | - aExp = extractFloatx80Exp( a ); | |
| 3167 | - aSign = extractFloatx80Sign( a ); | |
| 3168 | - if ( aExp == 0x7FFF ) { | |
| 3169 | - if ( (bits64) ( aSig0<<1 ) ) return propagateFloatx80NaN( a, a ); | |
| 3170 | - if ( ! aSign ) return a; | |
| 3171 | - goto invalid; | |
| 3172 | - } | |
| 3173 | - if ( aSign ) { | |
| 3174 | - if ( ( aExp | aSig0 ) == 0 ) return a; | |
| 3175 | - invalid: | |
| 3176 | - float_raise( float_flag_invalid ); | |
| 3177 | - z.low = floatx80_default_nan_low; | |
| 3178 | - z.high = floatx80_default_nan_high; | |
| 3179 | - return z; | |
| 3180 | - } | |
| 3181 | - if ( aExp == 0 ) { | |
| 3182 | - if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 ); | |
| 3183 | - normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); | |
| 3184 | - } | |
| 3185 | - zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF; | |
| 3186 | - zSig0 = estimateSqrt32( aExp, aSig0>>32 ); | |
| 3187 | - zSig0 <<= 31; | |
| 3188 | - aSig1 = 0; | |
| 3189 | - shift128Right( aSig0, 0, ( aExp & 1 ) + 2, &aSig0, &aSig1 ); | |
| 3190 | - zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0 ) + zSig0 + 4; | |
| 3191 | - if ( 0 <= (sbits64) zSig0 ) zSig0 = LIT64( 0xFFFFFFFFFFFFFFFF ); | |
| 3192 | - shortShift128Left( aSig0, aSig1, 2, &aSig0, &aSig1 ); | |
| 3193 | - mul64To128( zSig0, zSig0, &term0, &term1 ); | |
| 3194 | - sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 ); | |
| 3195 | - while ( (sbits64) rem0 < 0 ) { | |
| 3196 | - --zSig0; | |
| 3197 | - shortShift128Left( 0, zSig0, 1, &term0, &term1 ); | |
| 3198 | - term1 |= 1; | |
| 3199 | - add128( rem0, rem1, term0, term1, &rem0, &rem1 ); | |
| 3200 | - } | |
| 3201 | - shortShift128Left( rem0, rem1, 63, &shiftedRem0, &shiftedRem1 ); | |
| 3202 | - zSig1 = estimateDiv128To64( shiftedRem0, shiftedRem1, zSig0 ); | |
| 3203 | - if ( (bits64) ( zSig1<<1 ) <= 10 ) { | |
| 3204 | - if ( zSig1 == 0 ) zSig1 = 1; | |
| 3205 | - mul64To128( zSig0, zSig1, &term1, &term2 ); | |
| 3206 | - shortShift128Left( term1, term2, 1, &term1, &term2 ); | |
| 3207 | - sub128( rem1, 0, term1, term2, &rem1, &rem2 ); | |
| 3208 | - mul64To128( zSig1, zSig1, &term2, &term3 ); | |
| 3209 | - sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 ); | |
| 3210 | - while ( (sbits64) rem1 < 0 ) { | |
| 3211 | - --zSig1; | |
| 3212 | - shortShift192Left( 0, zSig0, zSig1, 1, &term1, &term2, &term3 ); | |
| 3213 | - term3 |= 1; | |
| 3214 | - add192( | |
| 3215 | - rem1, rem2, rem3, term1, term2, term3, &rem1, &rem2, &rem3 ); | |
| 3216 | - } | |
| 3217 | - zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); | |
| 3218 | - } | |
| 3219 | - return | |
| 3220 | - roundAndPackFloatx80( | |
| 3221 | - floatx80_rounding_precision, 0, zExp, zSig0, zSig1 ); | |
| 3222 | - | |
| 3223 | -} | |
| 3224 | - | |
| 3225 | -/* | |
| 3226 | -------------------------------------------------------------------------------- | |
| 3227 | -Returns 1 if the extended double-precision floating-point value `a' is | |
| 3228 | -equal to the corresponding value `b', and 0 otherwise. The comparison is | |
| 3229 | -performed according to the IEC/IEEE Standard for Binary Floating-point | |
| 3230 | -Arithmetic. | |
| 3231 | -------------------------------------------------------------------------------- | |
| 3232 | -*/ | |
| 3233 | -flag floatx80_eq( floatx80 a, floatx80 b ) | |
| 3234 | -{ | |
| 3235 | - | |
| 3236 | - if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | |
| 3237 | - && (bits64) ( extractFloatx80Frac( a )<<1 ) ) | |
| 3238 | - || ( ( extractFloatx80Exp( b ) == 0x7FFF ) | |
| 3239 | - && (bits64) ( extractFloatx80Frac( b )<<1 ) ) | |
| 3240 | - ) { | |
| 3241 | - if ( floatx80_is_signaling_nan( a ) | |
| 3242 | - || floatx80_is_signaling_nan( b ) ) { | |
| 3243 | - float_raise( float_flag_invalid ); | |
| 3244 | - } | |
| 3245 | - return 0; | |
| 3246 | - } | |
| 3247 | - return | |
| 3248 | - ( a.low == b.low ) | |
| 3249 | - && ( ( a.high == b.high ) | |
| 3250 | - || ( ( a.low == 0 ) | |
| 3251 | - && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) ) | |
| 3252 | - ); | |
| 3253 | - | |
| 3254 | -} | |
| 3255 | - | |
| 3256 | -/* | |
| 3257 | -------------------------------------------------------------------------------- | |
| 3258 | -Returns 1 if the extended double-precision floating-point value `a' is | |
| 3259 | -less than or equal to the corresponding value `b', and 0 otherwise. The | |
| 3260 | -comparison is performed according to the IEC/IEEE Standard for Binary | |
| 3261 | -Floating-point Arithmetic. | |
| 3262 | -------------------------------------------------------------------------------- | |
| 3263 | -*/ | |
| 3264 | -flag floatx80_le( floatx80 a, floatx80 b ) | |
| 3265 | -{ | |
| 3266 | - flag aSign, bSign; | |
| 3267 | - | |
| 3268 | - if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | |
| 3269 | - && (bits64) ( extractFloatx80Frac( a )<<1 ) ) | |
| 3270 | - || ( ( extractFloatx80Exp( b ) == 0x7FFF ) | |
| 3271 | - && (bits64) ( extractFloatx80Frac( b )<<1 ) ) | |
| 3272 | - ) { | |
| 3273 | - float_raise( float_flag_invalid ); | |
| 3274 | - return 0; | |
| 3275 | - } | |
| 3276 | - aSign = extractFloatx80Sign( a ); | |
| 3277 | - bSign = extractFloatx80Sign( b ); | |
| 3278 | - if ( aSign != bSign ) { | |
| 3279 | - return | |
| 3280 | - aSign | |
| 3281 | - || ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) | |
| 3282 | - == 0 ); | |
| 3283 | - } | |
| 3284 | - return | |
| 3285 | - aSign ? le128( b.high, b.low, a.high, a.low ) | |
| 3286 | - : le128( a.high, a.low, b.high, b.low ); | |
| 3287 | - | |
| 3288 | -} | |
| 3289 | - | |
| 3290 | -/* | |
| 3291 | -------------------------------------------------------------------------------- | |
| 3292 | -Returns 1 if the extended double-precision floating-point value `a' is | |
| 3293 | -less than the corresponding value `b', and 0 otherwise. The comparison | |
| 3294 | -is performed according to the IEC/IEEE Standard for Binary Floating-point | |
| 3295 | -Arithmetic. | |
| 3296 | -------------------------------------------------------------------------------- | |
| 3297 | -*/ | |
| 3298 | -flag floatx80_lt( floatx80 a, floatx80 b ) | |
| 3299 | -{ | |
| 3300 | - flag aSign, bSign; | |
| 3301 | - | |
| 3302 | - if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | |
| 3303 | - && (bits64) ( extractFloatx80Frac( a )<<1 ) ) | |
| 3304 | - || ( ( extractFloatx80Exp( b ) == 0x7FFF ) | |
| 3305 | - && (bits64) ( extractFloatx80Frac( b )<<1 ) ) | |
| 3306 | - ) { | |
| 3307 | - float_raise( float_flag_invalid ); | |
| 3308 | - return 0; | |
| 3309 | - } | |
| 3310 | - aSign = extractFloatx80Sign( a ); | |
| 3311 | - bSign = extractFloatx80Sign( b ); | |
| 3312 | - if ( aSign != bSign ) { | |
| 3313 | - return | |
| 3314 | - aSign | |
| 3315 | - && ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) | |
| 3316 | - != 0 ); | |
| 3317 | - } | |
| 3318 | - return | |
| 3319 | - aSign ? lt128( b.high, b.low, a.high, a.low ) | |
| 3320 | - : lt128( a.high, a.low, b.high, b.low ); | |
| 3321 | - | |
| 3322 | -} | |
| 3323 | - | |
| 3324 | -/* | |
| 3325 | -------------------------------------------------------------------------------- | |
| 3326 | -Returns 1 if the extended double-precision floating-point value `a' is equal | |
| 3327 | -to the corresponding value `b', and 0 otherwise. The invalid exception is | |
| 3328 | -raised if either operand is a NaN. Otherwise, the comparison is performed | |
| 3329 | -according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | |
| 3330 | -------------------------------------------------------------------------------- | |
| 3331 | -*/ | |
| 3332 | -flag floatx80_eq_signaling( floatx80 a, floatx80 b ) | |
| 3333 | -{ | |
| 3334 | - | |
| 3335 | - if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | |
| 3336 | - && (bits64) ( extractFloatx80Frac( a )<<1 ) ) | |
| 3337 | - || ( ( extractFloatx80Exp( b ) == 0x7FFF ) | |
| 3338 | - && (bits64) ( extractFloatx80Frac( b )<<1 ) ) | |
| 3339 | - ) { | |
| 3340 | - float_raise( float_flag_invalid ); | |
| 3341 | - return 0; | |
| 3342 | - } | |
| 3343 | - return | |
| 3344 | - ( a.low == b.low ) | |
| 3345 | - && ( ( a.high == b.high ) | |
| 3346 | - || ( ( a.low == 0 ) | |
| 3347 | - && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) ) | |
| 3348 | - ); | |
| 3349 | - | |
| 3350 | -} | |
| 3351 | - | |
| 3352 | -/* | |
| 3353 | -------------------------------------------------------------------------------- | |
| 3354 | -Returns 1 if the extended double-precision floating-point value `a' is less | |
| 3355 | -than or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs | |
| 3356 | -do not cause an exception. Otherwise, the comparison is performed according | |
| 3357 | -to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | |
| 3358 | -------------------------------------------------------------------------------- | |
| 3359 | -*/ | |
| 3360 | -flag floatx80_le_quiet( floatx80 a, floatx80 b ) | |
| 3361 | -{ | |
| 3362 | - flag aSign, bSign; | |
| 3363 | - | |
| 3364 | - if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | |
| 3365 | - && (bits64) ( extractFloatx80Frac( a )<<1 ) ) | |
| 3366 | - || ( ( extractFloatx80Exp( b ) == 0x7FFF ) | |
| 3367 | - && (bits64) ( extractFloatx80Frac( b )<<1 ) ) | |
| 3368 | - ) { | |
| 3369 | - if ( floatx80_is_signaling_nan( a ) | |
| 3370 | - || floatx80_is_signaling_nan( b ) ) { | |
| 3371 | - float_raise( float_flag_invalid ); | |
| 3372 | - } | |
| 3373 | - return 0; | |
| 3374 | - } | |
| 3375 | - aSign = extractFloatx80Sign( a ); | |
| 3376 | - bSign = extractFloatx80Sign( b ); | |
| 3377 | - if ( aSign != bSign ) { | |
| 3378 | - return | |
| 3379 | - aSign | |
| 3380 | - || ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) | |
| 3381 | - == 0 ); | |
| 3382 | - } | |
| 3383 | - return | |
| 3384 | - aSign ? le128( b.high, b.low, a.high, a.low ) | |
| 3385 | - : le128( a.high, a.low, b.high, b.low ); | |
| 3386 | - | |
| 3387 | -} | |
| 3388 | - | |
| 3389 | -/* | |
| 3390 | -------------------------------------------------------------------------------- | |
| 3391 | -Returns 1 if the extended double-precision floating-point value `a' is less | |
| 3392 | -than the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause | |
| 3393 | -an exception. Otherwise, the comparison is performed according to the | |
| 3394 | -IEC/IEEE Standard for Binary Floating-point Arithmetic. | |
| 3395 | -------------------------------------------------------------------------------- | |
| 3396 | -*/ | |
| 3397 | -flag floatx80_lt_quiet( floatx80 a, floatx80 b ) | |
| 3398 | -{ | |
| 3399 | - flag aSign, bSign; | |
| 3400 | - | |
| 3401 | - if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | |
| 3402 | - && (bits64) ( extractFloatx80Frac( a )<<1 ) ) | |
| 3403 | - || ( ( extractFloatx80Exp( b ) == 0x7FFF ) | |
| 3404 | - && (bits64) ( extractFloatx80Frac( b )<<1 ) ) | |
| 3405 | - ) { | |
| 3406 | - if ( floatx80_is_signaling_nan( a ) | |
| 3407 | - || floatx80_is_signaling_nan( b ) ) { | |
| 3408 | - float_raise( float_flag_invalid ); | |
| 3409 | - } | |
| 3410 | - return 0; | |
| 3411 | - } | |
| 3412 | - aSign = extractFloatx80Sign( a ); | |
| 3413 | - bSign = extractFloatx80Sign( b ); | |
| 3414 | - if ( aSign != bSign ) { | |
| 3415 | - return | |
| 3416 | - aSign | |
| 3417 | - && ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) | |
| 3418 | - != 0 ); | |
| 3419 | - } | |
| 3420 | - return | |
| 3421 | - aSign ? lt128( b.high, b.low, a.high, a.low ) | |
| 3422 | - : lt128( a.high, a.low, b.high, b.low ); | |
| 3423 | - | |
| 3424 | -} | |
| 3425 | - | |
| 3426 | -#endif | |
| 3427 | - |
target-arm/nwfpe/softfloat.h deleted
100644 → 0
| 1 | - | |
| 2 | -/* | |
| 3 | -=============================================================================== | |
| 4 | - | |
| 5 | -This C header file is part of the SoftFloat IEC/IEEE Floating-point | |
| 6 | -Arithmetic Package, Release 2. | |
| 7 | - | |
| 8 | -Written by John R. Hauser. This work was made possible in part by the | |
| 9 | -International Computer Science Institute, located at Suite 600, 1947 Center | |
| 10 | -Street, Berkeley, California 94704. Funding was partially provided by the | |
| 11 | -National Science Foundation under grant MIP-9311980. The original version | |
| 12 | -of this code was written as part of a project to build a fixed-point vector | |
| 13 | -processor in collaboration with the University of California at Berkeley, | |
| 14 | -overseen by Profs. Nelson Morgan and John Wawrzynek. More information | |
| 15 | -is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ | |
| 16 | -arithmetic/softfloat.html'. | |
| 17 | - | |
| 18 | -THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort | |
| 19 | -has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT | |
| 20 | -TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO | |
| 21 | -PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY | |
| 22 | -AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. | |
| 23 | - | |
| 24 | -Derivative works are acceptable, even for commercial purposes, so long as | |
| 25 | -(1) they include prominent notice that the work is derivative, and (2) they | |
| 26 | -include prominent notice akin to these three paragraphs for those parts of | |
| 27 | -this code that are retained. | |
| 28 | - | |
| 29 | -=============================================================================== | |
| 30 | -*/ | |
| 31 | - | |
| 32 | -#ifndef __SOFTFLOAT_H__ | |
| 33 | -#define __SOFTFLOAT_H__ | |
| 34 | - | |
| 35 | -/* | |
| 36 | -------------------------------------------------------------------------------- | |
| 37 | -The macro `FLOATX80' must be defined to enable the extended double-precision | |
| 38 | -floating-point format `floatx80'. If this macro is not defined, the | |
| 39 | -`floatx80' type will not be defined, and none of the functions that either | |
| 40 | -input or output the `floatx80' type will be defined. | |
| 41 | -------------------------------------------------------------------------------- | |
| 42 | -*/ | |
| 43 | -#define FLOATX80 | |
| 44 | - | |
| 45 | -/* | |
| 46 | -------------------------------------------------------------------------------- | |
| 47 | -Software IEC/IEEE floating-point types. | |
| 48 | -------------------------------------------------------------------------------- | |
| 49 | -*/ | |
| 50 | -typedef unsigned long int float32; | |
| 51 | -typedef unsigned long long float64; | |
| 52 | -typedef struct { | |
| 53 | - unsigned short high; | |
| 54 | - unsigned long long low; | |
| 55 | -} floatx80; | |
| 56 | - | |
| 57 | -/* | |
| 58 | -------------------------------------------------------------------------------- | |
| 59 | -Software IEC/IEEE floating-point underflow tininess-detection mode. | |
| 60 | -------------------------------------------------------------------------------- | |
| 61 | -*/ | |
| 62 | -extern signed char float_detect_tininess; | |
| 63 | -enum { | |
| 64 | - float_tininess_after_rounding = 0, | |
| 65 | - float_tininess_before_rounding = 1 | |
| 66 | -}; | |
| 67 | - | |
| 68 | -/* | |
| 69 | -------------------------------------------------------------------------------- | |
| 70 | -Software IEC/IEEE floating-point rounding mode. | |
| 71 | -------------------------------------------------------------------------------- | |
| 72 | -*/ | |
| 73 | -extern signed char float_rounding_mode; | |
| 74 | -enum { | |
| 75 | - float_round_nearest_even = 0, | |
| 76 | - float_round_to_zero = 1, | |
| 77 | - float_round_down = 2, | |
| 78 | - float_round_up = 3 | |
| 79 | -}; | |
| 80 | - | |
| 81 | -/* | |
| 82 | -------------------------------------------------------------------------------- | |
| 83 | -Software IEC/IEEE floating-point exception flags. | |
| 84 | -------------------------------------------------------------------------------- | |
| 85 | -extern signed char float_exception_flags; | |
| 86 | -enum { | |
| 87 | - float_flag_inexact = 1, | |
| 88 | - float_flag_underflow = 2, | |
| 89 | - float_flag_overflow = 4, | |
| 90 | - float_flag_divbyzero = 8, | |
| 91 | - float_flag_invalid = 16 | |
| 92 | -}; | |
| 93 | - | |
| 94 | -ScottB: November 4, 1998 | |
| 95 | -Changed the enumeration to match the bit order in the FPA11. | |
| 96 | -*/ | |
| 97 | - | |
| 98 | -extern signed char float_exception_flags; | |
| 99 | -enum { | |
| 100 | - float_flag_invalid = 1, | |
| 101 | - float_flag_divbyzero = 2, | |
| 102 | - float_flag_overflow = 4, | |
| 103 | - float_flag_underflow = 8, | |
| 104 | - float_flag_inexact = 16 | |
| 105 | -}; | |
| 106 | - | |
| 107 | -/* | |
| 108 | -------------------------------------------------------------------------------- | |
| 109 | -Routine to raise any or all of the software IEC/IEEE floating-point | |
| 110 | -exception flags. | |
| 111 | -------------------------------------------------------------------------------- | |
| 112 | -*/ | |
| 113 | -void float_raise( signed char ); | |
| 114 | - | |
| 115 | -/* | |
| 116 | -------------------------------------------------------------------------------- | |
| 117 | -Software IEC/IEEE integer-to-floating-point conversion routines. | |
| 118 | -------------------------------------------------------------------------------- | |
| 119 | -*/ | |
| 120 | -float32 int32_to_float32( signed int ); | |
| 121 | -float64 int32_to_float64( signed int ); | |
| 122 | -#ifdef FLOATX80 | |
| 123 | -floatx80 int32_to_floatx80( signed int ); | |
| 124 | -#endif | |
| 125 | - | |
| 126 | -/* | |
| 127 | -------------------------------------------------------------------------------- | |
| 128 | -Software IEC/IEEE single-precision conversion routines. | |
| 129 | -------------------------------------------------------------------------------- | |
| 130 | -*/ | |
| 131 | -signed int float32_to_int32( float32 ); | |
| 132 | -signed int float32_to_int32_round_to_zero( float32 ); | |
| 133 | -float64 float32_to_float64( float32 ); | |
| 134 | -#ifdef FLOATX80 | |
| 135 | -floatx80 float32_to_floatx80( float32 ); | |
| 136 | -#endif | |
| 137 | - | |
| 138 | -/* | |
| 139 | -------------------------------------------------------------------------------- | |
| 140 | -Software IEC/IEEE single-precision operations. | |
| 141 | -------------------------------------------------------------------------------- | |
| 142 | -*/ | |
| 143 | -float32 float32_round_to_int( float32 ); | |
| 144 | -float32 float32_add( float32, float32 ); | |
| 145 | -float32 float32_sub( float32, float32 ); | |
| 146 | -float32 float32_mul( float32, float32 ); | |
| 147 | -float32 float32_div( float32, float32 ); | |
| 148 | -float32 float32_rem( float32, float32 ); | |
| 149 | -float32 float32_sqrt( float32 ); | |
| 150 | -char float32_eq( float32, float32 ); | |
| 151 | -char float32_le( float32, float32 ); | |
| 152 | -char float32_lt( float32, float32 ); | |
| 153 | -char float32_eq_signaling( float32, float32 ); | |
| 154 | -char float32_le_quiet( float32, float32 ); | |
| 155 | -char float32_lt_quiet( float32, float32 ); | |
| 156 | -char float32_is_signaling_nan( float32 ); | |
| 157 | - | |
| 158 | -/* | |
| 159 | -------------------------------------------------------------------------------- | |
| 160 | -Software IEC/IEEE double-precision conversion routines. | |
| 161 | -------------------------------------------------------------------------------- | |
| 162 | -*/ | |
| 163 | -signed int float64_to_int32( float64 ); | |
| 164 | -signed int float64_to_int32_round_to_zero( float64 ); | |
| 165 | -float32 float64_to_float32( float64 ); | |
| 166 | -#ifdef FLOATX80 | |
| 167 | -floatx80 float64_to_floatx80( float64 ); | |
| 168 | -#endif | |
| 169 | - | |
| 170 | -/* | |
| 171 | -------------------------------------------------------------------------------- | |
| 172 | -Software IEC/IEEE double-precision operations. | |
| 173 | -------------------------------------------------------------------------------- | |
| 174 | -*/ | |
| 175 | -float64 float64_round_to_int( float64 ); | |
| 176 | -float64 float64_add( float64, float64 ); | |
| 177 | -float64 float64_sub( float64, float64 ); | |
| 178 | -float64 float64_mul( float64, float64 ); | |
| 179 | -float64 float64_div( float64, float64 ); | |
| 180 | -float64 float64_rem( float64, float64 ); | |
| 181 | -float64 float64_sqrt( float64 ); | |
| 182 | -char float64_eq( float64, float64 ); | |
| 183 | -char float64_le( float64, float64 ); | |
| 184 | -char float64_lt( float64, float64 ); | |
| 185 | -char float64_eq_signaling( float64, float64 ); | |
| 186 | -char float64_le_quiet( float64, float64 ); | |
| 187 | -char float64_lt_quiet( float64, float64 ); | |
| 188 | -char float64_is_signaling_nan( float64 ); | |
| 189 | - | |
| 190 | -#ifdef FLOATX80 | |
| 191 | - | |
| 192 | -/* | |
| 193 | -------------------------------------------------------------------------------- | |
| 194 | -Software IEC/IEEE extended double-precision conversion routines. | |
| 195 | -------------------------------------------------------------------------------- | |
| 196 | -*/ | |
| 197 | -signed int floatx80_to_int32( floatx80 ); | |
| 198 | -signed int floatx80_to_int32_round_to_zero( floatx80 ); | |
| 199 | -float32 floatx80_to_float32( floatx80 ); | |
| 200 | -float64 floatx80_to_float64( floatx80 ); | |
| 201 | - | |
| 202 | -/* | |
| 203 | -------------------------------------------------------------------------------- | |
| 204 | -Software IEC/IEEE extended double-precision rounding precision. Valid | |
| 205 | -values are 32, 64, and 80. | |
| 206 | -------------------------------------------------------------------------------- | |
| 207 | -*/ | |
| 208 | -extern signed char floatx80_rounding_precision; | |
| 209 | - | |
| 210 | -/* | |
| 211 | -------------------------------------------------------------------------------- | |
| 212 | -Software IEC/IEEE extended double-precision operations. | |
| 213 | -------------------------------------------------------------------------------- | |
| 214 | -*/ | |
| 215 | -floatx80 floatx80_round_to_int( floatx80 ); | |
| 216 | -floatx80 floatx80_add( floatx80, floatx80 ); | |
| 217 | -floatx80 floatx80_sub( floatx80, floatx80 ); | |
| 218 | -floatx80 floatx80_mul( floatx80, floatx80 ); | |
| 219 | -floatx80 floatx80_div( floatx80, floatx80 ); | |
| 220 | -floatx80 floatx80_rem( floatx80, floatx80 ); | |
| 221 | -floatx80 floatx80_sqrt( floatx80 ); | |
| 222 | -char floatx80_eq( floatx80, floatx80 ); | |
| 223 | -char floatx80_le( floatx80, floatx80 ); | |
| 224 | -char floatx80_lt( floatx80, floatx80 ); | |
| 225 | -char floatx80_eq_signaling( floatx80, floatx80 ); | |
| 226 | -char floatx80_le_quiet( floatx80, floatx80 ); | |
| 227 | -char floatx80_lt_quiet( floatx80, floatx80 ); | |
| 228 | -char floatx80_is_signaling_nan( floatx80 ); | |
| 229 | - | |
| 230 | -#endif | |
| 231 | - | |
| 232 | -#endif |