main.c 15.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
/*
 *  qemu main
 * 
 *  Copyright (c) 2003 Fabrice Bellard
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 3)
#include <sys/personality.h>
#endif

#include "qemu.h"

#include "cpu-i386.h"

#define DEBUG_LOGFILE "/tmp/qemu.log"

FILE *logfile = NULL;
int loglevel;
const char *interp_prefix = CONFIG_QEMU_PREFIX "/qemu-i386";

#ifdef __i386__
/* Force usage of an ELF interpreter even if it is an ELF shared
   object ! */
const char interp[] __attribute__((section(".interp"))) = "/lib/ld-linux.so.2";
#endif

/* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so
   we allocate a bigger stack. Need a better solution, for example
   by remapping the process stack directly at the right place */
unsigned long x86_stack_size = 512 * 1024;
unsigned long stktop;

void gemu_log(const char *fmt, ...)
{
    va_list ap;

    va_start(ap, fmt);
    vfprintf(stderr, fmt, ap);
    va_end(ap);
}

/***********************************************************/
/* CPUX86 core interface */

void cpu_x86_outb(int addr, int val)
{
    fprintf(stderr, "outb: port=0x%04x, data=%02x\n", addr, val);
}

void cpu_x86_outw(int addr, int val)
{
    fprintf(stderr, "outw: port=0x%04x, data=%04x\n", addr, val);
}

void cpu_x86_outl(int addr, int val)
{
    fprintf(stderr, "outl: port=0x%04x, data=%08x\n", addr, val);
}

int cpu_x86_inb(int addr)
{
    fprintf(stderr, "inb: port=0x%04x\n", addr);
    return 0;
}

int cpu_x86_inw(int addr)
{
    fprintf(stderr, "inw: port=0x%04x\n", addr);
    return 0;
}

int cpu_x86_inl(int addr)
{
    fprintf(stderr, "inl: port=0x%04x\n", addr);
    return 0;
}

void write_dt(void *ptr, unsigned long addr, unsigned long limit, 
              int seg32_bit)
{
    unsigned int e1, e2, limit_in_pages;
    limit_in_pages = 0;
    if (limit > 0xffff) {
        limit = limit >> 12;
        limit_in_pages = 1;
    }
    e1 = (addr << 16) | (limit & 0xffff);
    e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000);
    e2 |= limit_in_pages << 23; /* byte granularity */
    e2 |= seg32_bit << 22; /* 32 bit segment */
    stl((uint8_t *)ptr, e1);
    stl((uint8_t *)ptr + 4, e2);
}

uint64_t gdt_table[6];

//#define DEBUG_VM86

static inline int is_revectored(int nr, struct target_revectored_struct *bitmap)
{
    return (tswap32(bitmap->__map[nr >> 5]) >> (nr & 0x1f)) & 1;
}

static inline uint8_t *seg_to_linear(unsigned int seg, unsigned int reg)
{
    return (uint8_t *)((seg << 4) + (reg & 0xffff));
}

static inline void pushw(CPUX86State *env, int val)
{
    env->regs[R_ESP] = (env->regs[R_ESP] & ~0xffff) | 
        ((env->regs[R_ESP] - 2) & 0xffff);
    *(uint16_t *)seg_to_linear(env->segs[R_SS], env->regs[R_ESP]) = val;
}

static inline unsigned int get_vflags(CPUX86State *env)
{
    unsigned int eflags;
    eflags = env->eflags & ~(VM_MASK | RF_MASK | IF_MASK);
    if (eflags & VIF_MASK)
        eflags |= IF_MASK;
    return eflags;
}

void save_v86_state(CPUX86State *env)
{
    TaskState *ts = env->opaque;
#ifdef DEBUG_VM86
    printf("save_v86_state\n");
#endif

    /* put the VM86 registers in the userspace register structure */
    ts->target_v86->regs.eax = tswap32(env->regs[R_EAX]);
    ts->target_v86->regs.ebx = tswap32(env->regs[R_EBX]);
    ts->target_v86->regs.ecx = tswap32(env->regs[R_ECX]);
    ts->target_v86->regs.edx = tswap32(env->regs[R_EDX]);
    ts->target_v86->regs.esi = tswap32(env->regs[R_ESI]);
    ts->target_v86->regs.edi = tswap32(env->regs[R_EDI]);
    ts->target_v86->regs.ebp = tswap32(env->regs[R_EBP]);
    ts->target_v86->regs.esp = tswap32(env->regs[R_ESP]);
    ts->target_v86->regs.eip = tswap32(env->eip);
    ts->target_v86->regs.cs = tswap16(env->segs[R_CS]);
    ts->target_v86->regs.ss = tswap16(env->segs[R_SS]);
    ts->target_v86->regs.ds = tswap16(env->segs[R_DS]);
    ts->target_v86->regs.es = tswap16(env->segs[R_ES]);
    ts->target_v86->regs.fs = tswap16(env->segs[R_FS]);
    ts->target_v86->regs.gs = tswap16(env->segs[R_GS]);
    ts->target_v86->regs.eflags = tswap32(env->eflags);

    /* restore 32 bit registers */
    env->regs[R_EAX] = ts->vm86_saved_regs.eax;
    env->regs[R_EBX] = ts->vm86_saved_regs.ebx;
    env->regs[R_ECX] = ts->vm86_saved_regs.ecx;
    env->regs[R_EDX] = ts->vm86_saved_regs.edx;
    env->regs[R_ESI] = ts->vm86_saved_regs.esi;
    env->regs[R_EDI] = ts->vm86_saved_regs.edi;
    env->regs[R_EBP] = ts->vm86_saved_regs.ebp;
    env->regs[R_ESP] = ts->vm86_saved_regs.esp;
    env->eflags = ts->vm86_saved_regs.eflags;
    env->eip = ts->vm86_saved_regs.eip;
    
    cpu_x86_load_seg(env, R_CS, ts->vm86_saved_regs.cs);
    cpu_x86_load_seg(env, R_SS, ts->vm86_saved_regs.ss);
    cpu_x86_load_seg(env, R_DS, ts->vm86_saved_regs.ds);
    cpu_x86_load_seg(env, R_ES, ts->vm86_saved_regs.es);
    cpu_x86_load_seg(env, R_FS, ts->vm86_saved_regs.fs);
    cpu_x86_load_seg(env, R_GS, ts->vm86_saved_regs.gs);
}

/* return from vm86 mode to 32 bit. The vm86() syscall will return
   'retval' */
static inline void return_to_32bit(CPUX86State *env, int retval)
{
#ifdef DEBUG_VM86
    printf("return_to_32bit: ret=0x%x\n", retval);
#endif
    save_v86_state(env);
    env->regs[R_EAX] = retval;
}

/* handle VM86 interrupt (NOTE: the CPU core currently does not
   support TSS interrupt revectoring, so this code is always executed) */
static void do_int(CPUX86State *env, int intno)
{
    TaskState *ts = env->opaque;
    uint32_t *int_ptr, segoffs;
    
    if (env->segs[R_CS] == TARGET_BIOSSEG)
        goto cannot_handle; /* XXX: I am not sure this is really useful */
    if (is_revectored(intno, &ts->target_v86->int_revectored))
        goto cannot_handle;
    if (intno == 0x21 && is_revectored((env->regs[R_EAX] >> 8) & 0xff, 
                                       &ts->target_v86->int21_revectored))
        goto cannot_handle;
    int_ptr = (uint32_t *)(intno << 2);
    segoffs = tswap32(*int_ptr);
    if ((segoffs >> 16) == TARGET_BIOSSEG)
        goto cannot_handle;
#ifdef DEBUG_VM86
    printf("VM86: emulating int 0x%x. CS:IP=%04x:%04x\n", 
           intno, segoffs >> 16, segoffs & 0xffff);
#endif
    /* save old state */
    pushw(env, get_vflags(env));
    pushw(env, env->segs[R_CS]);
    pushw(env, env->eip);
    /* goto interrupt handler */
    env->eip = segoffs & 0xffff;
    cpu_x86_load_seg(env, R_CS, segoffs >> 16);
    env->eflags &= ~(VIF_MASK | TF_MASK);
    return;
 cannot_handle:
#ifdef DEBUG_VM86
    printf("VM86: return to 32 bits int 0x%x\n", intno);
#endif
    return_to_32bit(env, TARGET_VM86_INTx | (intno << 8));
}

void cpu_loop(struct CPUX86State *env)
{
    int trapnr;
    uint8_t *pc;
    target_siginfo_t info;

    for(;;) {
        trapnr = cpu_x86_exec(env);
        pc = env->seg_cache[R_CS].base + env->eip;
        switch(trapnr) {
        case EXCP0D_GPF:
            if (env->eflags & VM_MASK) {
#ifdef DEBUG_VM86
                printf("VM86 exception %04x:%08x %02x %02x\n",
                       env->segs[R_CS], env->eip, pc[0], pc[1]);
#endif
                /* VM86 mode */
                switch(pc[0]) {
                case 0xcd: /* int */
                    env->eip += 2;
                    do_int(env, pc[1]);
                    break;
                case 0x66:
                    switch(pc[1]) {
                    case 0xfb: /* sti */
                    case 0x9d: /* popf */
                    case 0xcf: /* iret */
                        env->eip += 2;
                        return_to_32bit(env, TARGET_VM86_STI);
                        break;
                    default:
                        goto vm86_gpf;
                    }
                    break;
                case 0xfb: /* sti */
                case 0x9d: /* popf */
                case 0xcf: /* iret */
                    env->eip++;
                    return_to_32bit(env, TARGET_VM86_STI);
                    break;
                default:
                vm86_gpf:
                    /* real VM86 GPF exception */
                    return_to_32bit(env, TARGET_VM86_UNKNOWN);
                    break;
                }
            } else {
                if (pc[0] == 0xcd && pc[1] == 0x80) {
                    /* syscall */
                    env->eip += 2;
                    env->regs[R_EAX] = do_syscall(env, 
                                                  env->regs[R_EAX], 
                                                  env->regs[R_EBX],
                                                  env->regs[R_ECX],
                                                  env->regs[R_EDX],
                                                  env->regs[R_ESI],
                                                  env->regs[R_EDI],
                                                  env->regs[R_EBP]);
                } else {
                    /* XXX: more precise info */
                    info.si_signo = SIGSEGV;
                    info.si_errno = 0;
                    info.si_code = 0;
                    info._sifields._sigfault._addr = 0;
                    queue_signal(info.si_signo, &info);
                }
            }
            break;
        case EXCP00_DIVZ:
            if (env->eflags & VM_MASK) {
                do_int(env, trapnr);
            } else {
                /* division by zero */
                info.si_signo = SIGFPE;
                info.si_errno = 0;
                info.si_code = TARGET_FPE_INTDIV;
                info._sifields._sigfault._addr = env->eip;
                queue_signal(info.si_signo, &info);
            }
            break;
        case EXCP04_INTO:
        case EXCP05_BOUND:
            if (env->eflags & VM_MASK) {
                do_int(env, trapnr);
            } else {
                info.si_signo = SIGSEGV;
                info.si_errno = 0;
                info.si_code = 0;
                info._sifields._sigfault._addr = 0;
                queue_signal(info.si_signo, &info);
            }
            break;
        case EXCP06_ILLOP:
            info.si_signo = SIGILL;
            info.si_errno = 0;
            info.si_code = TARGET_ILL_ILLOPN;
            info._sifields._sigfault._addr = env->eip;
            queue_signal(info.si_signo, &info);
            break;
        case EXCP_INTERRUPT:
            /* just indicate that signals should be handled asap */
            break;
        default:
            fprintf(stderr, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n", 
                    (long)pc, trapnr);
            abort();
        }
        process_pending_signals(env);
    }
}

void usage(void)
{
    printf("qemu version " QEMU_VERSION ", Copyright (c) 2003 Fabrice Bellard\n"
           "usage: qemu [-h] [-d] [-L path] [-s size] program [arguments...]\n"
           "Linux x86 emulator\n"
           "\n"
           "-h        print this help\n"
           "-d        activate log (logfile=%s)\n"
           "-L path   set the x86 elf interpreter prefix (default=%s)\n"
           "-s size   set the x86 stack size in bytes (default=%ld)\n",
           DEBUG_LOGFILE,
           interp_prefix, 
           x86_stack_size);
    exit(1);
}

/* XXX: currently only used for async signals (see signal.c) */
CPUX86State *global_env;
/* used to free thread contexts */
TaskState *first_task_state;

int main(int argc, char **argv)
{
    const char *filename;
    struct target_pt_regs regs1, *regs = &regs1;
    struct image_info info1, *info = &info1;
    TaskState ts1, *ts = &ts1;
    CPUX86State *env;
    int optind;
    const char *r;
    
    if (argc <= 1)
        usage();

    /* Set personality to X86_LINUX.  May fail on unpatched kernels:
       if so, they need to have munged paths themselves (eg. chroot,
       hacked ld.so, whatever). */
    if (personality(0x11) >= 0)
	    interp_prefix = "";

    loglevel = 0;
    optind = 1;
    for(;;) {
        if (optind >= argc)
            break;
        r = argv[optind];
        if (r[0] != '-')
            break;
        optind++;
        r++;
        if (!strcmp(r, "-")) {
            break;
        } else if (!strcmp(r, "d")) {
            loglevel = 1;
        } else if (!strcmp(r, "s")) {
            r = argv[optind++];
            x86_stack_size = strtol(r, (char **)&r, 0);
            if (x86_stack_size <= 0)
                usage();
            if (*r == 'M')
                x86_stack_size *= 1024 * 1024;
            else if (*r == 'k' || *r == 'K')
                x86_stack_size *= 1024;
        } else if (!strcmp(r, "L")) {
            interp_prefix = argv[optind++];
        } else {
            usage();
        }
    }
    if (optind >= argc)
        usage();
    filename = argv[optind];

    /* init debug */
    if (loglevel) {
        logfile = fopen(DEBUG_LOGFILE, "w");
        if (!logfile) {
            perror(DEBUG_LOGFILE);
            exit(1);
        }
        setvbuf(logfile, NULL, _IOLBF, 0);
    }

    /* Zero out regs */
    memset(regs, 0, sizeof(struct target_pt_regs));

    /* Zero out image_info */
    memset(info, 0, sizeof(struct image_info));

    if(elf_exec(interp_prefix, filename, argv+optind, environ, regs, info) != 0) {
	printf("Error loading %s\n", filename);
	exit(1);
    }
    
    if (loglevel) {
        fprintf(logfile, "start_brk   0x%08lx\n" , info->start_brk);
        fprintf(logfile, "end_code    0x%08lx\n" , info->end_code);
        fprintf(logfile, "start_code  0x%08lx\n" , info->start_code);
        fprintf(logfile, "end_data    0x%08lx\n" , info->end_data);
        fprintf(logfile, "start_stack 0x%08lx\n" , info->start_stack);
        fprintf(logfile, "brk         0x%08lx\n" , info->brk);
        fprintf(logfile, "esp         0x%08lx\n" , regs->esp);
        fprintf(logfile, "eip         0x%08lx\n" , regs->eip);
    }

    target_set_brk((char *)info->brk);
    syscall_init();
    signal_init();

    env = cpu_x86_init();
    global_env = env;

    /* build Task State */
    memset(ts, 0, sizeof(TaskState));
    env->opaque = ts;
    ts->used = 1;
    
    /* linux register setup */
    env->regs[R_EAX] = regs->eax;
    env->regs[R_EBX] = regs->ebx;
    env->regs[R_ECX] = regs->ecx;
    env->regs[R_EDX] = regs->edx;
    env->regs[R_ESI] = regs->esi;
    env->regs[R_EDI] = regs->edi;
    env->regs[R_EBP] = regs->ebp;
    env->regs[R_ESP] = regs->esp;
    env->eip = regs->eip;

    /* linux segment setup */
    env->gdt.base = (void *)gdt_table;
    env->gdt.limit = sizeof(gdt_table) - 1;
    write_dt(&gdt_table[__USER_CS >> 3], 0, 0xffffffff, 1);
    write_dt(&gdt_table[__USER_DS >> 3], 0, 0xffffffff, 1);
    cpu_x86_load_seg(env, R_CS, __USER_CS);
    cpu_x86_load_seg(env, R_DS, __USER_DS);
    cpu_x86_load_seg(env, R_ES, __USER_DS);
    cpu_x86_load_seg(env, R_SS, __USER_DS);
    cpu_x86_load_seg(env, R_FS, __USER_DS);
    cpu_x86_load_seg(env, R_GS, __USER_DS);

    cpu_loop(env);
    /* never exits */
    return 0;
}