slavio_timer.c 12.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
/*
 * QEMU Sparc SLAVIO timer controller emulation
 *
 * Copyright (c) 2003-2005 Fabrice Bellard
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include "hw.h"
#include "sun4m.h"
#include "qemu-timer.h"

//#define DEBUG_TIMER

#ifdef DEBUG_TIMER
#define DPRINTF(fmt, args...) \
do { printf("TIMER: " fmt , ##args); } while (0)
#else
#define DPRINTF(fmt, args...)
#endif

/*
 * Registers of hardware timer in sun4m.
 *
 * This is the timer/counter part of chip STP2001 (Slave I/O), also
 * produced as NCR89C105. See
 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
 *
 * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0
 * are zero. Bit 31 is 1 when count has been reached.
 *
 * Per-CPU timers interrupt local CPU, system timer uses normal
 * interrupt routing.
 *
 */

#define MAX_CPUS 16

typedef struct SLAVIO_TIMERState {
    qemu_irq irq;
    ptimer_state *timer;
    uint32_t count, counthigh, reached;
    uint64_t limit;
    // processor only
    int running;
    struct SLAVIO_TIMERState *master;
    int slave_index;
    // system only
    unsigned int num_slaves;
    struct SLAVIO_TIMERState *slave[MAX_CPUS];
    uint32_t slave_mode;
} SLAVIO_TIMERState;

#define TIMER_MAXADDR 0x1f
#define SYS_TIMER_SIZE 0x14
#define CPU_TIMER_SIZE 0x10

#define SYS_TIMER_OFFSET      0x10000ULL
#define CPU_TIMER_OFFSET(cpu) (0x1000ULL * cpu)

#define TIMER_LIMIT         0
#define TIMER_COUNTER       1
#define TIMER_COUNTER_NORST 2
#define TIMER_STATUS        3
#define TIMER_MODE          4

#define TIMER_COUNT_MASK32 0xfffffe00
#define TIMER_LIMIT_MASK32 0x7fffffff
#define TIMER_MAX_COUNT64  0x7ffffffffffffe00ULL
#define TIMER_MAX_COUNT32  0x7ffffe00ULL
#define TIMER_REACHED      0x80000000
#define TIMER_PERIOD       500ULL // 500ns
#define LIMIT_TO_PERIODS(l) ((l) >> 9)
#define PERIODS_TO_LIMIT(l) ((l) << 9)

static int slavio_timer_is_user(SLAVIO_TIMERState *s)
{
    return s->master && (s->master->slave_mode & (1 << s->slave_index));
}

// Update count, set irq, update expire_time
// Convert from ptimer countdown units
static void slavio_timer_get_out(SLAVIO_TIMERState *s)
{
    uint64_t count, limit;

    if (s->limit == 0) /* free-run processor or system counter */
        limit = TIMER_MAX_COUNT32;
    else
        limit = s->limit;

    if (s->timer)
        count = limit - PERIODS_TO_LIMIT(ptimer_get_count(s->timer));
    else
        count = 0;

    DPRINTF("get_out: limit %" PRIx64 " count %x%08x\n", s->limit,
            s->counthigh, s->count);
    s->count = count & TIMER_COUNT_MASK32;
    s->counthigh = count >> 32;
}

// timer callback
static void slavio_timer_irq(void *opaque)
{
    SLAVIO_TIMERState *s = opaque;

    slavio_timer_get_out(s);
    DPRINTF("callback: count %x%08x\n", s->counthigh, s->count);
    s->reached = TIMER_REACHED;
    if (!slavio_timer_is_user(s))
        qemu_irq_raise(s->irq);
}

static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr)
{
    SLAVIO_TIMERState *s = opaque;
    uint32_t saddr, ret;

    saddr = (addr & TIMER_MAXADDR) >> 2;
    switch (saddr) {
    case TIMER_LIMIT:
        // read limit (system counter mode) or read most signifying
        // part of counter (user mode)
        if (slavio_timer_is_user(s)) {
            // read user timer MSW
            slavio_timer_get_out(s);
            ret = s->counthigh | s->reached;
        } else {
            // read limit
            // clear irq
            qemu_irq_lower(s->irq);
            s->reached = 0;
            ret = s->limit & TIMER_LIMIT_MASK32;
        }
        break;
    case TIMER_COUNTER:
        // read counter and reached bit (system mode) or read lsbits
        // of counter (user mode)
        slavio_timer_get_out(s);
        if (slavio_timer_is_user(s)) // read user timer LSW
            ret = s->count & TIMER_MAX_COUNT64;
        else // read limit
            ret = (s->count & TIMER_MAX_COUNT32) | s->reached;
        break;
    case TIMER_STATUS:
        // only available in processor counter/timer
        // read start/stop status
        ret = s->running;
        break;
    case TIMER_MODE:
        // only available in system counter
        // read user/system mode
        ret = s->slave_mode;
        break;
    default:
        DPRINTF("invalid read address " TARGET_FMT_plx "\n", addr);
        ret = 0;
        break;
    }
    DPRINTF("read " TARGET_FMT_plx " = %08x\n", addr, ret);

    return ret;
}

static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr,
                                    uint32_t val)
{
    SLAVIO_TIMERState *s = opaque;
    uint32_t saddr;

    DPRINTF("write " TARGET_FMT_plx " %08x\n", addr, val);
    saddr = (addr & TIMER_MAXADDR) >> 2;
    switch (saddr) {
    case TIMER_LIMIT:
        if (slavio_timer_is_user(s)) {
            uint64_t count;

            // set user counter MSW, reset counter
            qemu_irq_lower(s->irq);
            s->limit = TIMER_MAX_COUNT64;
            s->counthigh = val & (TIMER_MAX_COUNT64 >> 32);
            s->reached = 0;
            count = ((uint64_t)s->counthigh << 32) | s->count;
            DPRINTF("processor %d user timer set to %016llx\n", s->slave_index,
                    count);
            if (s->timer) {
                ptimer_set_count(s->timer, LIMIT_TO_PERIODS(s->limit - count));
                ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 0);
            }
        } else {
            // set limit, reset counter
            qemu_irq_lower(s->irq);
            s->limit = val & TIMER_MAX_COUNT32;
            if (s->timer) {
                if (s->limit == 0) /* free-run */
                    ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
                else
                    ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 1);
            }
        }
        break;
    case TIMER_COUNTER:
        if (slavio_timer_is_user(s)) {
            uint64_t count;

            // set user counter LSW, reset counter
            qemu_irq_lower(s->irq);
            s->limit = TIMER_MAX_COUNT64;
            s->count = val & TIMER_MAX_COUNT64;
            s->reached = 0;
            count = ((uint64_t)s->counthigh) << 32 | s->count;
            DPRINTF("processor %d user timer set to %016llx\n", s->slave_index,
                    count);
            if (s->timer) {
                ptimer_set_count(s->timer, LIMIT_TO_PERIODS(s->limit - count));
                ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 0);
            }
        } else
            DPRINTF("not user timer\n");
        break;
    case TIMER_COUNTER_NORST:
        // set limit without resetting counter
        s->limit = val & TIMER_MAX_COUNT32;
        if (s->timer) {
            if (s->limit == 0)	/* free-run */
                ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 0);
            else
                ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 0);
        }
        break;
    case TIMER_STATUS:
        if (slavio_timer_is_user(s)) {
            // start/stop user counter
            if ((val & 1) && !s->running) {
                DPRINTF("processor %d user timer started\n", s->slave_index);
                if (s->timer)
                    ptimer_run(s->timer, 0);
                s->running = 1;
            } else if (!(val & 1) && s->running) {
                DPRINTF("processor %d user timer stopped\n", s->slave_index);
                if (s->timer)
                    ptimer_stop(s->timer);
                s->running = 0;
            }
        }
        break;
    case TIMER_MODE:
        if (s->master == NULL) {
            unsigned int i;

            for (i = 0; i < s->num_slaves; i++) {
                if (val & (1 << i)) {
                    qemu_irq_lower(s->slave[i]->irq);
                    s->slave[i]->limit = -1ULL;
                } else {
                    ptimer_stop(s->slave[i]->timer);
                }
                if ((val & (1 << i)) != (s->slave_mode & (1 << i))) {
                    ptimer_stop(s->slave[i]->timer);
                    ptimer_set_limit(s->slave[i]->timer,
                                     LIMIT_TO_PERIODS(s->slave[i]->limit), 1);
                    DPRINTF("processor %d timer changed\n",
                            s->slave[i]->slave_index);
                    ptimer_run(s->slave[i]->timer, 0);
                }
            }
            s->slave_mode = val & ((1 << s->num_slaves) - 1);
        } else
            DPRINTF("not system timer\n");
        break;
    default:
        DPRINTF("invalid write address " TARGET_FMT_plx "\n", addr);
        break;
    }
}

static CPUReadMemoryFunc *slavio_timer_mem_read[3] = {
    NULL,
    NULL,
    slavio_timer_mem_readl,
};

static CPUWriteMemoryFunc *slavio_timer_mem_write[3] = {
    NULL,
    NULL,
    slavio_timer_mem_writel,
};

static void slavio_timer_save(QEMUFile *f, void *opaque)
{
    SLAVIO_TIMERState *s = opaque;

    qemu_put_be64s(f, &s->limit);
    qemu_put_be32s(f, &s->count);
    qemu_put_be32s(f, &s->counthigh);
    qemu_put_be32s(f, &s->reached);
    qemu_put_be32s(f, &s->running);
    if (s->timer)
        qemu_put_ptimer(f, s->timer);
}

static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id)
{
    SLAVIO_TIMERState *s = opaque;

    if (version_id != 3)
        return -EINVAL;

    qemu_get_be64s(f, &s->limit);
    qemu_get_be32s(f, &s->count);
    qemu_get_be32s(f, &s->counthigh);
    qemu_get_be32s(f, &s->reached);
    qemu_get_be32s(f, &s->running);
    if (s->timer)
        qemu_get_ptimer(f, s->timer);

    return 0;
}

static void slavio_timer_reset(void *opaque)
{
    SLAVIO_TIMERState *s = opaque;

    s->limit = 0;
    s->count = 0;
    s->reached = 0;
    s->slave_mode = 0;
    if (!s->master || s->slave_index < s->master->num_slaves) {
        ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
        ptimer_run(s->timer, 0);
    }
    s->running = 1;
    qemu_irq_lower(s->irq);
}

static SLAVIO_TIMERState *slavio_timer_init(target_phys_addr_t addr,
                                            qemu_irq irq,
                                            SLAVIO_TIMERState *master,
                                            int slave_index)
{
    int slavio_timer_io_memory;
    SLAVIO_TIMERState *s;
    QEMUBH *bh;

    s = qemu_mallocz(sizeof(SLAVIO_TIMERState));
    if (!s)
        return s;
    s->irq = irq;
    s->master = master;
    s->slave_index = slave_index;
    if (!master || slave_index < master->num_slaves) {
        bh = qemu_bh_new(slavio_timer_irq, s);
        s->timer = ptimer_init(bh);
        ptimer_set_period(s->timer, TIMER_PERIOD);
    }

    slavio_timer_io_memory = cpu_register_io_memory(0, slavio_timer_mem_read,
                                                    slavio_timer_mem_write, s);
    if (master)
        cpu_register_physical_memory(addr, CPU_TIMER_SIZE,
                                     slavio_timer_io_memory);
    else
        cpu_register_physical_memory(addr, SYS_TIMER_SIZE,
                                     slavio_timer_io_memory);
    register_savevm("slavio_timer", addr, 3, slavio_timer_save,
                    slavio_timer_load, s);
    qemu_register_reset(slavio_timer_reset, s);
    slavio_timer_reset(s);

    return s;
}

void slavio_timer_init_all(target_phys_addr_t base, qemu_irq master_irq,
                           qemu_irq *cpu_irqs, unsigned int num_cpus)
{
    SLAVIO_TIMERState *master;
    unsigned int i;

    master = slavio_timer_init(base + SYS_TIMER_OFFSET, master_irq, NULL, 0);

    master->num_slaves = num_cpus;

    for (i = 0; i < MAX_CPUS; i++) {
        master->slave[i] = slavio_timer_init(base + (target_phys_addr_t)
                                             CPU_TIMER_OFFSET(i),
                                             cpu_irqs[i], master, i);
    }
}