op_helper.c 9.26 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
/*
 *  CRIS helper routines
 *
 *  Copyright (c) 2007 AXIS Communications
 *  Written by Edgar E. Iglesias
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

#include <assert.h>
#include "exec.h"
#include "mmu.h"

#define MMUSUFFIX _mmu
#ifdef __s390__
# define GETPC() ((void*)((unsigned long)__builtin_return_address(0) & 0x7fffffffUL))
#else
# define GETPC() (__builtin_return_address(0))
#endif

#define SHIFT 0
#include "softmmu_template.h"

#define SHIFT 1
#include "softmmu_template.h"

#define SHIFT 2
#include "softmmu_template.h"

#define SHIFT 3
#include "softmmu_template.h"

#define D(x)

/* Try to fill the TLB and return an exception if error. If retaddr is
   NULL, it means that the function was called in C code (i.e. not
   from generated code or from helper.c) */
/* XXX: fix it to restore all registers */
void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
{
    TranslationBlock *tb;
    CPUState *saved_env;
    unsigned long pc;
    int ret;

    /* XXX: hack to restore env in all cases, even if not called from
       generated code */
    saved_env = env;
    env = cpu_single_env;

    D(fprintf(logfile, "%s ra=%x acr=%x %x\n", __func__, retaddr,
	    env->regs[R_ACR], saved_env->regs[R_ACR]));
    ret = cpu_cris_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
    if (__builtin_expect(ret, 0)) {
        if (retaddr) {
            /* now we have a real cpu fault */
            pc = (unsigned long)retaddr;
            tb = tb_find_pc(pc);
            if (tb) {
                /* the PC is inside the translated code. It means that we have
                   a virtual CPU fault */
                cpu_restore_state(tb, env, pc, NULL);
            }
        }
        cpu_loop_exit();
    }
    env = saved_env;
}

void helper_tlb_update(uint32_t T0)
{
#if !defined(CONFIG_USER_ONLY)
	uint32_t vaddr;
	uint32_t srs = env->pregs[PR_SRS];

	if (srs != 1 && srs != 2)
		return;

	vaddr = cris_mmu_tlb_latest_update(env, T0);
	D(printf("flush old_vaddr=%x vaddr=%x T0=%x\n", vaddr, 
		 env->sregs[SFR_R_MM_CAUSE] & TARGET_PAGE_MASK, T0));
	tlb_flush_page(env, vaddr);
#endif
}

void helper_tlb_flush(void)
{
	tlb_flush(env, 1);
}

void helper_dump(uint32_t a0, uint32_t a1)
{
	(fprintf(logfile, "%s: a0=%x a1=%x\n", __func__, a0, a1)); 
}

void helper_dummy(void)
{

}

/* Only used for debugging at the moment.  */
void helper_rfe(void)
{
	D(fprintf(logfile, "rfe: erp=%x pid=%x ccs=%x btarget=%x\n", 
		 env->pregs[PR_ERP], env->pregs[PR_PID],
		 env->pregs[PR_CCS],
		 env->btarget));
}

void helper_store(uint32_t a0)
{
	if (env->pregs[PR_CCS] & P_FLAG )
	{
		cpu_abort(env, "cond_store_failed! pc=%x a0=%x\n",
			  env->pc, a0);
	}
}

void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
                          int is_asi)
{
	D(printf("%s addr=%x w=%d ex=%d asi=%d\n", 
		__func__, addr, is_write, is_exec, is_asi));
}

static void evaluate_flags_writeback(uint32_t flags)
{
	int x;

	/* Extended arithmetics, leave the z flag alone.  */
	env->debug3 = env->pregs[PR_CCS];

	if (env->cc_x_live)
		x = env->cc_x;
	else
		x = env->pregs[PR_CCS] & X_FLAG;

	if ((x || env->cc_op == CC_OP_ADDC)
	    && flags & Z_FLAG)
		env->cc_mask &= ~Z_FLAG;

	/* all insn clear the x-flag except setf or clrf.  */
	env->pregs[PR_CCS] &= ~(env->cc_mask | X_FLAG);
	flags &= env->cc_mask;
	env->pregs[PR_CCS] |= flags;
	RETURN();
}

void helper_evaluate_flags_muls(void)
{
	uint32_t src;
	uint32_t dst;
	uint32_t res;
	uint32_t flags = 0;
	/* were gonna have to redo the muls.  */
	int64_t tmp, t0 ,t1;
	int32_t mof;
	int dneg;

	src = env->cc_src;
	dst = env->cc_dest;
	res = env->cc_result;


	/* cast into signed values to make GCC sign extend.  */
	t0 = (int32_t)src;
	t1 = (int32_t)dst;
	dneg = ((int32_t)res) < 0;

	tmp = t0 * t1;
	mof = tmp >> 32;
	if (tmp == 0)
		flags |= Z_FLAG;
	else if (tmp < 0)
		flags |= N_FLAG;
	if ((dneg && mof != -1)
	    || (!dneg && mof != 0))
		flags |= V_FLAG;
	evaluate_flags_writeback(flags);
}

void  helper_evaluate_flags_mulu(void)
{
	uint32_t src;
	uint32_t dst;
	uint32_t res;
	uint32_t flags = 0;
	/* were gonna have to redo the muls.  */
	uint64_t tmp, t0 ,t1;
	uint32_t mof;

	src = env->cc_src;
	dst = env->cc_dest;
	res = env->cc_result;


	/* cast into signed values to make GCC sign extend.  */
	t0 = src;
	t1 = dst;

	tmp = t0 * t1;
	mof = tmp >> 32;
	if (tmp == 0)
		flags |= Z_FLAG;
	else if (tmp >> 63)
		flags |= N_FLAG;
	if (mof)
		flags |= V_FLAG;

	evaluate_flags_writeback(flags);
}

void  helper_evaluate_flags_mcp(void)
{
	uint32_t src;
	uint32_t dst;
	uint32_t res;
	uint32_t flags = 0;

	src = env->cc_src;
	dst = env->cc_dest;
	res = env->cc_result;

	if ((res & 0x80000000L) != 0L)
	{
		flags |= N_FLAG;
		if (((src & 0x80000000L) == 0L)
		    && ((dst & 0x80000000L) == 0L))
		{
			flags |= V_FLAG;
		}
		else if (((src & 0x80000000L) != 0L) &&
			 ((dst & 0x80000000L) != 0L))
		{
			flags |= R_FLAG;
		}
	}
	else
	{
		if (res == 0L)
			flags |= Z_FLAG;
		if (((src & 0x80000000L) != 0L)
		    && ((dst & 0x80000000L) != 0L))
			flags |= V_FLAG;
		if ((dst & 0x80000000L) != 0L
		    || (src & 0x80000000L) != 0L)
			flags |= R_FLAG;
	}

	evaluate_flags_writeback(flags);
}

void  helper_evaluate_flags_alu_4(void)
{
	uint32_t src;
	uint32_t dst;
	uint32_t res;
	uint32_t flags = 0;

	src = env->cc_src;
	dst = env->cc_dest;
	res = env->cc_result;

	if ((res & 0x80000000L) != 0L)
	{
		flags |= N_FLAG;
		if (((src & 0x80000000L) == 0L)
		    && ((dst & 0x80000000L) == 0L))
		{
			flags |= V_FLAG;
		}
		else if (((src & 0x80000000L) != 0L) &&
			 ((dst & 0x80000000L) != 0L))
		{
			flags |= C_FLAG;
		}
	}
	else
	{
		if (res == 0L)
			flags |= Z_FLAG;
		if (((src & 0x80000000L) != 0L)
		    && ((dst & 0x80000000L) != 0L))
			flags |= V_FLAG;
		if ((dst & 0x80000000L) != 0L
		    || (src & 0x80000000L) != 0L)
			flags |= C_FLAG;
	}

	if (env->cc_op == CC_OP_SUB
	    || env->cc_op == CC_OP_CMP) {
		flags ^= C_FLAG;
	}
	evaluate_flags_writeback(flags);
}

void  helper_evaluate_flags_move_4 (void)
{
	uint32_t src;
	uint32_t res;
	uint32_t flags = 0;

	src = env->cc_src;
	res = env->cc_result;

	if ((int32_t)res < 0)
		flags |= N_FLAG;
	else if (res == 0L)
		flags |= Z_FLAG;

	evaluate_flags_writeback(flags);
}
void  helper_evaluate_flags_move_2 (void)
{
	uint32_t src;
	uint32_t flags = 0;
	uint16_t res;

	src = env->cc_src;
	res = env->cc_result;

	if ((int16_t)res < 0L)
		flags |= N_FLAG;
	else if (res == 0)
		flags |= Z_FLAG;

	evaluate_flags_writeback(flags);
}

/* TODO: This is expensive. We could split things up and only evaluate part of
   CCR on a need to know basis. For now, we simply re-evaluate everything.  */
void helper_evaluate_flags (void)
{
	uint32_t src;
	uint32_t dst;
	uint32_t res;
	uint32_t flags = 0;

	src = env->cc_src;
	dst = env->cc_dest;
	res = env->cc_result;


	/* Now, evaluate the flags. This stuff is based on
	   Per Zander's CRISv10 simulator.  */
	switch (env->cc_size)
	{
		case 1:
			if ((res & 0x80L) != 0L)
			{
				flags |= N_FLAG;
				if (((src & 0x80L) == 0L)
				    && ((dst & 0x80L) == 0L))
				{
					flags |= V_FLAG;
				}
				else if (((src & 0x80L) != 0L)
					 && ((dst & 0x80L) != 0L))
				{
					flags |= C_FLAG;
				}
			}
			else
			{
				if ((res & 0xFFL) == 0L)
				{
					flags |= Z_FLAG;
				}
				if (((src & 0x80L) != 0L)
				    && ((dst & 0x80L) != 0L))
				{
					flags |= V_FLAG;
				}
				if ((dst & 0x80L) != 0L
				    || (src & 0x80L) != 0L)
				{
					flags |= C_FLAG;
				}
			}
			break;
		case 2:
			if ((res & 0x8000L) != 0L)
			{
				flags |= N_FLAG;
				if (((src & 0x8000L) == 0L)
				    && ((dst & 0x8000L) == 0L))
				{
					flags |= V_FLAG;
				}
				else if (((src & 0x8000L) != 0L)
					 && ((dst & 0x8000L) != 0L))
				{
					flags |= C_FLAG;
				}
			}
			else
			{
				if ((res & 0xFFFFL) == 0L)
				{
					flags |= Z_FLAG;
				}
				if (((src & 0x8000L) != 0L)
				    && ((dst & 0x8000L) != 0L))
				{
					flags |= V_FLAG;
				}
				if ((dst & 0x8000L) != 0L
				    || (src & 0x8000L) != 0L)
				{
					flags |= C_FLAG;
				}
			}
			break;
		case 4:
			if ((res & 0x80000000L) != 0L)
			{
				flags |= N_FLAG;
				if (((src & 0x80000000L) == 0L)
				    && ((dst & 0x80000000L) == 0L))
				{
					flags |= V_FLAG;
				}
				else if (((src & 0x80000000L) != 0L) &&
					 ((dst & 0x80000000L) != 0L))
				{
					flags |= C_FLAG;
				}
			}
			else
			{
				if (res == 0L)
					flags |= Z_FLAG;
				if (((src & 0x80000000L) != 0L)
				    && ((dst & 0x80000000L) != 0L))
					flags |= V_FLAG;
				if ((dst & 0x80000000L) != 0L
				    || (src & 0x80000000L) != 0L)
					flags |= C_FLAG;
			}
			break;
		default:
			break;
	}

	if (env->cc_op == CC_OP_SUB
	    || env->cc_op == CC_OP_CMP) {
		flags ^= C_FLAG;
	}
	evaluate_flags_writeback(flags);
}