op_helper.c 10.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
/*
 *  SH4 emulation
 *
 *  Copyright (c) 2005 Samuel Tardieu
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA  02110-1301 USA
 */
#include <assert.h>
#include "exec.h"
#include "helper.h"

#ifndef CONFIG_USER_ONLY

#define MMUSUFFIX _mmu

#define SHIFT 0
#include "softmmu_template.h"

#define SHIFT 1
#include "softmmu_template.h"

#define SHIFT 2
#include "softmmu_template.h"

#define SHIFT 3
#include "softmmu_template.h"

void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
{
    TranslationBlock *tb;
    CPUState *saved_env;
    unsigned long pc;
    int ret;

    /* XXX: hack to restore env in all cases, even if not called from
       generated code */
    saved_env = env;
    env = cpu_single_env;
    ret = cpu_sh4_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
    if (ret) {
	if (retaddr) {
	    /* now we have a real cpu fault */
	    pc = (unsigned long) retaddr;
	    tb = tb_find_pc(pc);
	    if (tb) {
		/* the PC is inside the translated code. It means that we have
		   a virtual CPU fault */
		cpu_restore_state(tb, env, pc, NULL);
	    }
	}
	cpu_loop_exit();
    }
    env = saved_env;
}

#endif

void helper_ldtlb(void)
{
#ifdef CONFIG_USER_ONLY
    /* XXXXX */
    assert(0);
#else
    cpu_load_tlb(env);
#endif
}

void helper_raise_illegal_instruction(void)
{
    env->exception_index = 0x180;
    cpu_loop_exit();
}

void helper_raise_slot_illegal_instruction(void)
{
    env->exception_index = 0x1a0;
    cpu_loop_exit();
}

void helper_raise_fpu_disable(void)
{
  env->exception_index = 0x800;
  cpu_loop_exit();
}

void helper_raise_slot_fpu_disable(void)
{
  env->exception_index = 0x820;
  cpu_loop_exit();
}

void helper_debug(void)
{
    env->exception_index = EXCP_DEBUG;
    cpu_loop_exit();
}

void helper_sleep(uint32_t next_pc)
{
    env->halted = 1;
    env->exception_index = EXCP_HLT;
    env->pc = next_pc;
    cpu_loop_exit();
}

void helper_trapa(uint32_t tra)
{
    env->tra = tra << 2;
    env->exception_index = 0x160;
    cpu_loop_exit();
}

uint32_t helper_addc(uint32_t arg0, uint32_t arg1)
{
    uint32_t tmp0, tmp1;

    tmp1 = arg0 + arg1;
    tmp0 = arg1;
    arg1 = tmp1 + (env->sr & 1);
    if (tmp0 > tmp1)
	env->sr |= SR_T;
    else
	env->sr &= ~SR_T;
    if (tmp1 > arg1)
	env->sr |= SR_T;
    return arg1;
}

uint32_t helper_addv(uint32_t arg0, uint32_t arg1)
{
    uint32_t dest, src, ans;

    if ((int32_t) arg1 >= 0)
	dest = 0;
    else
	dest = 1;
    if ((int32_t) arg0 >= 0)
	src = 0;
    else
	src = 1;
    src += dest;
    arg1 += arg0;
    if ((int32_t) arg1 >= 0)
	ans = 0;
    else
	ans = 1;
    ans += dest;
    if (src == 0 || src == 2) {
	if (ans == 1)
	    env->sr |= SR_T;
	else
	    env->sr &= ~SR_T;
    } else
	env->sr &= ~SR_T;
    return arg1;
}

#define T (env->sr & SR_T)
#define Q (env->sr & SR_Q ? 1 : 0)
#define M (env->sr & SR_M ? 1 : 0)
#define SETT env->sr |= SR_T
#define CLRT env->sr &= ~SR_T
#define SETQ env->sr |= SR_Q
#define CLRQ env->sr &= ~SR_Q
#define SETM env->sr |= SR_M
#define CLRM env->sr &= ~SR_M

uint32_t helper_div1(uint32_t arg0, uint32_t arg1)
{
    uint32_t tmp0, tmp2;
    uint8_t old_q, tmp1 = 0xff;

    //printf("div1 arg0=0x%08x arg1=0x%08x M=%d Q=%d T=%d\n", arg0, arg1, M, Q, T);
    old_q = Q;
    if ((0x80000000 & arg1) != 0)
	SETQ;
    else
	CLRQ;
    tmp2 = arg0;
    arg1 <<= 1;
    arg1 |= T;
    switch (old_q) {
    case 0:
	switch (M) {
	case 0:
	    tmp0 = arg1;
	    arg1 -= tmp2;
	    tmp1 = arg1 > tmp0;
	    switch (Q) {
	    case 0:
		if (tmp1)
		    SETQ;
		else
		    CLRQ;
		break;
	    case 1:
		if (tmp1 == 0)
		    SETQ;
		else
		    CLRQ;
		break;
	    }
	    break;
	case 1:
	    tmp0 = arg1;
	    arg1 += tmp2;
	    tmp1 = arg1 < tmp0;
	    switch (Q) {
	    case 0:
		if (tmp1 == 0)
		    SETQ;
		else
		    CLRQ;
		break;
	    case 1:
		if (tmp1)
		    SETQ;
		else
		    CLRQ;
		break;
	    }
	    break;
	}
	break;
    case 1:
	switch (M) {
	case 0:
	    tmp0 = arg1;
	    arg1 += tmp2;
	    tmp1 = arg1 < tmp0;
	    switch (Q) {
	    case 0:
		if (tmp1)
		    SETQ;
		else
		    CLRQ;
		break;
	    case 1:
		if (tmp1 == 0)
		    SETQ;
		else
		    CLRQ;
		break;
	    }
	    break;
	case 1:
	    tmp0 = arg1;
	    arg1 -= tmp2;
	    tmp1 = arg1 > tmp0;
	    switch (Q) {
	    case 0:
		if (tmp1 == 0)
		    SETQ;
		else
		    CLRQ;
		break;
	    case 1:
		if (tmp1)
		    SETQ;
		else
		    CLRQ;
		break;
	    }
	    break;
	}
	break;
    }
    if (Q == M)
	SETT;
    else
	CLRT;
    //printf("Output: arg1=0x%08x M=%d Q=%d T=%d\n", arg1, M, Q, T);
    return arg1;
}

void helper_macl(uint32_t arg0, uint32_t arg1)
{
    int64_t res;

    res = ((uint64_t) env->mach << 32) | env->macl;
    res += (int64_t) (int32_t) arg0 *(int64_t) (int32_t) arg1;
    env->mach = (res >> 32) & 0xffffffff;
    env->macl = res & 0xffffffff;
    if (env->sr & SR_S) {
	if (res < 0)
	    env->mach |= 0xffff0000;
	else
	    env->mach &= 0x00007fff;
    }
}

void helper_macw(uint32_t arg0, uint32_t arg1)
{
    int64_t res;

    res = ((uint64_t) env->mach << 32) | env->macl;
    res += (int64_t) (int16_t) arg0 *(int64_t) (int16_t) arg1;
    env->mach = (res >> 32) & 0xffffffff;
    env->macl = res & 0xffffffff;
    if (env->sr & SR_S) {
	if (res < -0x80000000) {
	    env->mach = 1;
	    env->macl = 0x80000000;
	} else if (res > 0x000000007fffffff) {
	    env->mach = 1;
	    env->macl = 0x7fffffff;
	}
    }
}

uint32_t helper_negc(uint32_t arg)
{
    uint32_t temp;

    temp = -arg;
    arg = temp - (env->sr & SR_T);
    if (0 < temp)
	env->sr |= SR_T;
    else
	env->sr &= ~SR_T;
    if (temp < arg)
	env->sr |= SR_T;
    return arg;
}

uint32_t helper_subc(uint32_t arg0, uint32_t arg1)
{
    uint32_t tmp0, tmp1;

    tmp1 = arg1 - arg0;
    tmp0 = arg1;
    arg1 = tmp1 - (env->sr & SR_T);
    if (tmp0 < tmp1)
	env->sr |= SR_T;
    else
	env->sr &= ~SR_T;
    if (tmp1 < arg1)
	env->sr |= SR_T;
    return arg1;
}

uint32_t helper_subv(uint32_t arg0, uint32_t arg1)
{
    int32_t dest, src, ans;

    if ((int32_t) arg1 >= 0)
	dest = 0;
    else
	dest = 1;
    if ((int32_t) arg0 >= 0)
	src = 0;
    else
	src = 1;
    src += dest;
    arg1 -= arg0;
    if ((int32_t) arg1 >= 0)
	ans = 0;
    else
	ans = 1;
    ans += dest;
    if (src == 1) {
	if (ans == 1)
	    env->sr |= SR_T;
	else
	    env->sr &= ~SR_T;
    } else
	env->sr &= ~SR_T;
    return arg1;
}

static inline void set_t(void)
{
    env->sr |= SR_T;
}

static inline void clr_t(void)
{
    env->sr &= ~SR_T;
}

void helper_ld_fpscr(uint32_t val)
{
    env->fpscr = val & 0x003fffff;
    if (val & 0x01)
	set_float_rounding_mode(float_round_to_zero, &env->fp_status);
    else
	set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
}

uint32_t helper_fabs_FT(uint32_t t0)
{
    CPU_FloatU f;
    f.l = t0;
    f.f = float32_abs(f.f);
    return f.l;
}

uint64_t helper_fabs_DT(uint64_t t0)
{
    CPU_DoubleU d;
    d.ll = t0;
    d.d = float64_abs(d.d);
    return d.ll;
}

uint32_t helper_fadd_FT(uint32_t t0, uint32_t t1)
{
    CPU_FloatU f0, f1;
    f0.l = t0;
    f1.l = t1;
    f0.f = float32_add(f0.f, f1.f, &env->fp_status);
    return f0.l;
}

uint64_t helper_fadd_DT(uint64_t t0, uint64_t t1)
{
    CPU_DoubleU d0, d1;
    d0.ll = t0;
    d1.ll = t1;
    d0.d = float64_add(d0.d, d1.d, &env->fp_status);
    return d0.ll;
}

void helper_fcmp_eq_FT(uint32_t t0, uint32_t t1)
{
    CPU_FloatU f0, f1;
    f0.l = t0;
    f1.l = t1;

    if (float32_compare(f0.f, f1.f, &env->fp_status) == 0)
	set_t();
    else
	clr_t();
}

void helper_fcmp_eq_DT(uint64_t t0, uint64_t t1)
{
    CPU_DoubleU d0, d1;
    d0.ll = t0;
    d1.ll = t1;

    if (float64_compare(d0.d, d1.d, &env->fp_status) == 0)
	set_t();
    else
	clr_t();
}

void helper_fcmp_gt_FT(uint32_t t0, uint32_t t1)
{
    CPU_FloatU f0, f1;
    f0.l = t0;
    f1.l = t1;

    if (float32_compare(f0.f, f1.f, &env->fp_status) == 1)
	set_t();
    else
	clr_t();
}

void helper_fcmp_gt_DT(uint64_t t0, uint64_t t1)
{
    CPU_DoubleU d0, d1;
    d0.ll = t0;
    d1.ll = t1;

    if (float64_compare(d0.d, d1.d, &env->fp_status) == 1)
	set_t();
    else
	clr_t();
}

uint64_t helper_fcnvsd_FT_DT(uint32_t t0)
{
    CPU_DoubleU d;
    CPU_FloatU f;
    f.l = t0;
    d.d = float32_to_float64(f.f, &env->fp_status);
    return d.ll;
}

uint32_t helper_fcnvds_DT_FT(uint64_t t0)
{
    CPU_DoubleU d;
    CPU_FloatU f;
    d.ll = t0;
    f.f = float64_to_float32(d.d, &env->fp_status);
    return f.l;
}

uint32_t helper_fdiv_FT(uint32_t t0, uint32_t t1)
{
    CPU_FloatU f0, f1;
    f0.l = t0;
    f1.l = t1;
    f0.f = float32_div(f0.f, f1.f, &env->fp_status);
    return f0.l;
}

uint64_t helper_fdiv_DT(uint64_t t0, uint64_t t1)
{
    CPU_DoubleU d0, d1;
    d0.ll = t0;
    d1.ll = t1;
    d0.d = float64_div(d0.d, d1.d, &env->fp_status);
    return d0.ll;
}

uint32_t helper_float_FT(uint32_t t0)
{
    CPU_FloatU f;
    f.f = int32_to_float32(t0, &env->fp_status);
    return f.l;
}

uint64_t helper_float_DT(uint32_t t0)
{
    CPU_DoubleU d;
    d.d = int32_to_float64(t0, &env->fp_status);
    return d.ll;
}

uint32_t helper_fmul_FT(uint32_t t0, uint32_t t1)
{
    CPU_FloatU f0, f1;
    f0.l = t0;
    f1.l = t1;
    f0.f = float32_mul(f0.f, f1.f, &env->fp_status);
    return f0.l;
}

uint64_t helper_fmul_DT(uint64_t t0, uint64_t t1)
{
    CPU_DoubleU d0, d1;
    d0.ll = t0;
    d1.ll = t1;
    d0.d = float64_mul(d0.d, d1.d, &env->fp_status);
    return d0.ll;
}

uint32_t helper_fneg_T(uint32_t t0)
{
    CPU_FloatU f;
    f.l = t0;
    f.f = float32_chs(f.f);
    return f.l;
}

uint32_t helper_fsqrt_FT(uint32_t t0)
{
    CPU_FloatU f;
    f.l = t0;
    f.f = float32_sqrt(f.f, &env->fp_status);
    return f.l;
}

uint64_t helper_fsqrt_DT(uint64_t t0)
{
    CPU_DoubleU d;
    d.ll = t0;
    d.d = float64_sqrt(d.d, &env->fp_status);
    return d.ll;
}

uint32_t helper_fsub_FT(uint32_t t0, uint32_t t1)
{
    CPU_FloatU f0, f1;
    f0.l = t0;
    f1.l = t1;
    f0.f = float32_sub(f0.f, f1.f, &env->fp_status);
    return f0.l;
}

uint64_t helper_fsub_DT(uint64_t t0, uint64_t t1)
{
    CPU_DoubleU d0, d1;
    d0.ll = t0;
    d1.ll = t1;
    d0.d = float64_sub(d0.d, d1.d, &env->fp_status);
    return d0.ll;
}

uint32_t helper_ftrc_FT(uint32_t t0)
{
    CPU_FloatU f;
    f.l = t0;
    return float32_to_int32_round_to_zero(f.f, &env->fp_status);
}

uint32_t helper_ftrc_DT(uint64_t t0)
{
    CPU_DoubleU d;
    d.ll = t0;
    return float64_to_int32_round_to_zero(d.d, &env->fp_status);
}