armv7m_nvic.c 13.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
/*
 * ARM Nested Vectored Interrupt Controller
 *
 * Copyright (c) 2006-2007 CodeSourcery.
 * Written by Paul Brook
 *
 * This code is licenced under the GPL.
 *
 * The ARMv7M System controller is fairly tightly tied in with the
 * NVIC.  Much of that is also implemented here.
 */

#include "hw.h"
#include "qemu-timer.h"
#include "arm-misc.h"

/* 32 internal lines (16 used for system exceptions) plus 64 external
   interrupt lines.  */
#define GIC_NIRQ 96
#define NCPU 1
#define NVIC 1

/* Only a single "CPU" interface is present.  */
static inline int
gic_get_current_cpu(void)
{
    return 0;
}

static uint32_t nvic_readl(void *opaque, uint32_t offset);
static void nvic_writel(void *opaque, uint32_t offset, uint32_t value);

#include "arm_gic.c"

typedef struct {
    struct {
        uint32_t control;
        uint32_t reload;
        int64_t tick;
        QEMUTimer *timer;
    } systick;
    gic_state *gic;
} nvic_state;

/* qemu timers run at 1GHz.   We want something closer to 1MHz.  */
#define SYSTICK_SCALE 1000ULL

#define SYSTICK_ENABLE    (1 << 0)
#define SYSTICK_TICKINT   (1 << 1)
#define SYSTICK_CLKSOURCE (1 << 2)
#define SYSTICK_COUNTFLAG (1 << 16)

int system_clock_scale;

/* Conversion factor from qemu timer to SysTick frequencies.  */
static inline int64_t systick_scale(nvic_state *s)
{
    if (s->systick.control & SYSTICK_CLKSOURCE)
        return system_clock_scale;
    else
        return 1000;
}

static void systick_reload(nvic_state *s, int reset)
{
    if (reset)
        s->systick.tick = qemu_get_clock(vm_clock);
    s->systick.tick += (s->systick.reload + 1) * systick_scale(s);
    qemu_mod_timer(s->systick.timer, s->systick.tick);
}

static void systick_timer_tick(void * opaque)
{
    nvic_state *s = (nvic_state *)opaque;
    s->systick.control |= SYSTICK_COUNTFLAG;
    if (s->systick.control & SYSTICK_TICKINT) {
        /* Trigger the interrupt.  */
        armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK);
    }
    if (s->systick.reload == 0) {
        s->systick.control &= ~SYSTICK_ENABLE;
    } else {
        systick_reload(s, 0);
    }
}

/* The external routines use the hardware vector numbering, ie. the first
   IRQ is #16.  The internal GIC routines use #32 as the first IRQ.  */
void armv7m_nvic_set_pending(void *opaque, int irq)
{
    nvic_state *s = (nvic_state *)opaque;
    if (irq >= 16)
        irq += 16;
    gic_set_pending_private(s->gic, 0, irq);
}

/* Make pending IRQ active.  */
int armv7m_nvic_acknowledge_irq(void *opaque)
{
    nvic_state *s = (nvic_state *)opaque;
    uint32_t irq;

    irq = gic_acknowledge_irq(s->gic, 0);
    if (irq == 1023)
        cpu_abort(cpu_single_env, "Interrupt but no vector\n");
    if (irq >= 32)
        irq -= 16;
    return irq;
}

void armv7m_nvic_complete_irq(void *opaque, int irq)
{
    nvic_state *s = (nvic_state *)opaque;
    if (irq >= 16)
        irq += 16;
    gic_complete_irq(s->gic, 0, irq);
}

static uint32_t nvic_readl(void *opaque, uint32_t offset)
{
    nvic_state *s = (nvic_state *)opaque;
    uint32_t val;
    int irq;

    switch (offset) {
    case 4: /* Interrupt Control Type.  */
        return (GIC_NIRQ / 32) - 1;
    case 0x10: /* SysTick Control and Status.  */
        val = s->systick.control;
        s->systick.control &= ~SYSTICK_COUNTFLAG;
        return val;
    case 0x14: /* SysTick Reload Value.  */
        return s->systick.reload;
    case 0x18: /* SysTick Current Value.  */
        {
            int64_t t;
            if ((s->systick.control & SYSTICK_ENABLE) == 0)
                return 0;
            t = qemu_get_clock(vm_clock);
            if (t >= s->systick.tick)
                return 0;
            val = ((s->systick.tick - (t + 1)) / systick_scale(s)) + 1;
            /* The interrupt in triggered when the timer reaches zero.
               However the counter is not reloaded until the next clock
               tick.  This is a hack to return zero during the first tick.  */
            if (val > s->systick.reload)
                val = 0;
            return val;
        }
    case 0x1c: /* SysTick Calibration Value.  */
        return 10000;
    case 0xd00: /* CPUID Base.  */
        return cpu_single_env->cp15.c0_cpuid;
    case 0xd04: /* Interrypt Control State.  */
        /* VECTACTIVE */
        val = s->gic->running_irq[0];
        if (val == 1023) {
            val = 0;
        } else if (val >= 32) {
            val -= 16;
        }
        /* RETTOBASE */
        if (s->gic->running_irq[0] == 1023
                || s->gic->last_active[s->gic->running_irq[0]][0] == 1023) {
            val |= (1 << 11);
        }
        /* VECTPENDING */
        if (s->gic->current_pending[0] != 1023)
            val |= (s->gic->current_pending[0] << 12);
        /* ISRPENDING */
        for (irq = 32; irq < GIC_NIRQ; irq++) {
            if (s->gic->irq_state[irq].pending) {
                val |= (1 << 22);
                break;
            }
        }
        /* PENDSTSET */
        if (s->gic->irq_state[ARMV7M_EXCP_SYSTICK].pending)
            val |= (1 << 26);
        /* PENDSVSET */
        if (s->gic->irq_state[ARMV7M_EXCP_PENDSV].pending)
            val |= (1 << 28);
        /* NMIPENDSET */
        if (s->gic->irq_state[ARMV7M_EXCP_NMI].pending)
            val |= (1 << 31);
        return val;
    case 0xd08: /* Vector Table Offset.  */
        return cpu_single_env->v7m.vecbase;
    case 0xd0c: /* Application Interrupt/Reset Control.  */
        return 0xfa05000;
    case 0xd10: /* System Control.  */
        /* TODO: Implement SLEEPONEXIT.  */
        return 0;
    case 0xd14: /* Configuration Control.  */
        /* TODO: Implement Configuration Control bits.  */
        return 0;
    case 0xd18: case 0xd1c: case 0xd20: /* System Handler Priority.  */
        irq = offset - 0xd14;
        val = 0;
        val = s->gic->priority1[irq++][0];
        val = s->gic->priority1[irq++][0] << 8;
        val = s->gic->priority1[irq++][0] << 16;
        val = s->gic->priority1[irq][0] << 24;
        return val;
    case 0xd24: /* System Handler Status.  */
        val = 0;
        if (s->gic->irq_state[ARMV7M_EXCP_MEM].active) val |= (1 << 0);
        if (s->gic->irq_state[ARMV7M_EXCP_BUS].active) val |= (1 << 1);
        if (s->gic->irq_state[ARMV7M_EXCP_USAGE].active) val |= (1 << 3);
        if (s->gic->irq_state[ARMV7M_EXCP_SVC].active) val |= (1 << 7);
        if (s->gic->irq_state[ARMV7M_EXCP_DEBUG].active) val |= (1 << 8);
        if (s->gic->irq_state[ARMV7M_EXCP_PENDSV].active) val |= (1 << 10);
        if (s->gic->irq_state[ARMV7M_EXCP_SYSTICK].active) val |= (1 << 11);
        if (s->gic->irq_state[ARMV7M_EXCP_USAGE].pending) val |= (1 << 12);
        if (s->gic->irq_state[ARMV7M_EXCP_MEM].pending) val |= (1 << 13);
        if (s->gic->irq_state[ARMV7M_EXCP_BUS].pending) val |= (1 << 14);
        if (s->gic->irq_state[ARMV7M_EXCP_SVC].pending) val |= (1 << 15);
        if (s->gic->irq_state[ARMV7M_EXCP_MEM].enabled) val |= (1 << 16);
        if (s->gic->irq_state[ARMV7M_EXCP_BUS].enabled) val |= (1 << 17);
        if (s->gic->irq_state[ARMV7M_EXCP_USAGE].enabled) val |= (1 << 18);
        return val;
    case 0xd28: /* Configurable Fault Status.  */
        /* TODO: Implement Fault Status.  */
        cpu_abort(cpu_single_env,
                  "Not implemented: Configurable Fault Status.");
        return 0;
    case 0xd2c: /* Hard Fault Status.  */
    case 0xd30: /* Debug Fault Status.  */
    case 0xd34: /* Mem Manage Address.  */
    case 0xd38: /* Bus Fault Address.  */
    case 0xd3c: /* Aux Fault Status.  */
        /* TODO: Implement fault status registers.  */
        goto bad_reg;
    case 0xd40: /* PFR0.  */
        return 0x00000030;
    case 0xd44: /* PRF1.  */
        return 0x00000200;
    case 0xd48: /* DFR0.  */
        return 0x00100000;
    case 0xd4c: /* AFR0.  */
        return 0x00000000;
    case 0xd50: /* MMFR0.  */
        return 0x00000030;
    case 0xd54: /* MMFR1.  */
        return 0x00000000;
    case 0xd58: /* MMFR2.  */
        return 0x00000000;
    case 0xd5c: /* MMFR3.  */
        return 0x00000000;
    case 0xd60: /* ISAR0.  */
        return 0x01141110;
    case 0xd64: /* ISAR1.  */
        return 0x02111000;
    case 0xd68: /* ISAR2.  */
        return 0x21112231;
    case 0xd6c: /* ISAR3.  */
        return 0x01111110;
    case 0xd70: /* ISAR4.  */
        return 0x01310102;
    /* TODO: Implement debug registers.  */
    default:
    bad_reg:
        cpu_abort(cpu_single_env, "NVIC: Bad read offset 0x%x\n", offset);
    }
}

static void nvic_writel(void *opaque, uint32_t offset, uint32_t value)
{
    nvic_state *s = (nvic_state *)opaque;
    uint32_t oldval;
    switch (offset) {
    case 0x10: /* SysTick Control and Status.  */
        oldval = s->systick.control;
        s->systick.control &= 0xfffffff8;
        s->systick.control |= value & 7;
        if ((oldval ^ value) & SYSTICK_ENABLE) {
            int64_t now = qemu_get_clock(vm_clock);
            if (value & SYSTICK_ENABLE) {
                if (s->systick.tick) {
                    s->systick.tick += now;
                    qemu_mod_timer(s->systick.timer, s->systick.tick);
                } else {
                    systick_reload(s, 1);
                }
            } else {
                qemu_del_timer(s->systick.timer);
                s->systick.tick -= now;
                if (s->systick.tick < 0)
                  s->systick.tick = 0;
            }
        } else if ((oldval ^ value) & SYSTICK_CLKSOURCE) {
            /* This is a hack. Force the timer to be reloaded
               when the reference clock is changed.  */
            systick_reload(s, 1);
        }
        break;
    case 0x14: /* SysTick Reload Value.  */
        s->systick.reload = value;
        break;
    case 0x18: /* SysTick Current Value.  Writes reload the timer.  */
        systick_reload(s, 1);
        s->systick.control &= ~SYSTICK_COUNTFLAG;
        break;
    case 0xd04: /* Interrupt Control State.  */
        if (value & (1 << 31)) {
            armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI);
        }
        if (value & (1 << 28)) {
            armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV);
        } else if (value & (1 << 27)) {
            s->gic->irq_state[ARMV7M_EXCP_PENDSV].pending = 0;
            gic_update(s->gic);
        }
        if (value & (1 << 26)) {
            armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK);
        } else if (value & (1 << 25)) {
            s->gic->irq_state[ARMV7M_EXCP_SYSTICK].pending = 0;
            gic_update(s->gic);
        }
        break;
    case 0xd08: /* Vector Table Offset.  */
        cpu_single_env->v7m.vecbase = value & 0xffffff80;
        break;
    case 0xd0c: /* Application Interrupt/Reset Control.  */
        if ((value >> 16) == 0x05fa) {
            if (value & 2) {
                cpu_abort(cpu_single_env, "VECTCLRACTIVE not implemented");
            }
            if (value & 5) {
                cpu_abort(cpu_single_env, "System reset");
            }
        }
        break;
    case 0xd10: /* System Control.  */
    case 0xd14: /* Configuration Control.  */
        /* TODO: Implement control registers.  */
        goto bad_reg;
    case 0xd18: case 0xd1c: case 0xd20: /* System Handler Priority.  */
        {
            int irq;
            irq = offset - 0xd14;
            s->gic->priority1[irq++][0] = value & 0xff;
            s->gic->priority1[irq++][0] = (value >> 8) & 0xff;
            s->gic->priority1[irq++][0] = (value >> 16) & 0xff;
            s->gic->priority1[irq][0] = (value >> 24) & 0xff;
            gic_update(s->gic);
        }
        break;
    case 0xd24: /* System Handler Control.  */
        /* TODO: Real hardware allows you to set/clear the active bits
           under some circumstances.  We don't implement this.  */
        s->gic->irq_state[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
        s->gic->irq_state[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
        s->gic->irq_state[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
        break;
    case 0xd28: /* Configurable Fault Status.  */
    case 0xd2c: /* Hard Fault Status.  */
    case 0xd30: /* Debug Fault Status.  */
    case 0xd34: /* Mem Manage Address.  */
    case 0xd38: /* Bus Fault Address.  */
    case 0xd3c: /* Aux Fault Status.  */
        goto bad_reg;
    default:
    bad_reg:
        cpu_abort(cpu_single_env, "NVIC: Bad write offset 0x%x\n", offset);
    }
}

static void nvic_save(QEMUFile *f, void *opaque)
{
    nvic_state *s = (nvic_state *)opaque;

    qemu_put_be32(f, s->systick.control);
    qemu_put_be32(f, s->systick.reload);
    qemu_put_be64(f, s->systick.tick);
    qemu_put_timer(f, s->systick.timer);
}

static int nvic_load(QEMUFile *f, void *opaque, int version_id)
{
    nvic_state *s = (nvic_state *)opaque;

    if (version_id != 1)
        return -EINVAL;

    s->systick.control = qemu_get_be32(f);
    s->systick.reload = qemu_get_be32(f);
    s->systick.tick = qemu_get_be64(f);
    qemu_get_timer(f, s->systick.timer);

    return 0;
}

qemu_irq *armv7m_nvic_init(CPUState *env)
{
    nvic_state *s;
    qemu_irq *parent;

    parent = arm_pic_init_cpu(env);
    s = (nvic_state *)qemu_mallocz(sizeof(nvic_state));
    s->gic = gic_init(0xe000e000, &parent[ARM_PIC_CPU_IRQ]);
    s->gic->nvic = s;
    s->systick.timer = qemu_new_timer(vm_clock, systick_timer_tick, s);
    if (env->v7m.nvic)
        cpu_abort(env, "CPU can only have one NVIC\n");
    env->v7m.nvic = s;
    register_savevm("armv7m_nvic", -1, 1, nvic_save, nvic_load, s);
    return s->gic->in;
}