op_helper.c 42.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
/*
 *  MIPS emulation helpers for qemu.
 *
 *  Copyright (c) 2004-2005 Jocelyn Mayer
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
#include <stdlib.h>
#include "exec.h"

#define GETPC() (__builtin_return_address(0))

/*****************************************************************************/
/* Exceptions processing helpers */

void do_raise_exception_err (uint32_t exception, int error_code)
{
#if 1
    if (logfile && exception < 0x100)
        fprintf(logfile, "%s: %d %d\n", __func__, exception, error_code);
#endif
    env->exception_index = exception;
    env->error_code = error_code;
    T0 = 0;
    cpu_loop_exit();
}

void do_raise_exception (uint32_t exception)
{
    do_raise_exception_err(exception, 0);
}

void do_restore_state (void *pc_ptr)
{
  TranslationBlock *tb;
  unsigned long pc = (unsigned long) pc_ptr;

  tb = tb_find_pc (pc);
  cpu_restore_state (tb, env, pc, NULL);
}

void do_raise_exception_direct_err (uint32_t exception, int error_code)
{
    do_restore_state (GETPC ());
    do_raise_exception_err (exception, error_code);
}

void do_raise_exception_direct (uint32_t exception)
{
    do_raise_exception_direct_err (exception, 0);
}

#if defined(TARGET_MIPSN32) || defined(TARGET_MIPS64)
#if TARGET_LONG_BITS > HOST_LONG_BITS
/* Those might call libgcc functions.  */
void do_dsll (void)
{
    T0 = T0 << T1;
}

void do_dsll32 (void)
{
    T0 = T0 << (T1 + 32);
}

void do_dsra (void)
{
    T0 = (int64_t)T0 >> T1;
}

void do_dsra32 (void)
{
    T0 = (int64_t)T0 >> (T1 + 32);
}

void do_dsrl (void)
{
    T0 = T0 >> T1;
}

void do_dsrl32 (void)
{
    T0 = T0 >> (T1 + 32);
}

void do_drotr (void)
{
    target_ulong tmp;

    if (T1) {
       tmp = T0 << (0x40 - T1);
       T0 = (T0 >> T1) | tmp;
    }
}

void do_drotr32 (void)
{
    target_ulong tmp;

    if (T1) {
       tmp = T0 << (0x40 - (32 + T1));
       T0 = (T0 >> (32 + T1)) | tmp;
    }
}

void do_dsllv (void)
{
    T0 = T1 << (T0 & 0x3F);
}

void do_dsrav (void)
{
    T0 = (int64_t)T1 >> (T0 & 0x3F);
}

void do_dsrlv (void)
{
    T0 = T1 >> (T0 & 0x3F);
}

void do_drotrv (void)
{
    target_ulong tmp;

    T0 &= 0x3F;
    if (T0) {
       tmp = T1 << (0x40 - T0);
       T0 = (T1 >> T0) | tmp;
    } else
       T0 = T1;
}
#endif /* TARGET_LONG_BITS > HOST_LONG_BITS */
#endif /* TARGET_MIPSN32 || TARGET_MIPS64 */

/* 64 bits arithmetic for 32 bits hosts */
#if TARGET_LONG_BITS > HOST_LONG_BITS
static always_inline uint64_t get_HILO (void)
{
    return (env->HI[0][env->current_tc] << 32) | (uint32_t)env->LO[0][env->current_tc];
}

static always_inline void set_HILO (uint64_t HILO)
{
    env->LO[0][env->current_tc] = (int32_t)HILO;
    env->HI[0][env->current_tc] = (int32_t)(HILO >> 32);
}

void do_mult (void)
{
    set_HILO((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
}

void do_multu (void)
{
    set_HILO((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
}

void do_madd (void)
{
    int64_t tmp;

    tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
    set_HILO((int64_t)get_HILO() + tmp);
}

void do_maddu (void)
{
    uint64_t tmp;

    tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
    set_HILO(get_HILO() + tmp);
}

void do_msub (void)
{
    int64_t tmp;

    tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
    set_HILO((int64_t)get_HILO() - tmp);
}

void do_msubu (void)
{
    uint64_t tmp;

    tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
    set_HILO(get_HILO() - tmp);
}
#endif

#if HOST_LONG_BITS < 64
void do_div (void)
{
    /* 64bit datatypes because we may see overflow/underflow. */
    if (T1 != 0) {
        env->LO[0][env->current_tc] = (int32_t)((int64_t)(int32_t)T0 / (int32_t)T1);
        env->HI[0][env->current_tc] = (int32_t)((int64_t)(int32_t)T0 % (int32_t)T1);
    }
}
#endif

#if defined(TARGET_MIPSN32) || defined(TARGET_MIPS64)
void do_ddiv (void)
{
    if (T1 != 0) {
        lldiv_t res = lldiv((int64_t)T0, (int64_t)T1);
        env->LO[0][env->current_tc] = res.quot;
        env->HI[0][env->current_tc] = res.rem;
    }
}

#if TARGET_LONG_BITS > HOST_LONG_BITS
void do_ddivu (void)
{
    if (T1 != 0) {
        env->LO[0][env->current_tc] = T0 / T1;
        env->HI[0][env->current_tc] = T0 % T1;
    }
}
#endif
#endif /* TARGET_MIPSN32 || TARGET_MIPS64 */

#if defined(CONFIG_USER_ONLY)
void do_mfc0_random (void)
{
    cpu_abort(env, "mfc0 random\n");
}

void do_mfc0_count (void)
{
    cpu_abort(env, "mfc0 count\n");
}

void cpu_mips_store_count(CPUState *env, uint32_t value)
{
    cpu_abort(env, "mtc0 count\n");
}

void cpu_mips_store_compare(CPUState *env, uint32_t value)
{
    cpu_abort(env, "mtc0 compare\n");
}

void cpu_mips_start_count(CPUState *env)
{
    cpu_abort(env, "start count\n");
}

void cpu_mips_stop_count(CPUState *env)
{
    cpu_abort(env, "stop count\n");
}

void cpu_mips_update_irq(CPUState *env)
{
    cpu_abort(env, "mtc0 status / mtc0 cause\n");
}

void do_mtc0_status_debug(uint32_t old, uint32_t val)
{
    cpu_abort(env, "mtc0 status debug\n");
}

void do_mtc0_status_irqraise_debug (void)
{
    cpu_abort(env, "mtc0 status irqraise debug\n");
}

void cpu_mips_tlb_flush (CPUState *env, int flush_global)
{
    cpu_abort(env, "mips_tlb_flush\n");
}

#else

/* CP0 helpers */
void do_mfc0_random (void)
{
    T0 = (int32_t)cpu_mips_get_random(env);
}

void do_mfc0_count (void)
{
    T0 = (int32_t)cpu_mips_get_count(env);
}

void do_mtc0_status_debug(uint32_t old, uint32_t val)
{
    fprintf(logfile, "Status %08x (%08x) => %08x (%08x) Cause %08x",
            old, old & env->CP0_Cause & CP0Ca_IP_mask,
            val, val & env->CP0_Cause & CP0Ca_IP_mask,
            env->CP0_Cause);
    (env->hflags & MIPS_HFLAG_UM) ? fputs(", UM\n", logfile)
                                  : fputs("\n", logfile);
}

void do_mtc0_status_irqraise_debug(void)
{
    fprintf(logfile, "Raise pending IRQs\n");
}

void fpu_handle_exception(void)
{
#ifdef CONFIG_SOFTFLOAT
    int flags = get_float_exception_flags(&env->fpu->fp_status);
    unsigned int cpuflags = 0, enable, cause = 0;

    enable = GET_FP_ENABLE(env->fpu->fcr31);

    /* determine current flags */
    if (flags & float_flag_invalid) {
        cpuflags |= FP_INVALID;
        cause |= FP_INVALID & enable;
    }
    if (flags & float_flag_divbyzero) {
        cpuflags |= FP_DIV0;
        cause |= FP_DIV0 & enable;
    }
    if (flags & float_flag_overflow) {
        cpuflags |= FP_OVERFLOW;
        cause |= FP_OVERFLOW & enable;
    }
    if (flags & float_flag_underflow) {
        cpuflags |= FP_UNDERFLOW;
        cause |= FP_UNDERFLOW & enable;
    }
    if (flags & float_flag_inexact) {
        cpuflags |= FP_INEXACT;
        cause |= FP_INEXACT & enable;
    }
    SET_FP_FLAGS(env->fpu->fcr31, cpuflags);
    SET_FP_CAUSE(env->fpu->fcr31, cause);
#else
    SET_FP_FLAGS(env->fpu->fcr31, 0);
    SET_FP_CAUSE(env->fpu->fcr31, 0);
#endif
}

/* TLB management */
void cpu_mips_tlb_flush (CPUState *env, int flush_global)
{
    /* Flush qemu's TLB and discard all shadowed entries.  */
    tlb_flush (env, flush_global);
    env->tlb->tlb_in_use = env->tlb->nb_tlb;
}

static void r4k_mips_tlb_flush_extra (CPUState *env, int first)
{
    /* Discard entries from env->tlb[first] onwards.  */
    while (env->tlb->tlb_in_use > first) {
        r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0);
    }
}

static void r4k_fill_tlb (int idx)
{
    r4k_tlb_t *tlb;

    /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
    tlb = &env->tlb->mmu.r4k.tlb[idx];
    tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
#if defined(TARGET_MIPSN32) || defined(TARGET_MIPS64)
    tlb->VPN &= env->SEGMask;
#endif
    tlb->ASID = env->CP0_EntryHi & 0xFF;
    tlb->PageMask = env->CP0_PageMask;
    tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
    tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
    tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
    tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
    tlb->PFN[0] = (env->CP0_EntryLo0 >> 6) << 12;
    tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
    tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
    tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
    tlb->PFN[1] = (env->CP0_EntryLo1 >> 6) << 12;
}

void r4k_do_tlbwi (void)
{
    /* Discard cached TLB entries.  We could avoid doing this if the
       tlbwi is just upgrading access permissions on the current entry;
       that might be a further win.  */
    r4k_mips_tlb_flush_extra (env, env->tlb->nb_tlb);

    r4k_invalidate_tlb(env, env->CP0_Index % env->tlb->nb_tlb, 0);
    r4k_fill_tlb(env->CP0_Index % env->tlb->nb_tlb);
}

void r4k_do_tlbwr (void)
{
    int r = cpu_mips_get_random(env);

    r4k_invalidate_tlb(env, r, 1);
    r4k_fill_tlb(r);
}

void r4k_do_tlbp (void)
{
    r4k_tlb_t *tlb;
    target_ulong mask;
    target_ulong tag;
    target_ulong VPN;
    uint8_t ASID;
    int i;

    ASID = env->CP0_EntryHi & 0xFF;
    for (i = 0; i < env->tlb->nb_tlb; i++) {
        tlb = &env->tlb->mmu.r4k.tlb[i];
        /* 1k pages are not supported. */
        mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
        tag = env->CP0_EntryHi & ~mask;
        VPN = tlb->VPN & ~mask;
        /* Check ASID, virtual page number & size */
        if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
            /* TLB match */
            env->CP0_Index = i;
            break;
        }
    }
    if (i == env->tlb->nb_tlb) {
        /* No match.  Discard any shadow entries, if any of them match.  */
        for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) {
	    tlb = &env->tlb->mmu.r4k.tlb[i];
	    /* 1k pages are not supported. */
	    mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
	    tag = env->CP0_EntryHi & ~mask;
	    VPN = tlb->VPN & ~mask;
	    /* Check ASID, virtual page number & size */
	    if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
                r4k_mips_tlb_flush_extra (env, i);
	        break;
	    }
	}

        env->CP0_Index |= 0x80000000;
    }
}

void r4k_do_tlbr (void)
{
    r4k_tlb_t *tlb;
    uint8_t ASID;

    ASID = env->CP0_EntryHi & 0xFF;
    tlb = &env->tlb->mmu.r4k.tlb[env->CP0_Index % env->tlb->nb_tlb];

    /* If this will change the current ASID, flush qemu's TLB.  */
    if (ASID != tlb->ASID)
        cpu_mips_tlb_flush (env, 1);

    r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);

    env->CP0_EntryHi = tlb->VPN | tlb->ASID;
    env->CP0_PageMask = tlb->PageMask;
    env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
                        (tlb->C0 << 3) | (tlb->PFN[0] >> 6);
    env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
                        (tlb->C1 << 3) | (tlb->PFN[1] >> 6);
}

#endif /* !CONFIG_USER_ONLY */

void dump_ldst (const unsigned char *func)
{
    if (loglevel)
        fprintf(logfile, "%s => " TARGET_FMT_lx " " TARGET_FMT_lx "\n", __func__, T0, T1);
}

void dump_sc (void)
{
    if (loglevel) {
        fprintf(logfile, "%s " TARGET_FMT_lx " at " TARGET_FMT_lx " (" TARGET_FMT_lx ")\n", __func__,
                T1, T0, env->CP0_LLAddr);
    }
}

void debug_pre_eret (void)
{
    fprintf(logfile, "ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
            env->PC[env->current_tc], env->CP0_EPC);
    if (env->CP0_Status & (1 << CP0St_ERL))
        fprintf(logfile, " ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
    if (env->hflags & MIPS_HFLAG_DM)
        fprintf(logfile, " DEPC " TARGET_FMT_lx, env->CP0_DEPC);
    fputs("\n", logfile);
}

void debug_post_eret (void)
{
    fprintf(logfile, "  =>  PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
            env->PC[env->current_tc], env->CP0_EPC);
    if (env->CP0_Status & (1 << CP0St_ERL))
        fprintf(logfile, " ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
    if (env->hflags & MIPS_HFLAG_DM)
        fprintf(logfile, " DEPC " TARGET_FMT_lx, env->CP0_DEPC);
    if (env->hflags & MIPS_HFLAG_UM)
        fputs(", UM\n", logfile);
    else
        fputs("\n", logfile);
}

void do_pmon (int function)
{
    function /= 2;
    switch (function) {
    case 2: /* TODO: char inbyte(int waitflag); */
        if (env->gpr[4][env->current_tc] == 0)
            env->gpr[2][env->current_tc] = -1;
        /* Fall through */
    case 11: /* TODO: char inbyte (void); */
        env->gpr[2][env->current_tc] = -1;
        break;
    case 3:
    case 12:
        printf("%c", (char)(env->gpr[4][env->current_tc] & 0xFF));
        break;
    case 17:
        break;
    case 158:
        {
            unsigned char *fmt = (void *)(unsigned long)env->gpr[4][env->current_tc];
            printf("%s", fmt);
        }
        break;
    }
}

#if !defined(CONFIG_USER_ONLY)

static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr);

#define MMUSUFFIX _mmu
#define ALIGNED_ONLY

#define SHIFT 0
#include "softmmu_template.h"

#define SHIFT 1
#include "softmmu_template.h"

#define SHIFT 2
#include "softmmu_template.h"

#define SHIFT 3
#include "softmmu_template.h"

static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr)
{
    env->CP0_BadVAddr = addr;
    do_restore_state (retaddr);
    do_raise_exception ((is_write == 1) ? EXCP_AdES : EXCP_AdEL);
}

void tlb_fill (target_ulong addr, int is_write, int is_user, void *retaddr)
{
    TranslationBlock *tb;
    CPUState *saved_env;
    unsigned long pc;
    int ret;

    /* XXX: hack to restore env in all cases, even if not called from
       generated code */
    saved_env = env;
    env = cpu_single_env;
    ret = cpu_mips_handle_mmu_fault(env, addr, is_write, is_user, 1);
    if (ret) {
        if (retaddr) {
            /* now we have a real cpu fault */
            pc = (unsigned long)retaddr;
            tb = tb_find_pc(pc);
            if (tb) {
                /* the PC is inside the translated code. It means that we have
                   a virtual CPU fault */
                cpu_restore_state(tb, env, pc, NULL);
            }
        }
        do_raise_exception_err(env->exception_index, env->error_code);
    }
    env = saved_env;
}

#endif

/* Complex FPU operations which may need stack space. */

#define FLOAT_SIGN32 (1 << 31)
#define FLOAT_SIGN64 (1ULL << 63)
#define FLOAT_ONE32 (0x3f8 << 20)
#define FLOAT_ONE64 (0x3ffULL << 52)
#define FLOAT_TWO32 (1 << 30)
#define FLOAT_TWO64 (1ULL << 62)
#define FLOAT_QNAN32 0x7fbfffff
#define FLOAT_QNAN64 0x7ff7ffffffffffffULL
#define FLOAT_SNAN32 0x7fffffff
#define FLOAT_SNAN64 0x7fffffffffffffffULL

/* convert MIPS rounding mode in FCR31 to IEEE library */
unsigned int ieee_rm[] = {
    float_round_nearest_even,
    float_round_to_zero,
    float_round_up,
    float_round_down
};

#define RESTORE_ROUNDING_MODE \
    set_float_rounding_mode(ieee_rm[env->fpu->fcr31 & 3], &env->fpu->fp_status)

void do_cfc1 (int reg)
{
    switch (reg) {
    case 0:
        T0 = (int32_t)env->fpu->fcr0;
        break;
    case 25:
        T0 = ((env->fpu->fcr31 >> 24) & 0xfe) | ((env->fpu->fcr31 >> 23) & 0x1);
        break;
    case 26:
        T0 = env->fpu->fcr31 & 0x0003f07c;
        break;
    case 28:
        T0 = (env->fpu->fcr31 & 0x00000f83) | ((env->fpu->fcr31 >> 22) & 0x4);
        break;
    default:
        T0 = (int32_t)env->fpu->fcr31;
        break;
    }
}

void do_ctc1 (int reg)
{
    switch(reg) {
    case 25:
        if (T0 & 0xffffff00)
            return;
        env->fpu->fcr31 = (env->fpu->fcr31 & 0x017fffff) | ((T0 & 0xfe) << 24) |
                     ((T0 & 0x1) << 23);
        break;
    case 26:
        if (T0 & 0x007c0000)
            return;
        env->fpu->fcr31 = (env->fpu->fcr31 & 0xfffc0f83) | (T0 & 0x0003f07c);
        break;
    case 28:
        if (T0 & 0x007c0000)
            return;
        env->fpu->fcr31 = (env->fpu->fcr31 & 0xfefff07c) | (T0 & 0x00000f83) |
                     ((T0 & 0x4) << 22);
        break;
    case 31:
        if (T0 & 0x007c0000)
            return;
        env->fpu->fcr31 = T0;
        break;
    default:
        return;
    }
    /* set rounding mode */
    RESTORE_ROUNDING_MODE;
    set_float_exception_flags(0, &env->fpu->fp_status);
    if ((GET_FP_ENABLE(env->fpu->fcr31) | 0x20) & GET_FP_CAUSE(env->fpu->fcr31))
        do_raise_exception(EXCP_FPE);
}

static always_inline char ieee_ex_to_mips(char xcpt)
{
    return (xcpt & float_flag_inexact) >> 5 |
           (xcpt & float_flag_underflow) >> 3 |
           (xcpt & float_flag_overflow) >> 1 |
           (xcpt & float_flag_divbyzero) << 1 |
           (xcpt & float_flag_invalid) << 4;
}

static always_inline char mips_ex_to_ieee(char xcpt)
{
    return (xcpt & FP_INEXACT) << 5 |
           (xcpt & FP_UNDERFLOW) << 3 |
           (xcpt & FP_OVERFLOW) << 1 |
           (xcpt & FP_DIV0) >> 1 |
           (xcpt & FP_INVALID) >> 4;
}

static always_inline void update_fcr31(void)
{
    int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->fpu->fp_status));

    SET_FP_CAUSE(env->fpu->fcr31, tmp);
    if (GET_FP_ENABLE(env->fpu->fcr31) & tmp)
        do_raise_exception(EXCP_FPE);
    else
        UPDATE_FP_FLAGS(env->fpu->fcr31, tmp);
}

#define FLOAT_OP(name, p) void do_float_##name##_##p(void)

FLOAT_OP(cvtd, s)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    FDT2 = float32_to_float64(FST0, &env->fpu->fp_status);
    update_fcr31();
}
FLOAT_OP(cvtd, w)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    FDT2 = int32_to_float64(WT0, &env->fpu->fp_status);
    update_fcr31();
}
FLOAT_OP(cvtd, l)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    FDT2 = int64_to_float64(DT0, &env->fpu->fp_status);
    update_fcr31();
}
FLOAT_OP(cvtl, d)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    DT2 = float64_to_int64(FDT0, &env->fpu->fp_status);
    update_fcr31();
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
        DT2 = FLOAT_SNAN64;
}
FLOAT_OP(cvtl, s)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    DT2 = float32_to_int64(FST0, &env->fpu->fp_status);
    update_fcr31();
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
        DT2 = FLOAT_SNAN64;
}

FLOAT_OP(cvtps, pw)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    FST2 = int32_to_float32(WT0, &env->fpu->fp_status);
    FSTH2 = int32_to_float32(WTH0, &env->fpu->fp_status);
    update_fcr31();
}
FLOAT_OP(cvtpw, ps)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
    WTH2 = float32_to_int32(FSTH0, &env->fpu->fp_status);
    update_fcr31();
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
        WT2 = FLOAT_SNAN32;
}
FLOAT_OP(cvts, d)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    FST2 = float64_to_float32(FDT0, &env->fpu->fp_status);
    update_fcr31();
}
FLOAT_OP(cvts, w)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    FST2 = int32_to_float32(WT0, &env->fpu->fp_status);
    update_fcr31();
}
FLOAT_OP(cvts, l)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    FST2 = int64_to_float32(DT0, &env->fpu->fp_status);
    update_fcr31();
}
FLOAT_OP(cvts, pl)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    WT2 = WT0;
    update_fcr31();
}
FLOAT_OP(cvts, pu)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    WT2 = WTH0;
    update_fcr31();
}
FLOAT_OP(cvtw, s)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
    update_fcr31();
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
        WT2 = FLOAT_SNAN32;
}
FLOAT_OP(cvtw, d)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    WT2 = float64_to_int32(FDT0, &env->fpu->fp_status);
    update_fcr31();
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
        WT2 = FLOAT_SNAN32;
}

FLOAT_OP(roundl, d)
{
    set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status);
    DT2 = float64_to_int64(FDT0, &env->fpu->fp_status);
    RESTORE_ROUNDING_MODE;
    update_fcr31();
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
        DT2 = FLOAT_SNAN64;
}
FLOAT_OP(roundl, s)
{
    set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status);
    DT2 = float32_to_int64(FST0, &env->fpu->fp_status);
    RESTORE_ROUNDING_MODE;
    update_fcr31();
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
        DT2 = FLOAT_SNAN64;
}
FLOAT_OP(roundw, d)
{
    set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status);
    WT2 = float64_to_int32(FDT0, &env->fpu->fp_status);
    RESTORE_ROUNDING_MODE;
    update_fcr31();
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
        WT2 = FLOAT_SNAN32;
}
FLOAT_OP(roundw, s)
{
    set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status);
    WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
    RESTORE_ROUNDING_MODE;
    update_fcr31();
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
        WT2 = FLOAT_SNAN32;
}

FLOAT_OP(truncl, d)
{
    DT2 = float64_to_int64_round_to_zero(FDT0, &env->fpu->fp_status);
    update_fcr31();
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
        DT2 = FLOAT_SNAN64;
}
FLOAT_OP(truncl, s)
{
    DT2 = float32_to_int64_round_to_zero(FST0, &env->fpu->fp_status);
    update_fcr31();
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
        DT2 = FLOAT_SNAN64;
}
FLOAT_OP(truncw, d)
{
    WT2 = float64_to_int32_round_to_zero(FDT0, &env->fpu->fp_status);
    update_fcr31();
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
        WT2 = FLOAT_SNAN32;
}
FLOAT_OP(truncw, s)
{
    WT2 = float32_to_int32_round_to_zero(FST0, &env->fpu->fp_status);
    update_fcr31();
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
        WT2 = FLOAT_SNAN32;
}

FLOAT_OP(ceill, d)
{
    set_float_rounding_mode(float_round_up, &env->fpu->fp_status);
    DT2 = float64_to_int64(FDT0, &env->fpu->fp_status);
    RESTORE_ROUNDING_MODE;
    update_fcr31();
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
        DT2 = FLOAT_SNAN64;
}
FLOAT_OP(ceill, s)
{
    set_float_rounding_mode(float_round_up, &env->fpu->fp_status);
    DT2 = float32_to_int64(FST0, &env->fpu->fp_status);
    RESTORE_ROUNDING_MODE;
    update_fcr31();
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
        DT2 = FLOAT_SNAN64;
}
FLOAT_OP(ceilw, d)
{
    set_float_rounding_mode(float_round_up, &env->fpu->fp_status);
    WT2 = float64_to_int32(FDT0, &env->fpu->fp_status);
    RESTORE_ROUNDING_MODE;
    update_fcr31();
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
        WT2 = FLOAT_SNAN32;
}
FLOAT_OP(ceilw, s)
{
    set_float_rounding_mode(float_round_up, &env->fpu->fp_status);
    WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
    RESTORE_ROUNDING_MODE;
    update_fcr31();
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
        WT2 = FLOAT_SNAN32;
}

FLOAT_OP(floorl, d)
{
    set_float_rounding_mode(float_round_down, &env->fpu->fp_status);
    DT2 = float64_to_int64(FDT0, &env->fpu->fp_status);
    RESTORE_ROUNDING_MODE;
    update_fcr31();
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
        DT2 = FLOAT_SNAN64;
}
FLOAT_OP(floorl, s)
{
    set_float_rounding_mode(float_round_down, &env->fpu->fp_status);
    DT2 = float32_to_int64(FST0, &env->fpu->fp_status);
    RESTORE_ROUNDING_MODE;
    update_fcr31();
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
        DT2 = FLOAT_SNAN64;
}
FLOAT_OP(floorw, d)
{
    set_float_rounding_mode(float_round_down, &env->fpu->fp_status);
    WT2 = float64_to_int32(FDT0, &env->fpu->fp_status);
    RESTORE_ROUNDING_MODE;
    update_fcr31();
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
        WT2 = FLOAT_SNAN32;
}
FLOAT_OP(floorw, s)
{
    set_float_rounding_mode(float_round_down, &env->fpu->fp_status);
    WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
    RESTORE_ROUNDING_MODE;
    update_fcr31();
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
        WT2 = FLOAT_SNAN32;
}

/* MIPS specific unary operations */
FLOAT_OP(recip, d)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    FDT2 = float64_div(FLOAT_ONE64, FDT0, &env->fpu->fp_status);
    update_fcr31();
}
FLOAT_OP(recip, s)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    FST2 = float32_div(FLOAT_ONE32, FST0, &env->fpu->fp_status);
    update_fcr31();
}

FLOAT_OP(rsqrt, d)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    FDT2 = float64_sqrt(FDT0, &env->fpu->fp_status);
    FDT2 = float64_div(FLOAT_ONE64, FDT2, &env->fpu->fp_status);
    update_fcr31();
}
FLOAT_OP(rsqrt, s)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    FST2 = float32_sqrt(FST0, &env->fpu->fp_status);
    FST2 = float32_div(FLOAT_ONE32, FST2, &env->fpu->fp_status);
    update_fcr31();
}

FLOAT_OP(recip1, d)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    FDT2 = float64_div(FLOAT_ONE64, FDT0, &env->fpu->fp_status);
    update_fcr31();
}
FLOAT_OP(recip1, s)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    FST2 = float32_div(FLOAT_ONE32, FST0, &env->fpu->fp_status);
    update_fcr31();
}
FLOAT_OP(recip1, ps)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    FST2 = float32_div(FLOAT_ONE32, FST0, &env->fpu->fp_status);
    FSTH2 = float32_div(FLOAT_ONE32, FSTH0, &env->fpu->fp_status);
    update_fcr31();
}

FLOAT_OP(rsqrt1, d)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    FDT2 = float64_sqrt(FDT0, &env->fpu->fp_status);
    FDT2 = float64_div(FLOAT_ONE64, FDT2, &env->fpu->fp_status);
    update_fcr31();
}
FLOAT_OP(rsqrt1, s)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    FST2 = float32_sqrt(FST0, &env->fpu->fp_status);
    FST2 = float32_div(FLOAT_ONE32, FST2, &env->fpu->fp_status);
    update_fcr31();
}
FLOAT_OP(rsqrt1, ps)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    FST2 = float32_sqrt(FST0, &env->fpu->fp_status);
    FSTH2 = float32_sqrt(FSTH0, &env->fpu->fp_status);
    FST2 = float32_div(FLOAT_ONE32, FST2, &env->fpu->fp_status);
    FSTH2 = float32_div(FLOAT_ONE32, FSTH2, &env->fpu->fp_status);
    update_fcr31();
}

/* binary operations */
#define FLOAT_BINOP(name) \
FLOAT_OP(name, d)         \
{                         \
    set_float_exception_flags(0, &env->fpu->fp_status);            \
    FDT2 = float64_ ## name (FDT0, FDT1, &env->fpu->fp_status);    \
    update_fcr31();                                                \
    if (GET_FP_CAUSE(env->fpu->fcr31) & FP_INVALID)                \
        FDT2 = FLOAT_QNAN64;                                       \
}                         \
FLOAT_OP(name, s)         \
{                         \
    set_float_exception_flags(0, &env->fpu->fp_status);            \
    FST2 = float32_ ## name (FST0, FST1, &env->fpu->fp_status);    \
    update_fcr31();                                                \
    if (GET_FP_CAUSE(env->fpu->fcr31) & FP_INVALID)                \
        FST2 = FLOAT_QNAN32;                                       \
}                         \
FLOAT_OP(name, ps)        \
{                         \
    set_float_exception_flags(0, &env->fpu->fp_status);            \
    FST2 = float32_ ## name (FST0, FST1, &env->fpu->fp_status);    \
    FSTH2 = float32_ ## name (FSTH0, FSTH1, &env->fpu->fp_status); \
    update_fcr31();       \
    if (GET_FP_CAUSE(env->fpu->fcr31) & FP_INVALID) {              \
        FST2 = FLOAT_QNAN32;                                       \
        FSTH2 = FLOAT_QNAN32;                                      \
    }                     \
}
FLOAT_BINOP(add)
FLOAT_BINOP(sub)
FLOAT_BINOP(mul)
FLOAT_BINOP(div)
#undef FLOAT_BINOP

/* MIPS specific binary operations */
FLOAT_OP(recip2, d)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    FDT2 = float64_mul(FDT0, FDT2, &env->fpu->fp_status);
    FDT2 = float64_sub(FDT2, FLOAT_ONE64, &env->fpu->fp_status) ^ FLOAT_SIGN64;
    update_fcr31();
}
FLOAT_OP(recip2, s)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status);
    FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status) ^ FLOAT_SIGN32;
    update_fcr31();
}
FLOAT_OP(recip2, ps)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status);
    FSTH2 = float32_mul(FSTH0, FSTH2, &env->fpu->fp_status);
    FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status) ^ FLOAT_SIGN32;
    FSTH2 = float32_sub(FSTH2, FLOAT_ONE32, &env->fpu->fp_status) ^ FLOAT_SIGN32;
    update_fcr31();
}

FLOAT_OP(rsqrt2, d)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    FDT2 = float64_mul(FDT0, FDT2, &env->fpu->fp_status);
    FDT2 = float64_sub(FDT2, FLOAT_ONE64, &env->fpu->fp_status);
    FDT2 = float64_div(FDT2, FLOAT_TWO64, &env->fpu->fp_status) ^ FLOAT_SIGN64;
    update_fcr31();
}
FLOAT_OP(rsqrt2, s)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status);
    FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status);
    FST2 = float32_div(FST2, FLOAT_TWO32, &env->fpu->fp_status) ^ FLOAT_SIGN32;
    update_fcr31();
}
FLOAT_OP(rsqrt2, ps)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status);
    FSTH2 = float32_mul(FSTH0, FSTH2, &env->fpu->fp_status);
    FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status);
    FSTH2 = float32_sub(FSTH2, FLOAT_ONE32, &env->fpu->fp_status);
    FST2 = float32_div(FST2, FLOAT_TWO32, &env->fpu->fp_status) ^ FLOAT_SIGN32;
    FSTH2 = float32_div(FSTH2, FLOAT_TWO32, &env->fpu->fp_status) ^ FLOAT_SIGN32;
    update_fcr31();
}

FLOAT_OP(addr, ps)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    FST2 = float32_add (FST0, FSTH0, &env->fpu->fp_status);
    FSTH2 = float32_add (FST1, FSTH1, &env->fpu->fp_status);
    update_fcr31();
}

FLOAT_OP(mulr, ps)
{
    set_float_exception_flags(0, &env->fpu->fp_status);
    FST2 = float32_mul (FST0, FSTH0, &env->fpu->fp_status);
    FSTH2 = float32_mul (FST1, FSTH1, &env->fpu->fp_status);
    update_fcr31();
}

/* compare operations */
#define FOP_COND_D(op, cond)                   \
void do_cmp_d_ ## op (long cc)                 \
{                                              \
    int c = cond;                              \
    update_fcr31();                            \
    if (c)                                     \
        SET_FP_COND(cc, env->fpu);             \
    else                                       \
        CLEAR_FP_COND(cc, env->fpu);           \
}                                              \
void do_cmpabs_d_ ## op (long cc)              \
{                                              \
    int c;                                     \
    FDT0 &= ~FLOAT_SIGN64;                     \
    FDT1 &= ~FLOAT_SIGN64;                     \
    c = cond;                                  \
    update_fcr31();                            \
    if (c)                                     \
        SET_FP_COND(cc, env->fpu);             \
    else                                       \
        CLEAR_FP_COND(cc, env->fpu);           \
}

int float64_is_unordered(int sig, float64 a, float64 b STATUS_PARAM)
{
    if (float64_is_signaling_nan(a) ||
        float64_is_signaling_nan(b) ||
        (sig && (float64_is_nan(a) || float64_is_nan(b)))) {
        float_raise(float_flag_invalid, status);
        return 1;
    } else if (float64_is_nan(a) || float64_is_nan(b)) {
        return 1;
    } else {
        return 0;
    }
}

/* NOTE: the comma operator will make "cond" to eval to false,
 * but float*_is_unordered() is still called. */
FOP_COND_D(f,   (float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status), 0))
FOP_COND_D(un,  float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status))
FOP_COND_D(eq,  !float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) && float64_eq(FDT0, FDT1, &env->fpu->fp_status))
FOP_COND_D(ueq, float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status)  || float64_eq(FDT0, FDT1, &env->fpu->fp_status))
FOP_COND_D(olt, !float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) && float64_lt(FDT0, FDT1, &env->fpu->fp_status))
FOP_COND_D(ult, float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status)  || float64_lt(FDT0, FDT1, &env->fpu->fp_status))
FOP_COND_D(ole, !float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) && float64_le(FDT0, FDT1, &env->fpu->fp_status))
FOP_COND_D(ule, float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status)  || float64_le(FDT0, FDT1, &env->fpu->fp_status))
/* NOTE: the comma operator will make "cond" to eval to false,
 * but float*_is_unordered() is still called. */
FOP_COND_D(sf,  (float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status), 0))
FOP_COND_D(ngle,float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status))
FOP_COND_D(seq, !float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) && float64_eq(FDT0, FDT1, &env->fpu->fp_status))
FOP_COND_D(ngl, float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status)  || float64_eq(FDT0, FDT1, &env->fpu->fp_status))
FOP_COND_D(lt,  !float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) && float64_lt(FDT0, FDT1, &env->fpu->fp_status))
FOP_COND_D(nge, float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status)  || float64_lt(FDT0, FDT1, &env->fpu->fp_status))
FOP_COND_D(le,  !float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) && float64_le(FDT0, FDT1, &env->fpu->fp_status))
FOP_COND_D(ngt, float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status)  || float64_le(FDT0, FDT1, &env->fpu->fp_status))

#define FOP_COND_S(op, cond)                   \
void do_cmp_s_ ## op (long cc)                 \
{                                              \
    int c = cond;                              \
    update_fcr31();                            \
    if (c)                                     \
        SET_FP_COND(cc, env->fpu);             \
    else                                       \
        CLEAR_FP_COND(cc, env->fpu);           \
}                                              \
void do_cmpabs_s_ ## op (long cc)              \
{                                              \
    int c;                                     \
    FST0 &= ~FLOAT_SIGN32;                     \
    FST1 &= ~FLOAT_SIGN32;                     \
    c = cond;                                  \
    update_fcr31();                            \
    if (c)                                     \
        SET_FP_COND(cc, env->fpu);             \
    else                                       \
        CLEAR_FP_COND(cc, env->fpu);           \
}

flag float32_is_unordered(int sig, float32 a, float32 b STATUS_PARAM)
{
    if (float32_is_signaling_nan(a) ||
        float32_is_signaling_nan(b) ||
        (sig && (float32_is_nan(a) || float32_is_nan(b)))) {
        float_raise(float_flag_invalid, status);
        return 1;
    } else if (float32_is_nan(a) || float32_is_nan(b)) {
        return 1;
    } else {
        return 0;
    }
}

/* NOTE: the comma operator will make "cond" to eval to false,
 * but float*_is_unordered() is still called. */
FOP_COND_S(f,   (float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status), 0))
FOP_COND_S(un,  float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status))
FOP_COND_S(eq,  !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_eq(FST0, FST1, &env->fpu->fp_status))
FOP_COND_S(ueq, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)  || float32_eq(FST0, FST1, &env->fpu->fp_status))
FOP_COND_S(olt, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_lt(FST0, FST1, &env->fpu->fp_status))
FOP_COND_S(ult, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)  || float32_lt(FST0, FST1, &env->fpu->fp_status))
FOP_COND_S(ole, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_le(FST0, FST1, &env->fpu->fp_status))
FOP_COND_S(ule, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)  || float32_le(FST0, FST1, &env->fpu->fp_status))
/* NOTE: the comma operator will make "cond" to eval to false,
 * but float*_is_unordered() is still called. */
FOP_COND_S(sf,  (float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status), 0))
FOP_COND_S(ngle,float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status))
FOP_COND_S(seq, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_eq(FST0, FST1, &env->fpu->fp_status))
FOP_COND_S(ngl, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)  || float32_eq(FST0, FST1, &env->fpu->fp_status))
FOP_COND_S(lt,  !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_lt(FST0, FST1, &env->fpu->fp_status))
FOP_COND_S(nge, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)  || float32_lt(FST0, FST1, &env->fpu->fp_status))
FOP_COND_S(le,  !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_le(FST0, FST1, &env->fpu->fp_status))
FOP_COND_S(ngt, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)  || float32_le(FST0, FST1, &env->fpu->fp_status))

#define FOP_COND_PS(op, condl, condh)          \
void do_cmp_ps_ ## op (long cc)                \
{                                              \
    int cl = condl;                            \
    int ch = condh;                            \
    update_fcr31();                            \
    if (cl)                                    \
        SET_FP_COND(cc, env->fpu);             \
    else                                       \
        CLEAR_FP_COND(cc, env->fpu);           \
    if (ch)                                    \
        SET_FP_COND(cc + 1, env->fpu);         \
    else                                       \
        CLEAR_FP_COND(cc + 1, env->fpu);       \
}                                              \
void do_cmpabs_ps_ ## op (long cc)             \
{                                              \
    int cl, ch;                                \
    FST0 &= ~FLOAT_SIGN32;                     \
    FSTH0 &= ~FLOAT_SIGN32;                    \
    FST1 &= ~FLOAT_SIGN32;                     \
    FSTH1 &= ~FLOAT_SIGN32;                    \
    cl = condl;                                \
    ch = condh;                                \
    update_fcr31();                            \
    if (cl)                                    \
        SET_FP_COND(cc, env->fpu);             \
    else                                       \
        CLEAR_FP_COND(cc, env->fpu);           \
    if (ch)                                    \
        SET_FP_COND(cc + 1, env->fpu);         \
    else                                       \
        CLEAR_FP_COND(cc + 1, env->fpu);       \
}

/* NOTE: the comma operator will make "cond" to eval to false,
 * but float*_is_unordered() is still called. */
FOP_COND_PS(f,   (float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status), 0),
                 (float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status), 0))
FOP_COND_PS(un,  float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status),
                 float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status))
FOP_COND_PS(eq,  !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)   && float32_eq(FST0, FST1, &env->fpu->fp_status),
                 !float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) && float32_eq(FSTH0, FSTH1, &env->fpu->fp_status))
FOP_COND_PS(ueq, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)    || float32_eq(FST0, FST1, &env->fpu->fp_status),
                 float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status)  || float32_eq(FSTH0, FSTH1, &env->fpu->fp_status))
FOP_COND_PS(olt, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)   && float32_lt(FST0, FST1, &env->fpu->fp_status),
                 !float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) && float32_lt(FSTH0, FSTH1, &env->fpu->fp_status))
FOP_COND_PS(ult, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)    || float32_lt(FST0, FST1, &env->fpu->fp_status),
                 float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status)  || float32_lt(FSTH0, FSTH1, &env->fpu->fp_status))
FOP_COND_PS(ole, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)   && float32_le(FST0, FST1, &env->fpu->fp_status),
                 !float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) && float32_le(FSTH0, FSTH1, &env->fpu->fp_status))
FOP_COND_PS(ule, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)    || float32_le(FST0, FST1, &env->fpu->fp_status),
                 float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status)  || float32_le(FSTH0, FSTH1, &env->fpu->fp_status))
/* NOTE: the comma operator will make "cond" to eval to false,
 * but float*_is_unordered() is still called. */
FOP_COND_PS(sf,  (float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status), 0),
                 (float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status), 0))
FOP_COND_PS(ngle,float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status),
                 float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status))
FOP_COND_PS(seq, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)   && float32_eq(FST0, FST1, &env->fpu->fp_status),
                 !float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) && float32_eq(FSTH0, FSTH1, &env->fpu->fp_status))
FOP_COND_PS(ngl, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)    || float32_eq(FST0, FST1, &env->fpu->fp_status),
                 float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status)  || float32_eq(FSTH0, FSTH1, &env->fpu->fp_status))
FOP_COND_PS(lt,  !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)   && float32_lt(FST0, FST1, &env->fpu->fp_status),
                 !float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) && float32_lt(FSTH0, FSTH1, &env->fpu->fp_status))
FOP_COND_PS(nge, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)    || float32_lt(FST0, FST1, &env->fpu->fp_status),
                 float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status)  || float32_lt(FSTH0, FSTH1, &env->fpu->fp_status))
FOP_COND_PS(le,  !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)   && float32_le(FST0, FST1, &env->fpu->fp_status),
                 !float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) && float32_le(FSTH0, FSTH1, &env->fpu->fp_status))
FOP_COND_PS(ngt, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)    || float32_le(FST0, FST1, &env->fpu->fp_status),
                 float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status)  || float32_le(FSTH0, FSTH1, &env->fpu->fp_status))