etraxfs_dma.c 21.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
/*
 * QEMU ETRAX DMA Controller.
 *
 * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include <stdio.h>
#include <sys/time.h>
#include "hw.h"
#include "qemu-common.h"
#include "sysemu.h"

#include "etraxfs_dma.h"

#define D(x)

#define RW_DATA           (0x0 / 4)
#define RW_SAVED_DATA     (0x58 / 4)
#define RW_SAVED_DATA_BUF (0x5c / 4)
#define RW_GROUP          (0x60 / 4)
#define RW_GROUP_DOWN     (0x7c / 4)
#define RW_CMD            (0x80 / 4)
#define RW_CFG            (0x84 / 4)
#define RW_STAT           (0x88 / 4)
#define RW_INTR_MASK      (0x8c / 4)
#define RW_ACK_INTR       (0x90 / 4)
#define R_INTR            (0x94 / 4)
#define R_MASKED_INTR     (0x98 / 4)
#define RW_STREAM_CMD     (0x9c / 4)

#define DMA_REG_MAX       (0x100 / 4)

/* descriptors */

// ------------------------------------------------------------ dma_descr_group
typedef struct dma_descr_group {
  uint32_t                      next;
  unsigned                      eol        : 1;
  unsigned                      tol        : 1;
  unsigned                      bol        : 1;
  unsigned                                 : 1;
  unsigned                      intr       : 1;
  unsigned                                 : 2;
  unsigned                      en         : 1;
  unsigned                                 : 7;
  unsigned                      dis        : 1;
  unsigned                      md         : 16;
  struct dma_descr_group       *up;
  union {
    struct dma_descr_context   *context;
    struct dma_descr_group     *group;
  }                             down;
} dma_descr_group;

// ---------------------------------------------------------- dma_descr_context
typedef struct dma_descr_context {
  uint32_t                      next;
  unsigned                      eol        : 1;
  unsigned                                 : 3;
  unsigned                      intr       : 1;
  unsigned                                 : 1;
  unsigned                      store_mode : 1;
  unsigned                      en         : 1;
  unsigned                                 : 7;
  unsigned                      dis        : 1;
  unsigned                      md0        : 16;
  unsigned                      md1;
  unsigned                      md2;
  unsigned                      md3;
  unsigned                      md4;
  uint32_t                      saved_data;
  uint32_t                      saved_data_buf;
} dma_descr_context;

// ------------------------------------------------------------- dma_descr_data
typedef struct dma_descr_data {
  uint32_t                      next;
  uint32_t                      buf;
  unsigned                      eol        : 1;
  unsigned                                 : 2;
  unsigned                      out_eop    : 1;
  unsigned                      intr       : 1;
  unsigned                      wait       : 1;
  unsigned                                 : 2;
  unsigned                                 : 3;
  unsigned                      in_eop     : 1;
  unsigned                                 : 4;
  unsigned                      md         : 16;
  uint32_t                      after;
} dma_descr_data;

/* Constants */
enum {
  regk_dma_ack_pkt                         = 0x00000100,
  regk_dma_anytime                         = 0x00000001,
  regk_dma_array                           = 0x00000008,
  regk_dma_burst                           = 0x00000020,
  regk_dma_client                          = 0x00000002,
  regk_dma_copy_next                       = 0x00000010,
  regk_dma_copy_up                         = 0x00000020,
  regk_dma_data_at_eol                     = 0x00000001,
  regk_dma_dis_c                           = 0x00000010,
  regk_dma_dis_g                           = 0x00000020,
  regk_dma_idle                            = 0x00000001,
  regk_dma_intern                          = 0x00000004,
  regk_dma_load_c                          = 0x00000200,
  regk_dma_load_c_n                        = 0x00000280,
  regk_dma_load_c_next                     = 0x00000240,
  regk_dma_load_d                          = 0x00000140,
  regk_dma_load_g                          = 0x00000300,
  regk_dma_load_g_down                     = 0x000003c0,
  regk_dma_load_g_next                     = 0x00000340,
  regk_dma_load_g_up                       = 0x00000380,
  regk_dma_next_en                         = 0x00000010,
  regk_dma_next_pkt                        = 0x00000010,
  regk_dma_no                              = 0x00000000,
  regk_dma_only_at_wait                    = 0x00000000,
  regk_dma_restore                         = 0x00000020,
  regk_dma_rst                             = 0x00000001,
  regk_dma_running                         = 0x00000004,
  regk_dma_rw_cfg_default                  = 0x00000000,
  regk_dma_rw_cmd_default                  = 0x00000000,
  regk_dma_rw_intr_mask_default            = 0x00000000,
  regk_dma_rw_stat_default                 = 0x00000101,
  regk_dma_rw_stream_cmd_default           = 0x00000000,
  regk_dma_save_down                       = 0x00000020,
  regk_dma_save_up                         = 0x00000020,
  regk_dma_set_reg                         = 0x00000050,
  regk_dma_set_w_size1                     = 0x00000190,
  regk_dma_set_w_size2                     = 0x000001a0,
  regk_dma_set_w_size4                     = 0x000001c0,
  regk_dma_stopped                         = 0x00000002,
  regk_dma_store_c                         = 0x00000002,
  regk_dma_store_descr                     = 0x00000000,
  regk_dma_store_g                         = 0x00000004,
  regk_dma_store_md                        = 0x00000001,
  regk_dma_sw                              = 0x00000008,
  regk_dma_update_down                     = 0x00000020,
  regk_dma_yes                             = 0x00000001
};

enum dma_ch_state
{
	RST = 1,
	STOPPED = 2,
	RUNNING = 4
};

struct fs_dma_channel
{
	qemu_irq irq;
	struct etraxfs_dma_client *client;

	/* Internal status.  */
	int stream_cmd_src;
	enum dma_ch_state state;

	unsigned int input : 1;
	unsigned int eol : 1;

	struct dma_descr_group current_g;
	struct dma_descr_context current_c;
	struct dma_descr_data current_d;

	/* Controll registers.  */
	uint32_t regs[DMA_REG_MAX];
};

struct fs_dma_ctrl
{
	int map;
	int nr_channels;
	struct fs_dma_channel *channels;

        QEMUBH *bh;
};

static void DMA_run(void *opaque);
static int channel_out_run(struct fs_dma_ctrl *ctrl, int c);

static inline uint32_t channel_reg(struct fs_dma_ctrl *ctrl, int c, int reg)
{
	return ctrl->channels[c].regs[reg];
}

static inline int channel_stopped(struct fs_dma_ctrl *ctrl, int c)
{
	return channel_reg(ctrl, c, RW_CFG) & 2;
}

static inline int channel_en(struct fs_dma_ctrl *ctrl, int c)
{
	return (channel_reg(ctrl, c, RW_CFG) & 1)
		&& ctrl->channels[c].client;
}

static inline int fs_channel(target_phys_addr_t addr)
{
	/* Every channel has a 0x2000 ctrl register map.  */
	return addr >> 13;
}

#ifdef USE_THIS_DEAD_CODE
static void channel_load_g(struct fs_dma_ctrl *ctrl, int c)
{
	target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP);

	/* Load and decode. FIXME: handle endianness.  */
	cpu_physical_memory_read (addr, 
				  (void *) &ctrl->channels[c].current_g, 
				  sizeof ctrl->channels[c].current_g);
}

static void dump_c(int ch, struct dma_descr_context *c)
{
	printf("%s ch=%d\n", __func__, ch);
	printf("next=%x\n", c->next);
	printf("saved_data=%x\n", c->saved_data);
	printf("saved_data_buf=%x\n", c->saved_data_buf);
	printf("eol=%x\n", (uint32_t) c->eol);
}

static void dump_d(int ch, struct dma_descr_data *d)
{
	printf("%s ch=%d\n", __func__, ch);
	printf("next=%x\n", d->next);
	printf("buf=%x\n", d->buf);
	printf("after=%x\n", d->after);
	printf("intr=%x\n", (uint32_t) d->intr);
	printf("out_eop=%x\n", (uint32_t) d->out_eop);
	printf("in_eop=%x\n", (uint32_t) d->in_eop);
	printf("eol=%x\n", (uint32_t) d->eol);
}
#endif

static void channel_load_c(struct fs_dma_ctrl *ctrl, int c)
{
	target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP_DOWN);

	/* Load and decode. FIXME: handle endianness.  */
	cpu_physical_memory_read (addr, 
				  (void *) &ctrl->channels[c].current_c, 
				  sizeof ctrl->channels[c].current_c);

	D(dump_c(c, &ctrl->channels[c].current_c));
	/* I guess this should update the current pos.  */
	ctrl->channels[c].regs[RW_SAVED_DATA] =
		(uint32_t)(unsigned long)ctrl->channels[c].current_c.saved_data;
	ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
		(uint32_t)(unsigned long)ctrl->channels[c].current_c.saved_data_buf;
}

static void channel_load_d(struct fs_dma_ctrl *ctrl, int c)
{
	target_phys_addr_t addr = channel_reg(ctrl, c, RW_SAVED_DATA);

	/* Load and decode. FIXME: handle endianness.  */
	D(printf("%s ch=%d addr=" TARGET_FMT_plx "\n", __func__, c, addr));
	cpu_physical_memory_read (addr,
				  (void *) &ctrl->channels[c].current_d, 
				  sizeof ctrl->channels[c].current_d);

	D(dump_d(c, &ctrl->channels[c].current_d));
	ctrl->channels[c].regs[RW_DATA] = addr;
}

static void channel_store_c(struct fs_dma_ctrl *ctrl, int c)
{
	target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP_DOWN);

	/* Encode and store. FIXME: handle endianness.  */
	D(printf("%s ch=%d addr=" TARGET_FMT_plx "\n", __func__, c, addr));
	D(dump_d(c, &ctrl->channels[c].current_d));
	cpu_physical_memory_write (addr,
				  (void *) &ctrl->channels[c].current_c,
				  sizeof ctrl->channels[c].current_c);
}

static void channel_store_d(struct fs_dma_ctrl *ctrl, int c)
{
	target_phys_addr_t addr = channel_reg(ctrl, c, RW_SAVED_DATA);

	/* Encode and store. FIXME: handle endianness.  */
	D(printf("%s ch=%d addr=" TARGET_FMT_plx "\n", __func__, c, addr));
	cpu_physical_memory_write (addr,
				  (void *) &ctrl->channels[c].current_d, 
				  sizeof ctrl->channels[c].current_d);
}

static inline void channel_stop(struct fs_dma_ctrl *ctrl, int c)
{
	/* FIXME:  */
}

static inline void channel_start(struct fs_dma_ctrl *ctrl, int c)
{
	if (ctrl->channels[c].client)
	{
		ctrl->channels[c].eol = 0;
		ctrl->channels[c].state = RUNNING;
		if (!ctrl->channels[c].input)
			channel_out_run(ctrl, c);
	} else
		printf("WARNING: starting DMA ch %d with no client\n", c);

        qemu_bh_schedule_idle(ctrl->bh);
}

static void channel_continue(struct fs_dma_ctrl *ctrl, int c)
{
	if (!channel_en(ctrl, c) 
	    || channel_stopped(ctrl, c)
	    || ctrl->channels[c].state != RUNNING
	    /* Only reload the current data descriptor if it has eol set.  */
	    || !ctrl->channels[c].current_d.eol) {
		D(printf("continue failed ch=%d state=%d stopped=%d en=%d eol=%d\n", 
			 c, ctrl->channels[c].state,
			 channel_stopped(ctrl, c),
			 channel_en(ctrl,c),
			 ctrl->channels[c].eol));
		D(dump_d(c, &ctrl->channels[c].current_d));
		return;
	}

	/* Reload the current descriptor.  */
	channel_load_d(ctrl, c);

	/* If the current descriptor cleared the eol flag and we had already
	   reached eol state, do the continue.  */
	if (!ctrl->channels[c].current_d.eol && ctrl->channels[c].eol) {
		D(printf("continue %d ok %x\n", c,
			 ctrl->channels[c].current_d.next));
		ctrl->channels[c].regs[RW_SAVED_DATA] =
			(uint32_t)(unsigned long)ctrl->channels[c].current_d.next;
		channel_load_d(ctrl, c);
		ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
			(uint32_t)(unsigned long)ctrl->channels[c].current_d.buf;

		channel_start(ctrl, c);
	}
	ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
		(uint32_t)(unsigned long)ctrl->channels[c].current_d.buf;
}

static void channel_stream_cmd(struct fs_dma_ctrl *ctrl, int c, uint32_t v)
{
	unsigned int cmd = v & ((1 << 10) - 1);

	D(printf("%s ch=%d cmd=%x\n",
		 __func__, c, cmd));
	if (cmd & regk_dma_load_d) {
		channel_load_d(ctrl, c);
		if (cmd & regk_dma_burst)
			channel_start(ctrl, c);
	}

	if (cmd & regk_dma_load_c) {
		channel_load_c(ctrl, c);
	}
}

static void channel_update_irq(struct fs_dma_ctrl *ctrl, int c)
{
	D(printf("%s %d\n", __func__, c));
        ctrl->channels[c].regs[R_INTR] &=
		~(ctrl->channels[c].regs[RW_ACK_INTR]);

        ctrl->channels[c].regs[R_MASKED_INTR] =
		ctrl->channels[c].regs[R_INTR]
		& ctrl->channels[c].regs[RW_INTR_MASK];

	D(printf("%s: chan=%d masked_intr=%x\n", __func__, 
		 c,
		 ctrl->channels[c].regs[R_MASKED_INTR]));

        qemu_set_irq(ctrl->channels[c].irq,
		     !!ctrl->channels[c].regs[R_MASKED_INTR]);
}

static int channel_out_run(struct fs_dma_ctrl *ctrl, int c)
{
	uint32_t len;
	uint32_t saved_data_buf;
	unsigned char buf[2 * 1024];

	if (ctrl->channels[c].eol)
		return 0;

	do {
		D(printf("ch=%d buf=%x after=%x\n",
			 c,
			 (uint32_t)ctrl->channels[c].current_d.buf,
			 (uint32_t)ctrl->channels[c].current_d.after));

		channel_load_d(ctrl, c);
		saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF);
		len = (uint32_t)(unsigned long)
			ctrl->channels[c].current_d.after;
		len -= saved_data_buf;

		if (len > sizeof buf)
			len = sizeof buf;
		cpu_physical_memory_read (saved_data_buf, buf, len);

		D(printf("channel %d pushes %x %u bytes\n", c, 
			 saved_data_buf, len));

		if (ctrl->channels[c].client->client.push)
			ctrl->channels[c].client->client.push(
				ctrl->channels[c].client->client.opaque,
				buf, len);
		else
			printf("WARNING: DMA ch%d dataloss,"
			       " no attached client.\n", c);

		saved_data_buf += len;

		if (saved_data_buf == (uint32_t)(unsigned long)
				ctrl->channels[c].current_d.after) {
			/* Done. Step to next.  */
			if (ctrl->channels[c].current_d.out_eop) {
				/* TODO: signal eop to the client.  */
				D(printf("signal eop\n"));
			}
			if (ctrl->channels[c].current_d.intr) {
				/* TODO: signal eop to the client.  */
				/* data intr.  */
				D(printf("signal intr %d eol=%d\n",
					len, ctrl->channels[c].current_d.eol));
				ctrl->channels[c].regs[R_INTR] |= (1 << 2);
				channel_update_irq(ctrl, c);
			}
			channel_store_d(ctrl, c);
			if (ctrl->channels[c].current_d.eol) {
				D(printf("channel %d EOL\n", c));
				ctrl->channels[c].eol = 1;

				/* Mark the context as disabled.  */
				ctrl->channels[c].current_c.dis = 1;
				channel_store_c(ctrl, c);

				channel_stop(ctrl, c);
			} else {
				ctrl->channels[c].regs[RW_SAVED_DATA] =
					(uint32_t)(unsigned long)ctrl->
						channels[c].current_d.next;
				/* Load new descriptor.  */
				channel_load_d(ctrl, c);
				saved_data_buf = (uint32_t)(unsigned long)
					ctrl->channels[c].current_d.buf;
			}

			ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
							saved_data_buf;
			D(dump_d(c, &ctrl->channels[c].current_d));
		}
		ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = saved_data_buf;
	} while (!ctrl->channels[c].eol);
	return 1;
}

static int channel_in_process(struct fs_dma_ctrl *ctrl, int c, 
			      unsigned char *buf, int buflen, int eop)
{
	uint32_t len;
	uint32_t saved_data_buf;

	if (ctrl->channels[c].eol == 1)
		return 0;

	channel_load_d(ctrl, c);
	saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF);
	len = (uint32_t)(unsigned long)ctrl->channels[c].current_d.after;
	len -= saved_data_buf;
	
	if (len > buflen)
		len = buflen;

	cpu_physical_memory_write (saved_data_buf, buf, len);
	saved_data_buf += len;

	if (saved_data_buf ==
	    (uint32_t)(unsigned long)ctrl->channels[c].current_d.after
	    || eop) {
		uint32_t r_intr = ctrl->channels[c].regs[R_INTR];

		D(printf("in dscr end len=%d\n", 
			 ctrl->channels[c].current_d.after
			 - ctrl->channels[c].current_d.buf));
		ctrl->channels[c].current_d.after = saved_data_buf;

		/* Done. Step to next.  */
		if (ctrl->channels[c].current_d.intr) {
			/* TODO: signal eop to the client.  */
			/* data intr.  */
			ctrl->channels[c].regs[R_INTR] |= 3;
		}
		if (eop) {
			ctrl->channels[c].current_d.in_eop = 1;
			ctrl->channels[c].regs[R_INTR] |= 8;
		}
		if (r_intr != ctrl->channels[c].regs[R_INTR])
			channel_update_irq(ctrl, c);

		channel_store_d(ctrl, c);
		D(dump_d(c, &ctrl->channels[c].current_d));

		if (ctrl->channels[c].current_d.eol) {
			D(printf("channel %d EOL\n", c));
			ctrl->channels[c].eol = 1;

			/* Mark the context as disabled.  */
			ctrl->channels[c].current_c.dis = 1;
			channel_store_c(ctrl, c);

			channel_stop(ctrl, c);
		} else {
			ctrl->channels[c].regs[RW_SAVED_DATA] =
				(uint32_t)(unsigned long)ctrl->
					channels[c].current_d.next;
			/* Load new descriptor.  */
			channel_load_d(ctrl, c);
			saved_data_buf = (uint32_t)(unsigned long)
				ctrl->channels[c].current_d.buf;
		}
	}

	ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = saved_data_buf;
	return len;
}

static inline int channel_in_run(struct fs_dma_ctrl *ctrl, int c)
{
	if (ctrl->channels[c].client->client.pull) {
		ctrl->channels[c].client->client.pull(
			ctrl->channels[c].client->client.opaque);
		return 1;
	} else
		return 0;
}

static uint32_t dma_rinvalid (void *opaque, target_phys_addr_t addr)
{
        hw_error("Unsupported short raccess. reg=" TARGET_FMT_plx "\n", addr);
        return 0;
}

static uint32_t
dma_readl (void *opaque, target_phys_addr_t addr)
{
        struct fs_dma_ctrl *ctrl = opaque;
	int c;
	uint32_t r = 0;

	/* Make addr relative to this channel and bounded to nr regs.  */
	c = fs_channel(addr);
	addr &= 0xff;
	addr >>= 2;
	switch (addr)
	{
		case RW_STAT:
			r = ctrl->channels[c].state & 7;
			r |= ctrl->channels[c].eol << 5;
			r |= ctrl->channels[c].stream_cmd_src << 8;
			break;

		default:
			r = ctrl->channels[c].regs[addr];
			D(printf ("%s c=%d addr=" TARGET_FMT_plx "\n",
				  __func__, c, addr));
			break;
	}
	return r;
}

static void
dma_winvalid (void *opaque, target_phys_addr_t addr, uint32_t value)
{
        hw_error("Unsupported short waccess. reg=" TARGET_FMT_plx "\n", addr);
}

static void
dma_update_state(struct fs_dma_ctrl *ctrl, int c)
{
	if ((ctrl->channels[c].regs[RW_CFG] & 1) != 3) {
		if (ctrl->channels[c].regs[RW_CFG] & 2)
			ctrl->channels[c].state = STOPPED;
		if (!(ctrl->channels[c].regs[RW_CFG] & 1))
			ctrl->channels[c].state = RST;
	}
}

static void
dma_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
{
        struct fs_dma_ctrl *ctrl = opaque;
	int c;

        /* Make addr relative to this channel and bounded to nr regs.  */
	c = fs_channel(addr);
        addr &= 0xff;
        addr >>= 2;
        switch (addr)
	{
		case RW_DATA:
			ctrl->channels[c].regs[addr] = value;
			break;

		case RW_CFG:
			ctrl->channels[c].regs[addr] = value;
			dma_update_state(ctrl, c);
			break;
		case RW_CMD:
			/* continue.  */
			if (value & ~1)
				printf("Invalid store to ch=%d RW_CMD %x\n",
				       c, value);
			ctrl->channels[c].regs[addr] = value;
			channel_continue(ctrl, c);
			break;

		case RW_SAVED_DATA:
		case RW_SAVED_DATA_BUF:
		case RW_GROUP:
		case RW_GROUP_DOWN:
			ctrl->channels[c].regs[addr] = value;
			break;

		case RW_ACK_INTR:
		case RW_INTR_MASK:
			ctrl->channels[c].regs[addr] = value;
			channel_update_irq(ctrl, c);
			if (addr == RW_ACK_INTR)
				ctrl->channels[c].regs[RW_ACK_INTR] = 0;
			break;

		case RW_STREAM_CMD:
			if (value & ~1023)
				printf("Invalid store to ch=%d "
				       "RW_STREAMCMD %x\n",
				       c, value);
			ctrl->channels[c].regs[addr] = value;
			D(printf("stream_cmd ch=%d\n", c));
			channel_stream_cmd(ctrl, c, value);
			break;

	        default:
			D(printf ("%s c=%d " TARGET_FMT_plx "\n",
				__func__, c, addr));
			break;
        }
}

static CPUReadMemoryFunc *dma_read[] = {
	&dma_rinvalid,
	&dma_rinvalid,
	&dma_readl,
};

static CPUWriteMemoryFunc *dma_write[] = {
	&dma_winvalid,
	&dma_winvalid,
	&dma_writel,
};

static int etraxfs_dmac_run(void *opaque)
{
	struct fs_dma_ctrl *ctrl = opaque;
	int i;
	int p = 0;

	for (i = 0; 
	     i < ctrl->nr_channels;
	     i++)
	{
		if (ctrl->channels[i].state == RUNNING)
		{
			if (ctrl->channels[i].input) {
				p += channel_in_run(ctrl, i);
			} else {
				p += channel_out_run(ctrl, i);
			}
		}
	}
	return p;
}

int etraxfs_dmac_input(struct etraxfs_dma_client *client, 
		       void *buf, int len, int eop)
{
	return channel_in_process(client->ctrl, client->channel, 
				  buf, len, eop);
}

/* Connect an IRQ line with a channel.  */
void etraxfs_dmac_connect(void *opaque, int c, qemu_irq *line, int input)
{
	struct fs_dma_ctrl *ctrl = opaque;
	ctrl->channels[c].irq = *line;
	ctrl->channels[c].input = input;
}

void etraxfs_dmac_connect_client(void *opaque, int c, 
				 struct etraxfs_dma_client *cl)
{
	struct fs_dma_ctrl *ctrl = opaque;
	cl->ctrl = ctrl;
	cl->channel = c;
	ctrl->channels[c].client = cl;
}


static void DMA_run(void *opaque)
{
    struct fs_dma_ctrl *etraxfs_dmac = opaque;
    int p = 1;

    if (vm_running)
        p = etraxfs_dmac_run(etraxfs_dmac);

    if (p)
        qemu_bh_schedule_idle(etraxfs_dmac->bh);
}

void *etraxfs_dmac_init(target_phys_addr_t base, int nr_channels)
{
	struct fs_dma_ctrl *ctrl = NULL;

	ctrl = qemu_mallocz(sizeof *ctrl);

        ctrl->bh = qemu_bh_new(DMA_run, ctrl);

	ctrl->nr_channels = nr_channels;
	ctrl->channels = qemu_mallocz(sizeof ctrl->channels[0] * nr_channels);

	ctrl->map = cpu_register_io_memory(dma_read, dma_write, ctrl);
	cpu_register_physical_memory(base, nr_channels * 0x2000, ctrl->map);
	return ctrl;
}