vl.c 76.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
/*
 * QEMU PC System Emulator
 * 
 * Copyright (c) 2003 Fabrice Bellard
 * 
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <getopt.h>
#include <inttypes.h>
#include <unistd.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <signal.h>
#include <time.h>
#include <sys/time.h>
#include <malloc.h>
#include <termios.h>
#include <sys/poll.h>
#include <errno.h>
#include <sys/wait.h>

#include <sys/ioctl.h>
#include <sys/socket.h>
#include <linux/if.h>
#include <linux/if_tun.h>

#include "cpu-i386.h"
#include "disas.h"
#include "thunk.h"

#include "vl.h"

#define DEBUG_LOGFILE "/tmp/vl.log"
#define DEFAULT_NETWORK_SCRIPT "/etc/vl-ifup"

//#define DEBUG_UNUSED_IOPORT
//#define DEBUG_IRQ_LATENCY

#define PHYS_RAM_BASE 0xa8000000
#define KERNEL_LOAD_ADDR   0x00100000
#define INITRD_LOAD_ADDR   0x00400000
#define KERNEL_PARAMS_ADDR 0x00090000

/* from plex86 (BSD license) */
struct  __attribute__ ((packed)) linux_params {
  // For 0x00..0x3f, see 'struct screen_info' in linux/include/linux/tty.h.
  // I just padded out the VESA parts, rather than define them.

  /* 0x000 */ uint8_t   orig_x;
  /* 0x001 */ uint8_t   orig_y;
  /* 0x002 */ uint16_t  ext_mem_k;
  /* 0x004 */ uint16_t  orig_video_page;
  /* 0x006 */ uint8_t   orig_video_mode;
  /* 0x007 */ uint8_t   orig_video_cols;
  /* 0x008 */ uint16_t  unused1;
  /* 0x00a */ uint16_t  orig_video_ega_bx;
  /* 0x00c */ uint16_t  unused2;
  /* 0x00e */ uint8_t   orig_video_lines;
  /* 0x00f */ uint8_t   orig_video_isVGA;
  /* 0x010 */ uint16_t  orig_video_points;
  /* 0x012 */ uint8_t   pad0[0x20 - 0x12]; // VESA info.
  /* 0x020 */ uint16_t  cl_magic;  // Commandline magic number (0xA33F)
  /* 0x022 */ uint16_t  cl_offset; // Commandline offset.  Address of commandline
                                 // is calculated as 0x90000 + cl_offset, bu
                                 // only if cl_magic == 0xA33F.
  /* 0x024 */ uint8_t   pad1[0x40 - 0x24]; // VESA info.

  /* 0x040 */ uint8_t   apm_bios_info[20]; // struct apm_bios_info
  /* 0x054 */ uint8_t   pad2[0x80 - 0x54];

  // Following 2 from 'struct drive_info_struct' in drivers/block/cciss.h.
  // Might be truncated?
  /* 0x080 */ uint8_t   hd0_info[16]; // hd0-disk-parameter from intvector 0x41
  /* 0x090 */ uint8_t   hd1_info[16]; // hd1-disk-parameter from intvector 0x46

  // System description table truncated to 16 bytes
  // From 'struct sys_desc_table_struct' in linux/arch/i386/kernel/setup.c.
  /* 0x0a0 */ uint16_t  sys_description_len;
  /* 0x0a2 */ uint8_t   sys_description_table[14];
                        // [0] machine id
                        // [1] machine submodel id
                        // [2] BIOS revision
                        // [3] bit1: MCA bus

  /* 0x0b0 */ uint8_t   pad3[0x1e0 - 0xb0];
  /* 0x1e0 */ uint32_t  alt_mem_k;
  /* 0x1e4 */ uint8_t   pad4[4];
  /* 0x1e8 */ uint8_t   e820map_entries;
  /* 0x1e9 */ uint8_t   eddbuf_entries; // EDD_NR
  /* 0x1ea */ uint8_t   pad5[0x1f1 - 0x1ea];
  /* 0x1f1 */ uint8_t   setup_sects; // size of setup.S, number of sectors
  /* 0x1f2 */ uint16_t  mount_root_rdonly; // MOUNT_ROOT_RDONLY (if !=0)
  /* 0x1f4 */ uint16_t  sys_size; // size of compressed kernel-part in the
                                // (b)zImage-file (in 16 byte units, rounded up)
  /* 0x1f6 */ uint16_t  swap_dev; // (unused AFAIK)
  /* 0x1f8 */ uint16_t  ramdisk_flags;
  /* 0x1fa */ uint16_t  vga_mode; // (old one)
  /* 0x1fc */ uint16_t  orig_root_dev; // (high=Major, low=minor)
  /* 0x1fe */ uint8_t   pad6[1];
  /* 0x1ff */ uint8_t   aux_device_info;
  /* 0x200 */ uint16_t  jump_setup; // Jump to start of setup code,
                                  // aka "reserved" field.
  /* 0x202 */ uint8_t   setup_signature[4]; // Signature for SETUP-header, ="HdrS"
  /* 0x206 */ uint16_t  header_format_version; // Version number of header format;
  /* 0x208 */ uint8_t   setup_S_temp0[8]; // Used by setup.S for communication with
                                        // boot loaders, look there.
  /* 0x210 */ uint8_t   loader_type;
                        // 0 for old one.
                        // else 0xTV:
                        //   T=0: LILO
                        //   T=1: Loadlin
                        //   T=2: bootsect-loader
                        //   T=3: SYSLINUX
                        //   T=4: ETHERBOOT
                        //   V=version
  /* 0x211 */ uint8_t   loadflags;
                        // bit0 = 1: kernel is loaded high (bzImage)
                        // bit7 = 1: Heap and pointer (see below) set by boot
                        //   loader.
  /* 0x212 */ uint16_t  setup_S_temp1;
  /* 0x214 */ uint32_t  kernel_start;
  /* 0x218 */ uint32_t  initrd_start;
  /* 0x21c */ uint32_t  initrd_size;
  /* 0x220 */ uint8_t   setup_S_temp2[4];
  /* 0x224 */ uint16_t  setup_S_heap_end_pointer;
  /* 0x226 */ uint8_t   pad7[0x2d0 - 0x226];

  /* 0x2d0 : Int 15, ax=e820 memory map. */
  // (linux/include/asm-i386/e820.h, 'struct e820entry')
#define E820MAX  32
#define E820_RAM  1
#define E820_RESERVED 2
#define E820_ACPI 3 /* usable as RAM once ACPI tables have been read */
#define E820_NVS  4
  struct {
    uint64_t addr;
    uint64_t size;
    uint32_t type;
    } e820map[E820MAX];

  /* 0x550 */ uint8_t   pad8[0x600 - 0x550];

  // BIOS Enhanced Disk Drive Services.
  // (From linux/include/asm-i386/edd.h, 'struct edd_info')
  // Each 'struct edd_info is 78 bytes, times a max of 6 structs in array.
  /* 0x600 */ uint8_t   eddbuf[0x7d4 - 0x600];

  /* 0x7d4 */ uint8_t   pad9[0x800 - 0x7d4];
  /* 0x800 */ uint8_t   commandline[0x800];

  /* 0x1000 */
  uint64_t gdt_table[256];
  uint64_t idt_table[48];
};

#define KERNEL_CS     0x10
#define KERNEL_DS     0x18

typedef void (IOPortWriteFunc)(CPUX86State *env, uint32_t address, uint32_t data);
typedef uint32_t (IOPortReadFunc)(CPUX86State *env, uint32_t address);

#define MAX_IOPORTS 4096

char phys_ram_file[1024];
CPUX86State *global_env;
CPUX86State *cpu_single_env;
FILE *logfile = NULL;
int loglevel;
IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];

/***********************************************************/
/* x86 io ports */

uint32_t default_ioport_readb(CPUX86State *env, uint32_t address)
{
#ifdef DEBUG_UNUSED_IOPORT
    fprintf(stderr, "inb: port=0x%04x\n", address);
#endif
    return 0xff;
}

void default_ioport_writeb(CPUX86State *env, uint32_t address, uint32_t data)
{
#ifdef DEBUG_UNUSED_IOPORT
    fprintf(stderr, "outb: port=0x%04x data=0x%02x\n", address, data);
#endif
}

/* default is to make two byte accesses */
uint32_t default_ioport_readw(CPUX86State *env, uint32_t address)
{
    uint32_t data;
    data = ioport_read_table[0][address](env, address);
    data |= ioport_read_table[0][address + 1](env, address + 1) << 8;
    return data;
}

void default_ioport_writew(CPUX86State *env, uint32_t address, uint32_t data)
{
    ioport_write_table[0][address](env, address, data & 0xff);
    ioport_write_table[0][address + 1](env, address + 1, (data >> 8) & 0xff);
}

uint32_t default_ioport_readl(CPUX86State *env, uint32_t address)
{
#ifdef DEBUG_UNUSED_IOPORT
    fprintf(stderr, "inl: port=0x%04x\n", address);
#endif
    return 0xffffffff;
}

void default_ioport_writel(CPUX86State *env, uint32_t address, uint32_t data)
{
#ifdef DEBUG_UNUSED_IOPORT
    fprintf(stderr, "outl: port=0x%04x data=0x%02x\n", address, data);
#endif
}

void init_ioports(void)
{
    int i;

    for(i = 0; i < MAX_IOPORTS; i++) {
        ioport_read_table[0][i] = default_ioport_readb;
        ioport_write_table[0][i] = default_ioport_writeb;
        ioport_read_table[1][i] = default_ioport_readw;
        ioport_write_table[1][i] = default_ioport_writew;
        ioport_read_table[2][i] = default_ioport_readl;
        ioport_write_table[2][i] = default_ioport_writel;
    }
}

/* size is the word size in byte */
int register_ioport_read(int start, int length, IOPortReadFunc *func, int size)
{
    int i, bsize;

    if (size == 1)
        bsize = 0;
    else if (size == 2)
        bsize = 1;
    else if (size == 4)
        bsize = 2;
    else
        return -1;
    for(i = start; i < start + length; i += size)
        ioport_read_table[bsize][i] = func;
    return 0;
}

/* size is the word size in byte */
int register_ioport_write(int start, int length, IOPortWriteFunc *func, int size)
{
    int i, bsize;

    if (size == 1)
        bsize = 0;
    else if (size == 2)
        bsize = 1;
    else if (size == 4)
        bsize = 2;
    else
        return -1;
    for(i = start; i < start + length; i += size)
        ioport_write_table[bsize][i] = func;
    return 0;
}

void pstrcpy(char *buf, int buf_size, const char *str)
{
    int c;
    char *q = buf;

    if (buf_size <= 0)
        return;

    for(;;) {
        c = *str++;
        if (c == 0 || q >= buf + buf_size - 1)
            break;
        *q++ = c;
    }
    *q = '\0';
}

/* strcat and truncate. */
char *pstrcat(char *buf, int buf_size, const char *s)
{
    int len;
    len = strlen(buf);
    if (len < buf_size) 
        pstrcpy(buf + len, buf_size - len, s);
    return buf;
}

int load_kernel(const char *filename, uint8_t *addr)
{
    int fd, size, setup_sects;
    uint8_t bootsect[512];

    fd = open(filename, O_RDONLY);
    if (fd < 0)
        return -1;
    if (read(fd, bootsect, 512) != 512)
        goto fail;
    setup_sects = bootsect[0x1F1];
    if (!setup_sects)
        setup_sects = 4;
    /* skip 16 bit setup code */
    lseek(fd, (setup_sects + 1) * 512, SEEK_SET);
    size = read(fd, addr, 16 * 1024 * 1024);
    if (size < 0)
        goto fail;
    close(fd);
    return size;
 fail:
    close(fd);
    return -1;
}

/* return the size or -1 if error */
int load_image(const char *filename, uint8_t *addr)
{
    int fd, size;
    fd = open(filename, O_RDONLY);
    if (fd < 0)
        return -1;
    size = lseek(fd, 0, SEEK_END);
    lseek(fd, 0, SEEK_SET);
    if (read(fd, addr, size) != size) {
        close(fd);
        return -1;
    }
    close(fd);
    return size;
}

void cpu_x86_outb(CPUX86State *env, int addr, int val)
{
    ioport_write_table[0][addr & (MAX_IOPORTS - 1)](env, addr, val);
}

void cpu_x86_outw(CPUX86State *env, int addr, int val)
{
    ioport_write_table[1][addr & (MAX_IOPORTS - 1)](env, addr, val);
}

void cpu_x86_outl(CPUX86State *env, int addr, int val)
{
    ioport_write_table[2][addr & (MAX_IOPORTS - 1)](env, addr, val);
}

int cpu_x86_inb(CPUX86State *env, int addr)
{
    return ioport_read_table[0][addr & (MAX_IOPORTS - 1)](env, addr);
}

int cpu_x86_inw(CPUX86State *env, int addr)
{
    return ioport_read_table[1][addr & (MAX_IOPORTS - 1)](env, addr);
}

int cpu_x86_inl(CPUX86State *env, int addr)
{
    return ioport_read_table[2][addr & (MAX_IOPORTS - 1)](env, addr);
}

/***********************************************************/
void ioport80_write(CPUX86State *env, uint32_t addr, uint32_t data)
{
}

void hw_error(const char *fmt, ...)
{
    va_list ap;

    va_start(ap, fmt);
    fprintf(stderr, "qemu: hardware error: ");
    vfprintf(stderr, fmt, ap);
    fprintf(stderr, "\n");
#ifdef TARGET_I386
    cpu_x86_dump_state(global_env, stderr, X86_DUMP_FPU | X86_DUMP_CCOP);
#endif
    va_end(ap);
    abort();
}

/***********************************************************/
/* vga emulation */
static uint8_t vga_index;
static uint8_t vga_regs[256];
static int last_cursor_pos;

void update_console_messages(void)
{
    int c, i, cursor_pos, eol;

    cursor_pos = vga_regs[0x0f] | (vga_regs[0x0e] << 8);
    eol = 0;
    for(i = last_cursor_pos; i < cursor_pos; i++) {
        c = phys_ram_base[0xb8000 + (i) * 2];
        if (c >= ' ') {
            putchar(c);
            eol = 0;
        } else {
            if (!eol)
                putchar('\n');
            eol = 1;
        }
    }
    fflush(stdout);
    last_cursor_pos = cursor_pos;
}

/* just to see first Linux console messages, we intercept cursor position */
void vga_ioport_write(CPUX86State *env, uint32_t addr, uint32_t data)
{
    switch(addr) {
    case 0x3d4:
        vga_index = data;
        break;
    case 0x3d5:
        vga_regs[vga_index] = data;
        if (vga_index == 0x0f)
            update_console_messages();
        break;
    }
            
}

/***********************************************************/
/* cmos emulation */

#define RTC_SECONDS             0
#define RTC_SECONDS_ALARM       1
#define RTC_MINUTES             2
#define RTC_MINUTES_ALARM       3
#define RTC_HOURS               4
#define RTC_HOURS_ALARM         5
#define RTC_ALARM_DONT_CARE    0xC0

#define RTC_DAY_OF_WEEK         6
#define RTC_DAY_OF_MONTH        7
#define RTC_MONTH               8
#define RTC_YEAR                9

#define RTC_REG_A               10
#define RTC_REG_B               11
#define RTC_REG_C               12
#define RTC_REG_D               13

/* PC cmos mappings */
#define REG_EQUIPMENT_BYTE          0x14

uint8_t cmos_data[128];
uint8_t cmos_index;

void cmos_ioport_write(CPUX86State *env, uint32_t addr, uint32_t data)
{
    if (addr == 0x70) {
        cmos_index = data & 0x7f;
    }
}

uint32_t cmos_ioport_read(CPUX86State *env, uint32_t addr)
{
    int ret;

    if (addr == 0x70) {
        return 0xff;
    } else {
        /* toggle update-in-progress bit for Linux (same hack as
           plex86) */
        ret = cmos_data[cmos_index];
        if (cmos_index == RTC_REG_A)
            cmos_data[RTC_REG_A] ^= 0x80; 
        else if (cmos_index == RTC_REG_C)
            cmos_data[RTC_REG_C] = 0x00; 
        return ret;
    }
}


static inline int to_bcd(int a)
{
    return ((a / 10) << 4) | (a % 10);
}

void cmos_init(void)
{
    struct tm *tm;
    time_t ti;

    ti = time(NULL);
    tm = gmtime(&ti);
    cmos_data[RTC_SECONDS] = to_bcd(tm->tm_sec);
    cmos_data[RTC_MINUTES] = to_bcd(tm->tm_min);
    cmos_data[RTC_HOURS] = to_bcd(tm->tm_hour);
    cmos_data[RTC_DAY_OF_WEEK] = to_bcd(tm->tm_wday);
    cmos_data[RTC_DAY_OF_MONTH] = to_bcd(tm->tm_mday);
    cmos_data[RTC_MONTH] = to_bcd(tm->tm_mon);
    cmos_data[RTC_YEAR] = to_bcd(tm->tm_year % 100);

    cmos_data[RTC_REG_A] = 0x26;
    cmos_data[RTC_REG_B] = 0x02;
    cmos_data[RTC_REG_C] = 0x00;
    cmos_data[RTC_REG_D] = 0x80;

    cmos_data[REG_EQUIPMENT_BYTE] = 0x02; /* FPU is there */

    register_ioport_write(0x70, 2, cmos_ioport_write, 1);
    register_ioport_read(0x70, 2, cmos_ioport_read, 1);
}

/***********************************************************/
/* 8259 pic emulation */

//#define DEBUG_PIC

typedef struct PicState {
    uint8_t last_irr; /* edge detection */
    uint8_t irr; /* interrupt request register */
    uint8_t imr; /* interrupt mask register */
    uint8_t isr; /* interrupt service register */
    uint8_t priority_add; /* used to compute irq priority */
    uint8_t irq_base;
    uint8_t read_reg_select;
    uint8_t special_mask;
    uint8_t init_state;
    uint8_t auto_eoi;
    uint8_t rotate_on_autoeoi;
    uint8_t init4; /* true if 4 byte init */
} PicState;

/* 0 is master pic, 1 is slave pic */
PicState pics[2];
int pic_irq_requested;

/* set irq level. If an edge is detected, then the IRR is set to 1 */
static inline void pic_set_irq1(PicState *s, int irq, int level)
{
    int mask;
    mask = 1 << irq;
    if (level) {
        if ((s->last_irr & mask) == 0)
            s->irr |= mask;
        s->last_irr |= mask;
    } else {
        s->last_irr &= ~mask;
    }
}

static inline int get_priority(PicState *s, int mask)
{
    int priority;
    if (mask == 0)
        return -1;
    priority = 7;
    while ((mask & (1 << ((priority + s->priority_add) & 7))) == 0)
        priority--;
    return priority;
}

/* return the pic wanted interrupt. return -1 if none */
static int pic_get_irq(PicState *s)
{
    int mask, cur_priority, priority;

    mask = s->irr & ~s->imr;
    priority = get_priority(s, mask);
    if (priority < 0)
        return -1;
    /* compute current priority */
    cur_priority = get_priority(s, s->isr);
    if (priority > cur_priority) {
        /* higher priority found: an irq should be generated */
        return priority;
    } else {
        return -1;
    }
}

/* raise irq to CPU if necessary. must be called every time the active
   irq may change */
static void pic_update_irq(void)
{
    int irq2, irq;

    /* first look at slave pic */
    irq2 = pic_get_irq(&pics[1]);
    if (irq2 >= 0) {
        /* if irq request by slave pic, signal master PIC */
        pic_set_irq1(&pics[0], 2, 1);
        pic_set_irq1(&pics[0], 2, 0);
    }
    /* look at requested irq */
    irq = pic_get_irq(&pics[0]);
    if (irq >= 0) {
        if (irq == 2) {
            /* from slave pic */
            pic_irq_requested = 8 + irq2;
        } else {
            /* from master pic */
            pic_irq_requested = irq;
        }
        cpu_x86_interrupt(global_env, CPU_INTERRUPT_HARD);
    }
}

#ifdef DEBUG_IRQ_LATENCY
int64_t irq_time[16];
int64_t cpu_get_ticks(void);
#endif
#ifdef DEBUG_PIC
int irq_level[16];
#endif

void pic_set_irq(int irq, int level)
{
#ifdef DEBUG_PIC
    if (level != irq_level[irq]) {
        printf("pic_set_irq: irq=%d level=%d\n", irq, level);
        irq_level[irq] = level;
    }
#endif
#ifdef DEBUG_IRQ_LATENCY
    if (level) {
        irq_time[irq] = cpu_get_ticks();
    }
#endif
    pic_set_irq1(&pics[irq >> 3], irq & 7, level);
    pic_update_irq();
}

int cpu_x86_get_pic_interrupt(CPUX86State *env)
{
    int irq, irq2, intno;

    /* signal the pic that the irq was acked by the CPU */
    irq = pic_irq_requested;
#ifdef DEBUG_IRQ_LATENCY
    printf("IRQ%d latency=%Ld\n", irq, cpu_get_ticks() - irq_time[irq]);
#endif
#ifdef DEBUG_PIC
    printf("pic_interrupt: irq=%d\n", irq);
#endif

    if (irq >= 8) {
        irq2 = irq & 7;
        pics[1].isr |= (1 << irq2);
        pics[1].irr &= ~(1 << irq2);
        irq = 2;
        intno = pics[1].irq_base + irq2;
    } else {
        intno = pics[0].irq_base + irq;
    }
    pics[0].isr |= (1 << irq);
    pics[0].irr &= ~(1 << irq);
    return intno;
}

void pic_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
{
    PicState *s;
    int priority;

#ifdef DEBUG_PIC
    printf("pic_write: addr=0x%02x val=0x%02x\n", addr, val);
#endif
    s = &pics[addr >> 7];
    addr &= 1;
    if (addr == 0) {
        if (val & 0x10) {
            /* init */
            memset(s, 0, sizeof(PicState));
            s->init_state = 1;
            s->init4 = val & 1;
            if (val & 0x02)
                hw_error("single mode not supported");
            if (val & 0x08)
                hw_error("level sensitive irq not supported");
        } else if (val & 0x08) {
            if (val & 0x02)
                s->read_reg_select = val & 1;
            if (val & 0x40)
                s->special_mask = (val >> 5) & 1;
        } else {
            switch(val) {
            case 0x00:
            case 0x80:
                s->rotate_on_autoeoi = val >> 7;
                break;
            case 0x20: /* end of interrupt */
            case 0xa0:
                priority = get_priority(s, s->isr);
                if (priority >= 0) {
                    s->isr &= ~(1 << ((priority + s->priority_add) & 7));
                }
                if (val == 0xa0)
                    s->priority_add = (s->priority_add + 1) & 7;
                break;
            case 0x60 ... 0x67:
                priority = val & 7;
                s->isr &= ~(1 << priority);
                break;
            case 0xc0 ... 0xc7:
                s->priority_add = (val + 1) & 7;
                break;
            case 0xe0 ... 0xe7:
                priority = val & 7;
                s->isr &= ~(1 << priority);
                s->priority_add = (priority + 1) & 7;
                break;
            }
        }
    } else {
        switch(s->init_state) {
        case 0:
            /* normal mode */
            s->imr = val;
            pic_update_irq();
            break;
        case 1:
            s->irq_base = val & 0xf8;
            s->init_state = 2;
            break;
        case 2:
            if (s->init4) {
                s->init_state = 3;
            } else {
                s->init_state = 0;
            }
            break;
        case 3:
            s->auto_eoi = (val >> 1) & 1;
            s->init_state = 0;
            break;
        }
    }
}

uint32_t pic_ioport_read(CPUX86State *env, uint32_t addr1)
{
    PicState *s;
    unsigned int addr;
    int ret;

    addr = addr1;
    s = &pics[addr >> 7];
    addr &= 1;
    if (addr == 0) {
        if (s->read_reg_select)
            ret = s->isr;
        else
            ret = s->irr;
    } else {
        ret = s->imr;
    }
#ifdef DEBUG_PIC
    printf("pic_read: addr=0x%02x val=0x%02x\n", addr1, ret);
#endif
    return ret;
}

void pic_init(void)
{
    register_ioport_write(0x20, 2, pic_ioport_write, 1);
    register_ioport_read(0x20, 2, pic_ioport_read, 1);
    register_ioport_write(0xa0, 2, pic_ioport_write, 1);
    register_ioport_read(0xa0, 2, pic_ioport_read, 1);
}

/***********************************************************/
/* 8253 PIT emulation */

#define PIT_FREQ 1193182

#define RW_STATE_LSB 0
#define RW_STATE_MSB 1
#define RW_STATE_WORD0 2
#define RW_STATE_WORD1 3
#define RW_STATE_LATCHED_WORD0 4
#define RW_STATE_LATCHED_WORD1 5

typedef struct PITChannelState {
    int count; /* can be 65536 */
    uint16_t latched_count;
    uint8_t rw_state;
    uint8_t mode;
    uint8_t bcd; /* not supported */
    uint8_t gate; /* timer start */
    int64_t count_load_time;
    int64_t count_last_edge_check_time;
} PITChannelState;

PITChannelState pit_channels[3];
int speaker_data_on;
int pit_min_timer_count = 0;

int64_t ticks_per_sec;

int64_t get_clock(void)
{
    struct timeval tv;
    gettimeofday(&tv, NULL);
    return tv.tv_sec * 1000000LL + tv.tv_usec;
}

int64_t cpu_get_ticks(void)
{
    int64_t val;
    asm("rdtsc" : "=A" (val));
    return val;
}

void cpu_calibrate_ticks(void)
{
    int64_t usec, ticks;

    usec = get_clock();
    ticks = cpu_get_ticks();
    usleep(50 * 1000);
    usec = get_clock() - usec;
    ticks = cpu_get_ticks() - ticks;
    ticks_per_sec = (ticks * 1000000LL + (usec >> 1)) / usec;
}

/* compute with 96 bit intermediate result: (a*b)/c */
static uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
{
    union {
        uint64_t ll;
        struct {
#ifdef WORDS_BIGENDIAN
            uint32_t high, low;
#else
            uint32_t low, high;
#endif            
        } l;
    } u, res;
    uint64_t rl, rh;

    u.ll = a;
    rl = (uint64_t)u.l.low * (uint64_t)b;
    rh = (uint64_t)u.l.high * (uint64_t)b;
    rh += (rl >> 32);
    res.l.high = rh / c;
    res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
    return res.ll;
}

static int pit_get_count(PITChannelState *s)
{
    uint64_t d;
    int counter;

    d = muldiv64(cpu_get_ticks() - s->count_load_time, PIT_FREQ, ticks_per_sec);
    switch(s->mode) {
    case 0:
    case 1:
    case 4:
    case 5:
        counter = (s->count - d) & 0xffff;
        break;
    default:
        counter = s->count - (d % s->count);
        break;
    }
    return counter;
}

/* get pit output bit */
static int pit_get_out(PITChannelState *s)
{
    uint64_t d;
    int out;

    d = muldiv64(cpu_get_ticks() - s->count_load_time, PIT_FREQ, ticks_per_sec);
    switch(s->mode) {
    default:
    case 0:
        out = (d >= s->count);
        break;
    case 1:
        out = (d < s->count);
        break;
    case 2:
        if ((d % s->count) == 0 && d != 0)
            out = 1;
        else
            out = 0;
        break;
    case 3:
        out = (d % s->count) < (s->count >> 1);
        break;
    case 4:
    case 5:
        out = (d == s->count);
        break;
    }
    return out;
}

/* get the number of 0 to 1 transitions we had since we call this
   function */
/* XXX: maybe better to use ticks precision to avoid getting edges
   twice if checks are done at very small intervals */
static int pit_get_out_edges(PITChannelState *s)
{
    uint64_t d1, d2;
    int64_t ticks;
    int ret, v;

    ticks = cpu_get_ticks();
    d1 = muldiv64(s->count_last_edge_check_time - s->count_load_time, 
                 PIT_FREQ, ticks_per_sec);
    d2 = muldiv64(ticks - s->count_load_time, 
                  PIT_FREQ, ticks_per_sec);
    s->count_last_edge_check_time = ticks;
    switch(s->mode) {
    default:
    case 0:
        if (d1 < s->count && d2 >= s->count)
            ret = 1;
        else
            ret = 0;
        break;
    case 1:
        ret = 0;
        break;
    case 2:
        d1 /= s->count;
        d2 /= s->count;
        ret = d2 - d1;
        break;
    case 3:
        v = s->count - (s->count >> 1);
        d1 = (d1 + v) / s->count;
        d2 = (d2 + v) / s->count;
        ret = d2 - d1;
        break;
    case 4:
    case 5:
        if (d1 < s->count && d2 >= s->count)
            ret = 1;
        else
            ret = 0;
        break;
    }
    return ret;
}

static inline void pit_load_count(PITChannelState *s, int val)
{
    if (val == 0)
        val = 0x10000;
    s->count_load_time = cpu_get_ticks();
    s->count_last_edge_check_time = s->count_load_time;
    s->count = val;
    if (s == &pit_channels[0] && val <= pit_min_timer_count) {
        fprintf(stderr, 
                "\nWARNING: vl: on your system, accurate timer emulation is impossible if its frequency is more than %d Hz. If using a 2.5.xx Linux kernel, you must patch asm/param.h to change HZ from 1000 to 100.\n\n", 
                PIT_FREQ / pit_min_timer_count);
    }
}

void pit_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
{
    int channel, access;
    PITChannelState *s;

    addr &= 3;
    if (addr == 3) {
        channel = val >> 6;
        if (channel == 3)
            return;
        s = &pit_channels[channel];
        access = (val >> 4) & 3;
        switch(access) {
        case 0:
            s->latched_count = pit_get_count(s);
            s->rw_state = RW_STATE_LATCHED_WORD0;
            break;
        default:
            s->mode = (val >> 1) & 7;
            s->bcd = val & 1;
            s->rw_state = access - 1 +  RW_STATE_LSB;
            break;
        }
    } else {
        s = &pit_channels[addr];
        switch(s->rw_state) {
        case RW_STATE_LSB:
            pit_load_count(s, val);
            break;
        case RW_STATE_MSB:
            pit_load_count(s, val << 8);
            break;
        case RW_STATE_WORD0:
        case RW_STATE_WORD1:
            if (s->rw_state & 1) {
                pit_load_count(s, (s->latched_count & 0xff) | (val << 8));
            } else {
                s->latched_count = val;
            }
            s->rw_state ^= 1;
            break;
        }
    }
}

uint32_t pit_ioport_read(CPUX86State *env, uint32_t addr)
{
    int ret, count;
    PITChannelState *s;
    
    addr &= 3;
    s = &pit_channels[addr];
    switch(s->rw_state) {
    case RW_STATE_LSB:
    case RW_STATE_MSB:
    case RW_STATE_WORD0:
    case RW_STATE_WORD1:
        count = pit_get_count(s);
        if (s->rw_state & 1)
            ret = (count >> 8) & 0xff;
        else
            ret = count & 0xff;
        if (s->rw_state & 2)
            s->rw_state ^= 1;
        break;
    default:
    case RW_STATE_LATCHED_WORD0:
    case RW_STATE_LATCHED_WORD1:
        if (s->rw_state & 1)
            ret = s->latched_count >> 8;
        else
            ret = s->latched_count & 0xff;
        s->rw_state ^= 1;
        break;
    }
    return ret;
}

void speaker_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
{
    speaker_data_on = (val >> 1) & 1;
    pit_channels[2].gate = val & 1;
}

uint32_t speaker_ioport_read(CPUX86State *env, uint32_t addr)
{
    int out;
    out = pit_get_out(&pit_channels[2]);
    return (speaker_data_on << 1) | pit_channels[2].gate | (out << 5);
}

void pit_init(void)
{
    PITChannelState *s;
    int i;

    cpu_calibrate_ticks();

    for(i = 0;i < 3; i++) {
        s = &pit_channels[i];
        s->mode = 3;
        s->gate = (i != 2);
        pit_load_count(s, 0);
    }

    register_ioport_write(0x40, 4, pit_ioport_write, 1);
    register_ioport_read(0x40, 3, pit_ioport_read, 1);

    register_ioport_read(0x61, 1, speaker_ioport_read, 1);
    register_ioport_write(0x61, 1, speaker_ioport_write, 1);
}

/***********************************************************/
/* serial port emulation */

#define UART_IRQ        4

#define UART_LCR_DLAB	0x80	/* Divisor latch access bit */

#define UART_IER_MSI	0x08	/* Enable Modem status interrupt */
#define UART_IER_RLSI	0x04	/* Enable receiver line status interrupt */
#define UART_IER_THRI	0x02	/* Enable Transmitter holding register int. */
#define UART_IER_RDI	0x01	/* Enable receiver data interrupt */

#define UART_IIR_NO_INT	0x01	/* No interrupts pending */
#define UART_IIR_ID	0x06	/* Mask for the interrupt ID */

#define UART_IIR_MSI	0x00	/* Modem status interrupt */
#define UART_IIR_THRI	0x02	/* Transmitter holding register empty */
#define UART_IIR_RDI	0x04	/* Receiver data interrupt */
#define UART_IIR_RLSI	0x06	/* Receiver line status interrupt */

#define UART_LSR_TEMT	0x40	/* Transmitter empty */
#define UART_LSR_THRE	0x20	/* Transmit-hold-register empty */
#define UART_LSR_BI	0x10	/* Break interrupt indicator */
#define UART_LSR_FE	0x08	/* Frame error indicator */
#define UART_LSR_PE	0x04	/* Parity error indicator */
#define UART_LSR_OE	0x02	/* Overrun error indicator */
#define UART_LSR_DR	0x01	/* Receiver data ready */

typedef struct SerialState {
    uint8_t divider;
    uint8_t rbr; /* receive register */
    uint8_t ier;
    uint8_t iir; /* read only */
    uint8_t lcr;
    uint8_t mcr;
    uint8_t lsr; /* read only */
    uint8_t msr;
    uint8_t scr;
} SerialState;

SerialState serial_ports[1];

void serial_update_irq(void)
{
    SerialState *s = &serial_ports[0];

    if ((s->lsr & UART_LSR_DR) && (s->ier & UART_IER_RDI)) {
        s->iir = UART_IIR_RDI;
    } else if ((s->lsr & UART_LSR_THRE) && (s->ier & UART_IER_THRI)) {
        s->iir = UART_IIR_THRI;
    } else {
        s->iir = UART_IIR_NO_INT;
    }
    if (s->iir != UART_IIR_NO_INT) {
        pic_set_irq(UART_IRQ, 1);
    } else {
        pic_set_irq(UART_IRQ, 0);
    }
}

void serial_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
{
    SerialState *s = &serial_ports[0];
    unsigned char ch;
    int ret;
    
    addr &= 7;
    switch(addr) {
    default:
    case 0:
        if (s->lcr & UART_LCR_DLAB) {
            s->divider = (s->divider & 0xff00) | val;
        } else {
            s->lsr &= ~UART_LSR_THRE;
            serial_update_irq();

            ch = val;
            do {
                ret = write(1, &ch, 1);
            } while (ret != 1);
            s->lsr |= UART_LSR_THRE;
            s->lsr |= UART_LSR_TEMT;
            serial_update_irq();
        }
        break;
    case 1:
        if (s->lcr & UART_LCR_DLAB) {
            s->divider = (s->divider & 0x00ff) | (val << 8);
        } else {
            s->ier = val;
            serial_update_irq();
        }
        break;
    case 2:
        break;
    case 3:
        s->lcr = val;
        break;
    case 4:
        s->mcr = val;
        break;
    case 5:
        break;
    case 6:
        s->msr = val;
        break;
    case 7:
        s->scr = val;
        break;
    }
}

uint32_t serial_ioport_read(CPUX86State *env, uint32_t addr)
{
    SerialState *s = &serial_ports[0];
    uint32_t ret;

    addr &= 7;
    switch(addr) {
    default:
    case 0:
        if (s->lcr & UART_LCR_DLAB) {
            ret = s->divider & 0xff; 
        } else {
            ret = s->rbr;
            s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
            serial_update_irq();
        }
        break;
    case 1:
        if (s->lcr & UART_LCR_DLAB) {
            ret = (s->divider >> 8) & 0xff;
        } else {
            ret = s->ier;
        }
        break;
    case 2:
        ret = s->iir;
        break;
    case 3:
        ret = s->lcr;
        break;
    case 4:
        ret = s->mcr;
        break;
    case 5:
        ret = s->lsr;
        break;
    case 6:
        ret = s->msr;
        break;
    case 7:
        ret = s->scr;
        break;
    }
    return ret;
}

#define TERM_ESCAPE 0x01 /* ctrl-a is used for escape */
static int term_got_escape;

void term_print_help(void)
{
    printf("\n"
           "C-a h    print this help\n"
           "C-a x    exit emulatior\n"
           "C-a b    send break (magic sysrq)\n"
           "C-a C-a  send C-a\n"
           );
}

/* called when a char is received */
void serial_received_byte(SerialState *s, int ch)
{
    if (term_got_escape) {
        term_got_escape = 0;
        switch(ch) {
        case 'h':
            term_print_help();
            break;
        case 'x':
            exit(0);
            break;
        case 'b':
            /* send break */
            s->rbr = 0;
            s->lsr |= UART_LSR_BI | UART_LSR_DR;
            serial_update_irq();
            break;
        case TERM_ESCAPE:
            goto send_char;
        }
    } else if (ch == TERM_ESCAPE) {
        term_got_escape = 1;
    } else {
    send_char:
        s->rbr = ch;
        s->lsr |= UART_LSR_DR;
        serial_update_irq();
    }
}

/* init terminal so that we can grab keys */
static struct termios oldtty;

static void term_exit(void)
{
    tcsetattr (0, TCSANOW, &oldtty);
}

static void term_init(void)
{
    struct termios tty;

    tcgetattr (0, &tty);
    oldtty = tty;

    tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
                          |INLCR|IGNCR|ICRNL|IXON);
    tty.c_oflag |= OPOST;
    tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
    tty.c_cflag &= ~(CSIZE|PARENB);
    tty.c_cflag |= CS8;
    tty.c_cc[VMIN] = 1;
    tty.c_cc[VTIME] = 0;
    
    tcsetattr (0, TCSANOW, &tty);

    atexit(term_exit);

    fcntl(0, F_SETFL, O_NONBLOCK);
}

void serial_init(void)
{
    SerialState *s = &serial_ports[0];

    s->lsr = UART_LSR_TEMT | UART_LSR_THRE;

    register_ioport_write(0x3f8, 8, serial_ioport_write, 1);
    register_ioport_read(0x3f8, 8, serial_ioport_read, 1);

    term_init();
}

/***********************************************************/
/* ne2000 emulation */

//#define DEBUG_NE2000

#define NE2000_IOPORT   0x300
#define NE2000_IRQ      9

#define MAX_ETH_FRAME_SIZE 1514

#define E8390_CMD	0x00  /* The command register (for all pages) */
/* Page 0 register offsets. */
#define EN0_CLDALO	0x01	/* Low byte of current local dma addr  RD */
#define EN0_STARTPG	0x01	/* Starting page of ring bfr WR */
#define EN0_CLDAHI	0x02	/* High byte of current local dma addr  RD */
#define EN0_STOPPG	0x02	/* Ending page +1 of ring bfr WR */
#define EN0_BOUNDARY	0x03	/* Boundary page of ring bfr RD WR */
#define EN0_TSR		0x04	/* Transmit status reg RD */
#define EN0_TPSR	0x04	/* Transmit starting page WR */
#define EN0_NCR		0x05	/* Number of collision reg RD */
#define EN0_TCNTLO	0x05	/* Low  byte of tx byte count WR */
#define EN0_FIFO	0x06	/* FIFO RD */
#define EN0_TCNTHI	0x06	/* High byte of tx byte count WR */
#define EN0_ISR		0x07	/* Interrupt status reg RD WR */
#define EN0_CRDALO	0x08	/* low byte of current remote dma address RD */
#define EN0_RSARLO	0x08	/* Remote start address reg 0 */
#define EN0_CRDAHI	0x09	/* high byte, current remote dma address RD */
#define EN0_RSARHI	0x09	/* Remote start address reg 1 */
#define EN0_RCNTLO	0x0a	/* Remote byte count reg WR */
#define EN0_RCNTHI	0x0b	/* Remote byte count reg WR */
#define EN0_RSR		0x0c	/* rx status reg RD */
#define EN0_RXCR	0x0c	/* RX configuration reg WR */
#define EN0_TXCR	0x0d	/* TX configuration reg WR */
#define EN0_COUNTER0	0x0d	/* Rcv alignment error counter RD */
#define EN0_DCFG	0x0e	/* Data configuration reg WR */
#define EN0_COUNTER1	0x0e	/* Rcv CRC error counter RD */
#define EN0_IMR		0x0f	/* Interrupt mask reg WR */
#define EN0_COUNTER2	0x0f	/* Rcv missed frame error counter RD */

#define EN1_PHYS        0x11
#define EN1_CURPAG      0x17
#define EN1_MULT        0x18

/*  Register accessed at EN_CMD, the 8390 base addr.  */
#define E8390_STOP	0x01	/* Stop and reset the chip */
#define E8390_START	0x02	/* Start the chip, clear reset */
#define E8390_TRANS	0x04	/* Transmit a frame */
#define E8390_RREAD	0x08	/* Remote read */
#define E8390_RWRITE	0x10	/* Remote write  */
#define E8390_NODMA	0x20	/* Remote DMA */
#define E8390_PAGE0	0x00	/* Select page chip registers */
#define E8390_PAGE1	0x40	/* using the two high-order bits */
#define E8390_PAGE2	0x80	/* Page 3 is invalid. */

/* Bits in EN0_ISR - Interrupt status register */
#define ENISR_RX	0x01	/* Receiver, no error */
#define ENISR_TX	0x02	/* Transmitter, no error */
#define ENISR_RX_ERR	0x04	/* Receiver, with error */
#define ENISR_TX_ERR	0x08	/* Transmitter, with error */
#define ENISR_OVER	0x10	/* Receiver overwrote the ring */
#define ENISR_COUNTERS	0x20	/* Counters need emptying */
#define ENISR_RDC	0x40	/* remote dma complete */
#define ENISR_RESET	0x80	/* Reset completed */
#define ENISR_ALL	0x3f	/* Interrupts we will enable */

/* Bits in received packet status byte and EN0_RSR*/
#define ENRSR_RXOK	0x01	/* Received a good packet */
#define ENRSR_CRC	0x02	/* CRC error */
#define ENRSR_FAE	0x04	/* frame alignment error */
#define ENRSR_FO	0x08	/* FIFO overrun */
#define ENRSR_MPA	0x10	/* missed pkt */
#define ENRSR_PHY	0x20	/* physical/multicast address */
#define ENRSR_DIS	0x40	/* receiver disable. set in monitor mode */
#define ENRSR_DEF	0x80	/* deferring */

/* Transmitted packet status, EN0_TSR. */
#define ENTSR_PTX 0x01	/* Packet transmitted without error */
#define ENTSR_ND  0x02	/* The transmit wasn't deferred. */
#define ENTSR_COL 0x04	/* The transmit collided at least once. */
#define ENTSR_ABT 0x08  /* The transmit collided 16 times, and was deferred. */
#define ENTSR_CRS 0x10	/* The carrier sense was lost. */
#define ENTSR_FU  0x20  /* A "FIFO underrun" occurred during transmit. */
#define ENTSR_CDH 0x40	/* The collision detect "heartbeat" signal was lost. */
#define ENTSR_OWC 0x80  /* There was an out-of-window collision. */

#define NE2000_MEM_SIZE 32768

typedef struct NE2000State {
    uint8_t cmd;
    uint32_t start;
    uint32_t stop;
    uint8_t boundary;
    uint8_t tsr;
    uint8_t tpsr;
    uint16_t tcnt;
    uint16_t rcnt;
    uint32_t rsar;
    uint8_t isr;
    uint8_t dcfg;
    uint8_t imr;
    uint8_t phys[6]; /* mac address */
    uint8_t curpag;
    uint8_t mult[8]; /* multicast mask array */
    uint8_t mem[NE2000_MEM_SIZE];
} NE2000State;

NE2000State ne2000_state;
int net_fd = -1;
char network_script[1024];

void ne2000_reset(void)
{
    NE2000State *s = &ne2000_state;
    int i;

    s->isr = ENISR_RESET;
    s->mem[0] = 0x52;
    s->mem[1] = 0x54;
    s->mem[2] = 0x00;
    s->mem[3] = 0x12;
    s->mem[4] = 0x34;
    s->mem[5] = 0x56;
    s->mem[14] = 0x57;
    s->mem[15] = 0x57;

    /* duplicate prom data */
    for(i = 15;i >= 0; i--) {
        s->mem[2 * i] = s->mem[i];
        s->mem[2 * i + 1] = s->mem[i];
    }
}

void ne2000_update_irq(NE2000State *s)
{
    int isr;
    isr = s->isr & s->imr;
    if (isr)
        pic_set_irq(NE2000_IRQ, 1);
    else
        pic_set_irq(NE2000_IRQ, 0);
}

int net_init(void)
{
    struct ifreq ifr;
    int fd, ret, pid, status;
    
    fd = open("/dev/net/tun", O_RDWR);
    if (fd < 0) {
        fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
        return -1;
    }
    memset(&ifr, 0, sizeof(ifr));
    ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
    pstrcpy(ifr.ifr_name, IFNAMSIZ, "tun%d");
    ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
    if (ret != 0) {
        fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
        close(fd);
        return -1;
    }
    printf("Connected to host network interface: %s\n", ifr.ifr_name);
    fcntl(fd, F_SETFL, O_NONBLOCK);
    net_fd = fd;

    /* try to launch network init script */
    pid = fork();
    if (pid >= 0) {
        if (pid == 0) {
            execl(network_script, network_script, ifr.ifr_name, NULL);
            exit(1);
        }
        while (waitpid(pid, &status, 0) != pid);
        if (!WIFEXITED(status) ||
            WEXITSTATUS(status) != 0) {
            fprintf(stderr, "%s: could not launch network script for '%s'\n",
                    network_script, ifr.ifr_name);
        }
    }
    return 0;
}

void net_send_packet(NE2000State *s, const uint8_t *buf, int size)
{
#ifdef DEBUG_NE2000
    printf("NE2000: sending packet size=%d\n", size);
#endif
    write(net_fd, buf, size);
}

/* return true if the NE2000 can receive more data */
int ne2000_can_receive(NE2000State *s)
{
    int avail, index, boundary;
    
    if (s->cmd & E8390_STOP)
        return 0;
    index = s->curpag << 8;
    boundary = s->boundary << 8;
    if (index < boundary)
        avail = boundary - index;
    else
        avail = (s->stop - s->start) - (index - boundary);
    if (avail < (MAX_ETH_FRAME_SIZE + 4))
        return 0;
    return 1;
}

void ne2000_receive(NE2000State *s, uint8_t *buf, int size)
{
    uint8_t *p;
    int total_len, next, avail, len, index;

#if defined(DEBUG_NE2000)
    printf("NE2000: received len=%d\n", size);
#endif

    index = s->curpag << 8;
    /* 4 bytes for header */
    total_len = size + 4;
    /* address for next packet (4 bytes for CRC) */
    next = index + ((total_len + 4 + 255) & ~0xff);
    if (next >= s->stop)
        next -= (s->stop - s->start);
    /* prepare packet header */
    p = s->mem + index;
    p[0] = ENRSR_RXOK; /* receive status */
    p[1] = next >> 8;
    p[2] = total_len;
    p[3] = total_len >> 8;
    index += 4;

    /* write packet data */
    while (size > 0) {
        avail = s->stop - index;
        len = size;
        if (len > avail)
            len = avail;
        memcpy(s->mem + index, buf, len);
        buf += len;
        index += len;
        if (index == s->stop)
            index = s->start;
        size -= len;
    }
    s->curpag = next >> 8;
    
    /* now we can signal we have receive something */
    s->isr |= ENISR_RX;
    ne2000_update_irq(s);
}

void ne2000_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
{
    NE2000State *s = &ne2000_state;
    int offset, page;

    addr &= 0xf;
#ifdef DEBUG_NE2000
    printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
#endif
    if (addr == E8390_CMD) {
        /* control register */
        s->cmd = val;
        if (val & E8390_START) {
            /* test specific case: zero length transfert */
            if ((val & (E8390_RREAD | E8390_RWRITE)) &&
                s->rcnt == 0) {
                s->isr |= ENISR_RDC;
                ne2000_update_irq(s);
            }
            if (val & E8390_TRANS) {
                net_send_packet(s, s->mem + (s->tpsr << 8), s->tcnt);
                /* signal end of transfert */
                s->tsr = ENTSR_PTX;
                s->isr |= ENISR_TX;
                ne2000_update_irq(s);
            }
        }
    } else {
        page = s->cmd >> 6;
        offset = addr | (page << 4);
        switch(offset) {
        case EN0_STARTPG:
            s->start = val << 8;
            break;
        case EN0_STOPPG:
            s->stop = val << 8;
            break;
        case EN0_BOUNDARY:
            s->boundary = val;
            break;
        case EN0_IMR:
            s->imr = val;
            ne2000_update_irq(s);
            break;
        case EN0_TPSR:
            s->tpsr = val;
            break;
        case EN0_TCNTLO:
            s->tcnt = (s->tcnt & 0xff00) | val;
            break;
        case EN0_TCNTHI:
            s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
            break;
        case EN0_RSARLO:
            s->rsar = (s->rsar & 0xff00) | val;
            break;
        case EN0_RSARHI:
            s->rsar = (s->rsar & 0x00ff) | (val << 8);
            break;
        case EN0_RCNTLO:
            s->rcnt = (s->rcnt & 0xff00) | val;
            break;
        case EN0_RCNTHI:
            s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
            break;
        case EN0_DCFG:
            s->dcfg = val;
            break;
        case EN0_ISR:
            s->isr &= ~val;
            ne2000_update_irq(s);
            break;
        case EN1_PHYS ... EN1_PHYS + 5:
            s->phys[offset - EN1_PHYS] = val;
            break;
        case EN1_CURPAG:
            s->curpag = val;
            break;
        case EN1_MULT ... EN1_MULT + 7:
            s->mult[offset - EN1_MULT] = val;
            break;
        }
    }
}

uint32_t ne2000_ioport_read(CPUX86State *env, uint32_t addr)
{
    NE2000State *s = &ne2000_state;
    int offset, page, ret;

    addr &= 0xf;
    if (addr == E8390_CMD) {
        ret = s->cmd;
    } else {
        page = s->cmd >> 6;
        offset = addr | (page << 4);
        switch(offset) {
        case EN0_TSR:
            ret = s->tsr;
            break;
        case EN0_BOUNDARY:
            ret = s->boundary;
            break;
        case EN0_ISR:
            ret = s->isr;
            break;
        case EN1_PHYS ... EN1_PHYS + 5:
            ret = s->phys[offset - EN1_PHYS];
            break;
        case EN1_CURPAG:
            ret = s->curpag;
            break;
        case EN1_MULT ... EN1_MULT + 7:
            ret = s->mult[offset - EN1_MULT];
            break;
        default:
            ret = 0x00;
            break;
        }
    }
#ifdef DEBUG_NE2000
    printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
#endif
    return ret;
}

void ne2000_asic_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
{
    NE2000State *s = &ne2000_state;
    uint8_t *p;

#ifdef DEBUG_NE2000
    printf("NE2000: asic write val=0x%04x\n", val);
#endif
    p = s->mem + s->rsar;
    if (s->dcfg & 0x01) {
        /* 16 bit access */
        p[0] = val;
        p[1] = val >> 8;
        s->rsar += 2;
        s->rcnt -= 2;
    } else {
        /* 8 bit access */
        p[0] = val;
        s->rsar++;
        s->rcnt--;
    }
    /* wrap */
    if (s->rsar == s->stop)
        s->rsar = s->start;
    if (s->rcnt == 0) {
        /* signal end of transfert */
        s->isr |= ENISR_RDC;
        ne2000_update_irq(s);
    }
}

uint32_t ne2000_asic_ioport_read(CPUX86State *env, uint32_t addr)
{
    NE2000State *s = &ne2000_state;
    uint8_t *p;
    int ret;

    p = s->mem + s->rsar;
    if (s->dcfg & 0x01) {
        /* 16 bit access */
        ret = p[0] | (p[1] << 8);
        s->rsar += 2;
        s->rcnt -= 2;
    } else {
        /* 8 bit access */
        ret = p[0];
        s->rsar++;
        s->rcnt--;
    }
    /* wrap */
    if (s->rsar == s->stop)
        s->rsar = s->start;
    if (s->rcnt == 0) {
        /* signal end of transfert */
        s->isr |= ENISR_RDC;
        ne2000_update_irq(s);
    }
#ifdef DEBUG_NE2000
    printf("NE2000: asic read val=0x%04x\n", ret);
#endif
    return ret;
}

void ne2000_reset_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
{
    /* nothing to do (end of reset pulse) */
}

uint32_t ne2000_reset_ioport_read(CPUX86State *env, uint32_t addr)
{
    ne2000_reset();
    return 0;
}

void ne2000_init(void)
{
    register_ioport_write(NE2000_IOPORT, 16, ne2000_ioport_write, 1);
    register_ioport_read(NE2000_IOPORT, 16, ne2000_ioport_read, 1);

    register_ioport_write(NE2000_IOPORT + 0x10, 1, ne2000_asic_ioport_write, 1);
    register_ioport_read(NE2000_IOPORT + 0x10, 1, ne2000_asic_ioport_read, 1);
    register_ioport_write(NE2000_IOPORT + 0x10, 2, ne2000_asic_ioport_write, 2);
    register_ioport_read(NE2000_IOPORT + 0x10, 2, ne2000_asic_ioport_read, 2);

    register_ioport_write(NE2000_IOPORT + 0x1f, 1, ne2000_reset_ioport_write, 1);
    register_ioport_read(NE2000_IOPORT + 0x1f, 1, ne2000_reset_ioport_read, 1);
    ne2000_reset();
}

/***********************************************************/
/* ide emulation */

//#define DEBUG_IDE

/* Bits of HD_STATUS */
#define ERR_STAT		0x01
#define INDEX_STAT		0x02
#define ECC_STAT		0x04	/* Corrected error */
#define DRQ_STAT		0x08
#define SEEK_STAT		0x10
#define SRV_STAT		0x10
#define WRERR_STAT		0x20
#define READY_STAT		0x40
#define BUSY_STAT		0x80

/* Bits for HD_ERROR */
#define MARK_ERR		0x01	/* Bad address mark */
#define TRK0_ERR		0x02	/* couldn't find track 0 */
#define ABRT_ERR		0x04	/* Command aborted */
#define MCR_ERR			0x08	/* media change request */
#define ID_ERR			0x10	/* ID field not found */
#define MC_ERR			0x20	/* media changed */
#define ECC_ERR			0x40	/* Uncorrectable ECC error */
#define BBD_ERR			0x80	/* pre-EIDE meaning:  block marked bad */
#define ICRC_ERR		0x80	/* new meaning:  CRC error during transfer */

/* Bits of HD_NSECTOR */
#define CD			0x01
#define IO			0x02
#define REL			0x04
#define TAG_MASK		0xf8

#define IDE_CMD_RESET           0x04
#define IDE_CMD_DISABLE_IRQ     0x02

/* ATA/ATAPI Commands pre T13 Spec */
#define WIN_NOP				0x00
/*
 *	0x01->0x02 Reserved
 */
#define CFA_REQ_EXT_ERROR_CODE		0x03 /* CFA Request Extended Error Code */
/*
 *	0x04->0x07 Reserved
 */
#define WIN_SRST			0x08 /* ATAPI soft reset command */
#define WIN_DEVICE_RESET		0x08
/*
 *	0x09->0x0F Reserved
 */
#define WIN_RECAL			0x10
#define WIN_RESTORE			WIN_RECAL
/*
 *	0x10->0x1F Reserved
 */
#define WIN_READ			0x20 /* 28-Bit */
#define WIN_READ_ONCE			0x21 /* 28-Bit without retries */
#define WIN_READ_LONG			0x22 /* 28-Bit */
#define WIN_READ_LONG_ONCE		0x23 /* 28-Bit without retries */
#define WIN_READ_EXT			0x24 /* 48-Bit */
#define WIN_READDMA_EXT			0x25 /* 48-Bit */
#define WIN_READDMA_QUEUED_EXT		0x26 /* 48-Bit */
#define WIN_READ_NATIVE_MAX_EXT		0x27 /* 48-Bit */
/*
 *	0x28
 */
#define WIN_MULTREAD_EXT		0x29 /* 48-Bit */
/*
 *	0x2A->0x2F Reserved
 */
#define WIN_WRITE			0x30 /* 28-Bit */
#define WIN_WRITE_ONCE			0x31 /* 28-Bit without retries */
#define WIN_WRITE_LONG			0x32 /* 28-Bit */
#define WIN_WRITE_LONG_ONCE		0x33 /* 28-Bit without retries */
#define WIN_WRITE_EXT			0x34 /* 48-Bit */
#define WIN_WRITEDMA_EXT		0x35 /* 48-Bit */
#define WIN_WRITEDMA_QUEUED_EXT		0x36 /* 48-Bit */
#define WIN_SET_MAX_EXT			0x37 /* 48-Bit */
#define CFA_WRITE_SECT_WO_ERASE		0x38 /* CFA Write Sectors without erase */
#define WIN_MULTWRITE_EXT		0x39 /* 48-Bit */
/*
 *	0x3A->0x3B Reserved
 */
#define WIN_WRITE_VERIFY		0x3C /* 28-Bit */
/*
 *	0x3D->0x3F Reserved
 */
#define WIN_VERIFY			0x40 /* 28-Bit - Read Verify Sectors */
#define WIN_VERIFY_ONCE			0x41 /* 28-Bit - without retries */
#define WIN_VERIFY_EXT			0x42 /* 48-Bit */
/*
 *	0x43->0x4F Reserved
 */
#define WIN_FORMAT			0x50
/*
 *	0x51->0x5F Reserved
 */
#define WIN_INIT			0x60
/*
 *	0x61->0x5F Reserved
 */
#define WIN_SEEK			0x70 /* 0x70-0x7F Reserved */
#define CFA_TRANSLATE_SECTOR		0x87 /* CFA Translate Sector */
#define WIN_DIAGNOSE			0x90
#define WIN_SPECIFY			0x91 /* set drive geometry translation */
#define WIN_DOWNLOAD_MICROCODE		0x92
#define WIN_STANDBYNOW2			0x94
#define WIN_STANDBY2			0x96
#define WIN_SETIDLE2			0x97
#define WIN_CHECKPOWERMODE2		0x98
#define WIN_SLEEPNOW2			0x99
/*
 *	0x9A VENDOR
 */
#define WIN_PACKETCMD			0xA0 /* Send a packet command. */
#define WIN_PIDENTIFY			0xA1 /* identify ATAPI device	*/
#define WIN_QUEUED_SERVICE		0xA2
#define WIN_SMART			0xB0 /* self-monitoring and reporting */
#define CFA_ERASE_SECTORS       	0xC0
#define WIN_MULTREAD			0xC4 /* read sectors using multiple mode*/
#define WIN_MULTWRITE			0xC5 /* write sectors using multiple mode */
#define WIN_SETMULT			0xC6 /* enable/disable multiple mode */
#define WIN_READDMA_QUEUED		0xC7 /* read sectors using Queued DMA transfers */
#define WIN_READDMA			0xC8 /* read sectors using DMA transfers */
#define WIN_READDMA_ONCE		0xC9 /* 28-Bit - without retries */
#define WIN_WRITEDMA			0xCA /* write sectors using DMA transfers */
#define WIN_WRITEDMA_ONCE		0xCB /* 28-Bit - without retries */
#define WIN_WRITEDMA_QUEUED		0xCC /* write sectors using Queued DMA transfers */
#define CFA_WRITE_MULTI_WO_ERASE	0xCD /* CFA Write multiple without erase */
#define WIN_GETMEDIASTATUS		0xDA	
#define WIN_ACKMEDIACHANGE		0xDB /* ATA-1, ATA-2 vendor */
#define WIN_POSTBOOT			0xDC
#define WIN_PREBOOT			0xDD
#define WIN_DOORLOCK			0xDE /* lock door on removable drives */
#define WIN_DOORUNLOCK			0xDF /* unlock door on removable drives */
#define WIN_STANDBYNOW1			0xE0
#define WIN_IDLEIMMEDIATE		0xE1 /* force drive to become "ready" */
#define WIN_STANDBY             	0xE2 /* Set device in Standby Mode */
#define WIN_SETIDLE1			0xE3
#define WIN_READ_BUFFER			0xE4 /* force read only 1 sector */
#define WIN_CHECKPOWERMODE1		0xE5
#define WIN_SLEEPNOW1			0xE6
#define WIN_FLUSH_CACHE			0xE7
#define WIN_WRITE_BUFFER		0xE8 /* force write only 1 sector */
#define WIN_WRITE_SAME			0xE9 /* read ata-2 to use */
	/* SET_FEATURES 0x22 or 0xDD */
#define WIN_FLUSH_CACHE_EXT		0xEA /* 48-Bit */
#define WIN_IDENTIFY			0xEC /* ask drive to identify itself	*/
#define WIN_MEDIAEJECT			0xED
#define WIN_IDENTIFY_DMA		0xEE /* same as WIN_IDENTIFY, but DMA */
#define WIN_SETFEATURES			0xEF /* set special drive features */
#define EXABYTE_ENABLE_NEST		0xF0
#define WIN_SECURITY_SET_PASS		0xF1
#define WIN_SECURITY_UNLOCK		0xF2
#define WIN_SECURITY_ERASE_PREPARE	0xF3
#define WIN_SECURITY_ERASE_UNIT		0xF4
#define WIN_SECURITY_FREEZE_LOCK	0xF5
#define WIN_SECURITY_DISABLE		0xF6
#define WIN_READ_NATIVE_MAX		0xF8 /* return the native maximum address */
#define WIN_SET_MAX			0xF9
#define DISABLE_SEAGATE			0xFB

/* set to 1 set disable mult support */
#define MAX_MULT_SECTORS 8

#define MAX_DISKS 2

struct IDEState;

typedef void EndTransferFunc(struct IDEState *);

typedef struct IDEState {
    /* ide config */
    int cylinders, heads, sectors;
    int64_t nb_sectors;
    int mult_sectors;
    int irq;
    /* ide regs */
    uint8_t feature;
    uint8_t error;
    uint16_t nsector; /* 0 is 256 to ease computations */
    uint8_t sector;
    uint8_t lcyl;
    uint8_t hcyl;
    uint8_t select;
    uint8_t status;
    /* 0x3f6 command, only meaningful for drive 0 */
    uint8_t cmd;
    /* depends on bit 4 in select, only meaningful for drive 0 */
    struct IDEState *cur_drive; 
    BlockDriverState *bs;
    int req_nb_sectors; /* number of sectors per interrupt */
    EndTransferFunc *end_transfer_func;
    uint8_t *data_ptr;
    uint8_t *data_end;
    uint8_t io_buffer[MAX_MULT_SECTORS*512 + 4];
} IDEState;

BlockDriverState *bs_table[MAX_DISKS];
IDEState ide_state[MAX_DISKS];

static void padstr(char *str, const char *src, int len)
{
    int i, v;
    for(i = 0; i < len; i++) {
        if (*src)
            v = *src++;
        else
            v = ' ';
        *(char *)((long)str ^ 1) = v;
        str++;
    }
}

static void ide_identify(IDEState *s)
{
    uint16_t *p;
    unsigned int oldsize;

    memset(s->io_buffer, 0, 512);
    p = (uint16_t *)s->io_buffer;
    stw(p + 0, 0x0040);
    stw(p + 1, s->cylinders); 
    stw(p + 3, s->heads);
    stw(p + 4, 512 * s->sectors); /* sectors */
    stw(p + 5, 512); /* sector size */
    stw(p + 6, s->sectors); 
    stw(p + 20, 3); /* buffer type */
    stw(p + 21, 512); /* cache size in sectors */
    stw(p + 22, 4); /* ecc bytes */
    padstr((uint8_t *)(p + 27), "QEMU HARDDISK", 40);
#if MAX_MULT_SECTORS > 1    
    stw(p + 47, MAX_MULT_SECTORS);
#endif
    stw(p + 48, 1); /* dword I/O */
    stw(p + 49, 1 << 9); /* LBA supported, no DMA */
    stw(p + 51, 0x200); /* PIO transfer cycle */
    stw(p + 52, 0x200); /* DMA transfer cycle */
    stw(p + 54, s->cylinders);
    stw(p + 55, s->heads);
    stw(p + 56, s->sectors);
    oldsize = s->cylinders * s->heads * s->sectors;
    stw(p + 57, oldsize);
    stw(p + 58, oldsize >> 16);
    if (s->mult_sectors)
        stw(p + 59, 0x100 | s->mult_sectors);
    stw(p + 60, s->nb_sectors);
    stw(p + 61, s->nb_sectors >> 16);
    stw(p + 80, (1 << 1) | (1 << 2));
    stw(p + 82, (1 << 14));
    stw(p + 83, (1 << 14));
    stw(p + 84, (1 << 14));
    stw(p + 85, (1 << 14));
    stw(p + 86, 0);
    stw(p + 87, (1 << 14));
}

static inline void ide_abort_command(IDEState *s)
{
    s->status = READY_STAT | ERR_STAT;
    s->error = ABRT_ERR;
}

static inline void ide_set_irq(IDEState *s)
{
    if (!(ide_state[0].cmd & IDE_CMD_DISABLE_IRQ)) {
        pic_set_irq(s->irq, 1);
    }
}

/* prepare data transfer and tell what to do after */
static void ide_transfer_start(IDEState *s, int size, 
                               EndTransferFunc *end_transfer_func)
{
    s->end_transfer_func = end_transfer_func;
    s->data_ptr = s->io_buffer;
    s->data_end = s->io_buffer + size;
    s->status |= DRQ_STAT;
}

static void ide_transfer_stop(IDEState *s)
{
    s->end_transfer_func = ide_transfer_stop;
    s->data_ptr = s->io_buffer;
    s->data_end = s->io_buffer;
    s->status &= ~DRQ_STAT;
}

static int64_t ide_get_sector(IDEState *s)
{
    int64_t sector_num;
    if (s->select & 0x40) {
        /* lba */
        sector_num = ((s->select & 0x0f) << 24) | (s->hcyl << 16) | 
            (s->lcyl << 8) | s->sector;
    } else {
        sector_num = ((s->hcyl << 8) | s->lcyl) * s->heads * s->sectors +
            (s->select & 0x0f) * s->sectors + 
            (s->sector - 1);
    }
    return sector_num;
}

static void ide_set_sector(IDEState *s, int64_t sector_num)
{
    unsigned int cyl, r;
    if (s->select & 0x40) {
        s->select = (s->select & 0xf0) | (sector_num >> 24);
        s->hcyl = (sector_num >> 16);
        s->lcyl = (sector_num >> 8);
        s->sector = (sector_num);
    } else {
        cyl = sector_num / (s->heads * s->sectors);
        r = sector_num % (s->heads * s->sectors);
        s->hcyl = cyl >> 8;
        s->lcyl = cyl;
        s->select = (s->select & 0xf0) | (r / s->sectors);
        s->sector = (r % s->sectors) + 1;
    }
}

static void ide_sector_read(IDEState *s)
{
    int64_t sector_num;
    int ret, n;

    s->status = READY_STAT | SEEK_STAT;
    sector_num = ide_get_sector(s);
    n = s->nsector;
    if (n == 0) {
        /* no more sector to read from disk */
        ide_transfer_stop(s);
    } else {
#if defined(DEBUG_IDE)
        printf("read sector=%Ld\n", sector_num);
#endif
        if (n > s->req_nb_sectors)
            n = s->req_nb_sectors;
        ret = bdrv_read(s->bs, sector_num, s->io_buffer, n);
        ide_transfer_start(s, 512 * n, ide_sector_read);
        ide_set_irq(s);
        ide_set_sector(s, sector_num + n);
        s->nsector -= n;
    }
}

static void ide_sector_write(IDEState *s)
{
    int64_t sector_num;
    int ret, n, n1;

    s->status = READY_STAT | SEEK_STAT;
    sector_num = ide_get_sector(s);
#if defined(DEBUG_IDE)
    printf("write sector=%Ld\n", sector_num);
#endif
    n = s->nsector;
    if (n > s->req_nb_sectors)
        n = s->req_nb_sectors;
    ret = bdrv_write(s->bs, sector_num, s->io_buffer, n);
    s->nsector -= n;
    if (s->nsector == 0) {
        /* no more sector to write */
        ide_transfer_stop(s);
    } else {
        n1 = s->nsector;
        if (n1 > s->req_nb_sectors)
            n1 = s->req_nb_sectors;
        ide_transfer_start(s, 512 * n1, ide_sector_write);
    }
    ide_set_sector(s, sector_num + n);
    ide_set_irq(s);
}

void ide_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
{
    IDEState *s = ide_state[0].cur_drive;
    int unit, n;

    addr &= 7;
#ifdef DEBUG_IDE
    printf("IDE: write addr=0x%x val=0x%02x\n", addr, val);
#endif
    switch(addr) {
    case 0:
        break;
    case 1:
        s->feature = val;
        break;
    case 2:
        if (val == 0)
            val = 256;
        s->nsector = val;
        break;
    case 3:
        s->sector = val;
        break;
    case 4:
        s->lcyl = val;
        break;
    case 5:
        s->hcyl = val;
        break;
    case 6:
        /* select drive */
        unit = (val >> 4) & 1;
        s = &ide_state[unit];
        ide_state[0].cur_drive = s;
        s->select = val;
        break;
    default:
    case 7:
        /* command */
#if defined(DEBUG_IDE)
        printf("ide: CMD=%02x\n", val);
#endif
        switch(val) {
        case WIN_PIDENTIFY:
        case WIN_IDENTIFY:
            if (s->bs) {
                ide_identify(s);
                s->status = READY_STAT;
                ide_transfer_start(s, 512, ide_transfer_stop);
            } else {
                ide_abort_command(s);
            }
            ide_set_irq(s);
            break;
        case WIN_SPECIFY:
        case WIN_RECAL:
            s->status = READY_STAT;
            ide_set_irq(s);
            break;
        case WIN_SETMULT:
            if (s->nsector > MAX_MULT_SECTORS || 
                s->nsector == 0 ||
                (s->nsector & (s->nsector - 1)) != 0) {
                ide_abort_command(s);
            } else {
                s->mult_sectors = s->nsector;
                s->status = READY_STAT;
            }
            ide_set_irq(s);
            break;
        case WIN_READ:
        case WIN_READ_ONCE:
            s->req_nb_sectors = 1;
            ide_sector_read(s);
            break;
        case WIN_WRITE:
        case WIN_WRITE_ONCE:
            s->status = SEEK_STAT;
            s->req_nb_sectors = 1;
            ide_transfer_start(s, 512, ide_sector_write);
            break;
        case WIN_MULTREAD:
            if (!s->mult_sectors)
                goto abort_cmd;
            s->req_nb_sectors = s->mult_sectors;
            ide_sector_read(s);
            break;
        case WIN_MULTWRITE:
            if (!s->mult_sectors)
                goto abort_cmd;
            s->status = SEEK_STAT;
            s->req_nb_sectors = s->mult_sectors;
            n = s->nsector;
            if (n > s->req_nb_sectors)
                n = s->req_nb_sectors;
            ide_transfer_start(s, 512 * n, ide_sector_write);
            break;
        default:
        abort_cmd:
            ide_abort_command(s);
            ide_set_irq(s);
            break;
        }
    }
}

uint32_t ide_ioport_read(CPUX86State *env, uint32_t addr)
{
    IDEState *s = ide_state[0].cur_drive;
    int ret;

    addr &= 7;
    switch(addr) {
    case 0:
        ret = 0xff;
        break;
    case 1:
        ret = s->error;
        break;
    case 2:
        ret = s->nsector & 0xff;
        break;
    case 3:
        ret = s->sector;
        break;
    case 4:
        ret = s->lcyl;
        break;
    case 5:
        ret = s->hcyl;
        break;
    case 6:
        ret = s->select;
        break;
    default:
    case 7:
        ret = s->status;
        pic_set_irq(s->irq, 0);
        break;
    }
#ifdef DEBUG_IDE
    printf("ide: read addr=0x%x val=%02x\n", addr, ret);
#endif
    return ret;
}

uint32_t ide_status_read(CPUX86State *env, uint32_t addr)
{
    IDEState *s = ide_state[0].cur_drive;
    int ret;
    ret = s->status;
#ifdef DEBUG_IDE
    printf("ide: read addr=0x%x val=%02x\n", addr, ret);
#endif
    return ret;
}

void ide_cmd_write(CPUX86State *env, uint32_t addr, uint32_t val)
{
    IDEState *s = &ide_state[0];
    /* common for both drives */
    s->cmd = val;
}

void ide_data_writew(CPUX86State *env, uint32_t addr, uint32_t val)
{
    IDEState *s = ide_state[0].cur_drive;
    uint8_t *p;

    p = s->data_ptr;
    *(uint16_t *)p = tswap16(val);
    p += 2;
    s->data_ptr = p;
    if (p >= s->data_end)
        s->end_transfer_func(s);
}

uint32_t ide_data_readw(CPUX86State *env, uint32_t addr)
{
    IDEState *s = ide_state[0].cur_drive;
    uint8_t *p;
    int ret;
    
    p = s->data_ptr;
    ret = tswap16(*(uint16_t *)p);
    p += 2;
    s->data_ptr = p;
    if (p >= s->data_end)
        s->end_transfer_func(s);
    return ret;
}

void ide_data_writel(CPUX86State *env, uint32_t addr, uint32_t val)
{
    IDEState *s = ide_state[0].cur_drive;
    uint8_t *p;

    p = s->data_ptr;
    *(uint32_t *)p = tswap32(val);
    p += 4;
    s->data_ptr = p;
    if (p >= s->data_end)
        s->end_transfer_func(s);
}

uint32_t ide_data_readl(CPUX86State *env, uint32_t addr)
{
    IDEState *s = ide_state[0].cur_drive;
    uint8_t *p;
    int ret;
    
    p = s->data_ptr;
    ret = tswap32(*(uint32_t *)p);
    p += 4;
    s->data_ptr = p;
    if (p >= s->data_end)
        s->end_transfer_func(s);
    return ret;
}

void ide_reset(IDEState *s)
{
    s->mult_sectors = MAX_MULT_SECTORS;
    s->status = READY_STAT;
    s->cur_drive = s;
    s->select = 0xa0;
}

void ide_init(void)
{
    IDEState *s;
    int i, cylinders;
    int64_t nb_sectors;

    for(i = 0; i < MAX_DISKS; i++) {
        s = &ide_state[i];
        s->bs = bs_table[i];
        if (s->bs) {
            bdrv_get_geometry(s->bs, &nb_sectors);
            cylinders = nb_sectors / (16 * 63);
            if (cylinders > 16383)
                cylinders = 16383;
            else if (cylinders < 2)
                cylinders = 2;
            s->cylinders = cylinders;
            s->heads = 16;
            s->sectors = 63;
            s->nb_sectors = nb_sectors;
        }
        s->irq = 14;
        ide_reset(s);
    }
    register_ioport_write(0x1f0, 8, ide_ioport_write, 1);
    register_ioport_read(0x1f0, 8, ide_ioport_read, 1);
    register_ioport_read(0x3f6, 1, ide_status_read, 1);
    register_ioport_write(0x3f6, 1, ide_cmd_write, 1);

    /* data ports */
    register_ioport_write(0x1f0, 2, ide_data_writew, 2);
    register_ioport_read(0x1f0, 2, ide_data_readw, 2);
    register_ioport_write(0x1f0, 4, ide_data_writel, 4);
    register_ioport_read(0x1f0, 4, ide_data_readl, 4);
}

/***********************************************************/
/* cpu signal handler */
static void host_segv_handler(int host_signum, siginfo_t *info, 
                              void *puc)
{
    if (cpu_signal_handler(host_signum, info, puc))
        return;
    term_exit();
    abort();
}

static int timer_irq_pending;
static int timer_irq_count;

static void host_alarm_handler(int host_signum, siginfo_t *info, 
                               void *puc)
{
    /* NOTE: since usually the OS asks a 100 Hz clock, there can be
       some drift between cpu_get_ticks() and the interrupt time. So
       we queue some interrupts to avoid missing some */
    timer_irq_count += pit_get_out_edges(&pit_channels[0]);
    if (timer_irq_count) {
        if (timer_irq_count > 2)
            timer_irq_count = 2;
        timer_irq_count--;
        /* just exit from the cpu to have a chance to handle timers */
        cpu_x86_interrupt(global_env, CPU_INTERRUPT_EXIT);
        timer_irq_pending = 1;
    }
}

/* main execution loop */

CPUState *cpu_gdbstub_get_env(void *opaque)
{
    return global_env;
}

void main_loop(void *opaque)
{
    struct pollfd ufds[2], *pf, *serial_ufd, *net_ufd, *gdb_ufd;
    int ret, n, timeout;
    uint8_t ch;
    CPUState *env = global_env;

    for(;;) {

        ret = cpu_x86_exec(env);

        /* if hlt instruction, we wait until the next IRQ */
        if (ret == EXCP_HLT) 
            timeout = 10;
        else
            timeout = 0;
        /* poll any events */
        serial_ufd = NULL;
        pf = ufds;
        if (!(serial_ports[0].lsr & UART_LSR_DR)) {
            serial_ufd = pf;
            pf->fd = 0;
            pf->events = POLLIN;
            pf++;
        }
        net_ufd = NULL;
        if (net_fd > 0 && ne2000_can_receive(&ne2000_state)) {
            net_ufd = pf;
            pf->fd = net_fd;
            pf->events = POLLIN;
            pf++;
        }
        gdb_ufd = NULL;
        if (gdbstub_fd > 0) {
            gdb_ufd = pf;
            pf->fd = gdbstub_fd;
            pf->events = POLLIN;
            pf++;
        }

        ret = poll(ufds, pf - ufds, timeout);
        if (ret > 0) {
            if (serial_ufd && (serial_ufd->revents & POLLIN)) {
                n = read(0, &ch, 1);
                if (n == 1) {
                    serial_received_byte(&serial_ports[0], ch);
                }
            }
            if (net_ufd && (net_ufd->revents & POLLIN)) {
                uint8_t buf[MAX_ETH_FRAME_SIZE];

                n = read(net_fd, buf, MAX_ETH_FRAME_SIZE);
                if (n > 0) {
                    if (n < 60) {
                        memset(buf + n, 0, 60 - n);
                        n = 60;
                    }
                    ne2000_receive(&ne2000_state, buf, n);
                }
            }
            if (gdb_ufd && (gdb_ufd->revents & POLLIN)) {
                uint8_t buf[1];
                /* stop emulation if requested by gdb */
                n = read(gdbstub_fd, buf, 1);
                if (n == 1)
                    break;
            }
        }

        /* timer IRQ */
        if (timer_irq_pending) {
            pic_set_irq(0, 1);
            pic_set_irq(0, 0);
            timer_irq_pending = 0;
        }
    }
}

void help(void)
{
    printf("Virtual Linux version " QEMU_VERSION ", Copyright (c) 2003 Fabrice Bellard\n"
           "usage: vl [options] bzImage [kernel parameters...]\n"
           "\n"
           "'bzImage' is a Linux kernel image (PAGE_OFFSET must be defined\n"
           "to 0x90000000 in asm/page.h and arch/i386/vmlinux.lds)\n"
           "\n"
           "General options:\n"
           "-initrd file   use 'file' as initial ram disk\n"
           "-hda file      use 'file' as hard disk 0 image\n"
           "-hdb file      use 'file' as hard disk 1 image\n"
           "-m megs        set virtual RAM size to megs MB\n"
           "-n script      set network init script [default=%s]\n"
           "\n"
           "Debug options:\n"
           "-s             wait gdb connection to port %d\n"
           "-p port        change gdb connection port\n"
           "-d             output log in /tmp/vl.log\n"
           "\n"
           "During emulation, use C-a h to get terminal commands:\n",
           DEFAULT_NETWORK_SCRIPT, DEFAULT_GDBSTUB_PORT);
    term_print_help();
    exit(1);
}

struct option long_options[] = {
    { "initrd", 1, NULL, 0, },
    { "hda", 1, NULL, 0, },
    { "hdb", 1, NULL, 0, },
    { NULL, 0, NULL, 0 },
};

int main(int argc, char **argv)
{
    int c, ret, initrd_size, i, use_gdbstub, gdbstub_port, long_index;
    struct linux_params *params;
    struct sigaction act;
    struct itimerval itv;
    CPUX86State *env;
    const char *tmpdir, *initrd_filename;
    const char *hd_filename[MAX_DISKS];
    
    /* we never want that malloc() uses mmap() */
    mallopt(M_MMAP_THRESHOLD, 4096 * 1024);
    initrd_filename = NULL;
    for(i = 0; i < MAX_DISKS; i++)
        hd_filename[i] = NULL;
    phys_ram_size = 32 * 1024 * 1024;
    pstrcpy(network_script, sizeof(network_script), DEFAULT_NETWORK_SCRIPT);
    use_gdbstub = 0;
    gdbstub_port = DEFAULT_GDBSTUB_PORT;
    for(;;) {
        c = getopt_long_only(argc, argv, "hm:dn:sp:", long_options, &long_index);
        if (c == -1)
            break;
        switch(c) {
        case 0:
            switch(long_index) {
            case 0:
                initrd_filename = optarg;
                break;
            case 1:
                hd_filename[0] = optarg;
                break;
            case 2:
                hd_filename[1] = optarg;
                break;
            }
            break;
        case 'h':
            help();
            break;
        case 'm':
            phys_ram_size = atoi(optarg) * 1024 * 1024;
            if (phys_ram_size <= 0)
                help();
            break;
        case 'd':
            loglevel = 1;
            break;
        case 'n':
            pstrcpy(network_script, sizeof(network_script), optarg);
            break;
        case 's':
            use_gdbstub = 1;
            break;
        case 'p':
            gdbstub_port = atoi(optarg);
            break;
        }
    }
    if (optind >= argc)
        help();

    /* init debug */
    setvbuf(stdout, NULL, _IOLBF, 0);
    if (loglevel) {
        logfile = fopen(DEBUG_LOGFILE, "w");
        if (!logfile) {
            perror(DEBUG_LOGFILE);
            _exit(1);
        }
        setvbuf(logfile, NULL, _IOLBF, 0);
    }

    /* open the virtual block devices */
    for(i = 0; i < MAX_DISKS; i++) {
        if (hd_filename[i]) {
            bs_table[i] = bdrv_open(hd_filename[i]);
            if (!bs_table[i]) {
                fprintf(stderr, "vl: could not open hard disk image '%s\n",
                        hd_filename[i]);
                exit(1);
            }
        }
    }

    /* init network tun interface */
    net_init();

    /* init the memory */
    tmpdir = getenv("VLTMPDIR");
    if (!tmpdir)
        tmpdir = "/tmp";
    snprintf(phys_ram_file, sizeof(phys_ram_file), "%s/vlXXXXXX", tmpdir);
    if (mkstemp(phys_ram_file) < 0) {
        fprintf(stderr, "Could not create temporary memory file '%s'\n", 
                phys_ram_file);
        exit(1);
    }
    phys_ram_fd = open(phys_ram_file, O_CREAT | O_TRUNC | O_RDWR, 0600);
    if (phys_ram_fd < 0) {
        fprintf(stderr, "Could not open temporary memory file '%s'\n", 
                phys_ram_file);
        exit(1);
    }
    ftruncate(phys_ram_fd, phys_ram_size);
    unlink(phys_ram_file);
    phys_ram_base = mmap((void *)PHYS_RAM_BASE, phys_ram_size, 
                         PROT_WRITE | PROT_READ, MAP_SHARED | MAP_FIXED, 
                         phys_ram_fd, 0);
    if (phys_ram_base == MAP_FAILED) {
        fprintf(stderr, "Could not map physical memory\n");
        exit(1);
    }

    /* now we can load the kernel */
    ret = load_kernel(argv[optind], phys_ram_base + KERNEL_LOAD_ADDR);
    if (ret < 0) {
        fprintf(stderr, "vl: could not load kernel '%s'\n", argv[optind]);
        exit(1);
    }

    /* load initrd */
    initrd_size = 0;
    if (initrd_filename) {
        initrd_size = load_image(initrd_filename, phys_ram_base + INITRD_LOAD_ADDR);
        if (initrd_size < 0) {
            fprintf(stderr, "vl: could not load initial ram disk '%s'\n", 
                    initrd_filename);
            exit(1);
        }
    }

    /* init kernel params */
    params = (void *)(phys_ram_base + KERNEL_PARAMS_ADDR);
    memset(params, 0, sizeof(struct linux_params));
    params->mount_root_rdonly = 0;
    params->cl_magic = 0xA33F;
    params->cl_offset = params->commandline - (uint8_t *)params;
    params->ext_mem_k = (phys_ram_size / 1024) - 1024;
    for(i = optind + 1; i < argc; i++) {
        if (i != optind + 1)
            pstrcat(params->commandline, sizeof(params->commandline), " ");
        pstrcat(params->commandline, sizeof(params->commandline), argv[i]);
    }
    params->loader_type = 0x01;
    if (initrd_size > 0) {
        params->initrd_start = INITRD_LOAD_ADDR;
        params->initrd_size = initrd_size;
    }
    params->orig_video_lines = 25;
    params->orig_video_cols = 80;

    /* init basic PC hardware */
    init_ioports();
    register_ioport_write(0x80, 1, ioport80_write, 1);

    register_ioport_write(0x3d4, 2, vga_ioport_write, 1);

    cmos_init();
    pic_init();
    pit_init();
    serial_init();
    ne2000_init();
    ide_init();

    /* setup cpu signal handlers for MMU / self modifying code handling */
    sigfillset(&act.sa_mask);
    act.sa_flags = SA_SIGINFO;
    act.sa_sigaction = host_segv_handler;
    sigaction(SIGSEGV, &act, NULL);
    sigaction(SIGBUS, &act, NULL);

    act.sa_sigaction = host_alarm_handler;
    sigaction(SIGALRM, &act, NULL);

    /* init CPU state */
    env = cpu_init();
    global_env = env;
    cpu_single_env = env;

    /* setup basic memory access */
    env->cr[0] = 0x00000033;
    cpu_x86_init_mmu(env);
    
    memset(params->idt_table, 0, sizeof(params->idt_table));

    params->gdt_table[2] = 0x00cf9a000000ffffLL; /* KERNEL_CS */
    params->gdt_table[3] = 0x00cf92000000ffffLL; /* KERNEL_DS */
    
    env->idt.base = (void *)params->idt_table;
    env->idt.limit = sizeof(params->idt_table) - 1;
    env->gdt.base = (void *)params->gdt_table;
    env->gdt.limit = sizeof(params->gdt_table) - 1;

    cpu_x86_load_seg(env, R_CS, KERNEL_CS);
    cpu_x86_load_seg(env, R_DS, KERNEL_DS);
    cpu_x86_load_seg(env, R_ES, KERNEL_DS);
    cpu_x86_load_seg(env, R_SS, KERNEL_DS);
    cpu_x86_load_seg(env, R_FS, KERNEL_DS);
    cpu_x86_load_seg(env, R_GS, KERNEL_DS);
    
    env->eip = KERNEL_LOAD_ADDR;
    env->regs[R_ESI] = KERNEL_PARAMS_ADDR;
    env->eflags = 0x2;

    itv.it_interval.tv_sec = 0;
    itv.it_interval.tv_usec = 1000;
    itv.it_value.tv_sec = 0;
    itv.it_value.tv_usec = 10 * 1000;
    setitimer(ITIMER_REAL, &itv, NULL);
    /* we probe the tick duration of the kernel to inform the user if
       the emulated kernel requested a too high timer frequency */
    getitimer(ITIMER_REAL, &itv);
    pit_min_timer_count = ((uint64_t)itv.it_interval.tv_usec * PIT_FREQ) / 
        1000000;
    
    if (use_gdbstub) {
        cpu_gdbstub(NULL, main_loop, gdbstub_port);
    } else {
        main_loop(NULL);
    }
    return 0;
}