dyngen.c 14.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <inttypes.h>
#include <elf.h>
#include <unistd.h>
#include <fcntl.h>

#include "thunk.h"

/* all dynamically generated functions begin with this code */
#define OP_PREFIX "op"

int elf_must_swap(Elf32_Ehdr *h)
{
  union {
      uint32_t i;
      uint8_t b[4];
  } swaptest;

  swaptest.i = 1;
  return (h->e_ident[EI_DATA] == ELFDATA2MSB) != 
      (swaptest.b[0] == 0);
}
  
void swab16s(uint16_t *p)
{
    *p = bswap16(*p);
}

void swab32s(uint32_t *p)
{
    *p = bswap32(*p);
}

void swab64s(uint32_t *p)
{
    *p = bswap64(*p);
}

void elf_swap_ehdr(Elf32_Ehdr *h)
{
    swab16s(&h->e_type);			/* Object file type */
    swab16s(&h->	e_machine);		/* Architecture */
    swab32s(&h->	e_version);		/* Object file version */
    swab32s(&h->	e_entry);		/* Entry point virtual address */
    swab32s(&h->	e_phoff);		/* Program header table file offset */
    swab32s(&h->	e_shoff);		/* Section header table file offset */
    swab32s(&h->	e_flags);		/* Processor-specific flags */
    swab16s(&h->	e_ehsize);		/* ELF header size in bytes */
    swab16s(&h->	e_phentsize);		/* Program header table entry size */
    swab16s(&h->	e_phnum);		/* Program header table entry count */
    swab16s(&h->	e_shentsize);		/* Section header table entry size */
    swab16s(&h->	e_shnum);		/* Section header table entry count */
    swab16s(&h->	e_shstrndx);		/* Section header string table index */
}

void elf_swap_shdr(Elf32_Shdr *h)
{
  swab32s(&h->	sh_name);		/* Section name (string tbl index) */
  swab32s(&h->	sh_type);		/* Section type */
  swab32s(&h->	sh_flags);		/* Section flags */
  swab32s(&h->	sh_addr);		/* Section virtual addr at execution */
  swab32s(&h->	sh_offset);		/* Section file offset */
  swab32s(&h->	sh_size);		/* Section size in bytes */
  swab32s(&h->	sh_link);		/* Link to another section */
  swab32s(&h->	sh_info);		/* Additional section information */
  swab32s(&h->	sh_addralign);		/* Section alignment */
  swab32s(&h->	sh_entsize);		/* Entry size if section holds table */
}

void elf_swap_phdr(Elf32_Phdr *h)
{
    swab32s(&h->p_type);			/* Segment type */
    swab32s(&h->p_offset);		/* Segment file offset */
    swab32s(&h->p_vaddr);		/* Segment virtual address */
    swab32s(&h->p_paddr);		/* Segment physical address */
    swab32s(&h->p_filesz);		/* Segment size in file */
    swab32s(&h->p_memsz);		/* Segment size in memory */
    swab32s(&h->p_flags);		/* Segment flags */
    swab32s(&h->p_align);		/* Segment alignment */
}

int do_swap;
int e_machine;

uint16_t get16(uint16_t *p)
{
    uint16_t val;
    val = *p;
    if (do_swap)
        val = bswap16(val);
    return val;
}

uint32_t get32(uint32_t *p)
{
    uint32_t val;
    val = *p;
    if (do_swap)
        val = bswap32(val);
    return val;
}

void put16(uint16_t *p, uint16_t val)
{
    if (do_swap)
        val = bswap16(val);
    *p = val;
}

void put32(uint32_t *p, uint32_t val)
{
    if (do_swap)
        val = bswap32(val);
    *p = val;
}

void __attribute__((noreturn)) error(const char *fmt, ...)
{
    va_list ap;
    va_start(ap, fmt);
    fprintf(stderr, "dyngen: ");
    vfprintf(stderr, fmt, ap);
    fprintf(stderr, "\n");
    va_end(ap);
    exit(1);
}


Elf32_Shdr *find_elf_section(Elf32_Shdr *shdr, int shnum, const char *shstr, 
                             const char *name)
{
    int i;
    const char *shname;
    Elf32_Shdr *sec;

    for(i = 0; i < shnum; i++) {
        sec = &shdr[i];
        if (!sec->sh_name)
            continue;
        shname = shstr + sec->sh_name;
        if (!strcmp(shname, name))
            return sec;
    }
    return NULL;
}

void *load_data(int fd, long offset, unsigned int size)
{
    char *data;

    data = malloc(size);
    if (!data)
        return NULL;
    lseek(fd, offset, SEEK_SET);
    if (read(fd, data, size) != size) {
        free(data);
        return NULL;
    }
    return data;
}

int strstart(const char *str, const char *val, const char **ptr)
{
    const char *p, *q;
    p = str;
    q = val;
    while (*q != '\0') {
        if (*p != *q)
            return 0;
        p++;
        q++;
    }
    if (ptr)
        *ptr = p;
    return 1;
}

#define MAX_ARGS 3

/* generate op code */
void gen_code(const char *name, unsigned long offset, unsigned long size, 
              FILE *outfile, uint8_t *text, void *relocs, int nb_relocs, int reloc_sh_type,
              Elf32_Sym *symtab, char *strtab)
{
    int copy_size = 0;
    uint8_t *p_start, *p_end;
    int nb_args, i;
    uint8_t args_present[MAX_ARGS];
    const char *sym_name, *p;

    /* compute exact size excluding return instruction */
    p_start = text + offset;
    p_end = p_start + size;
    switch(e_machine) {
    case EM_386:
        {
            uint8_t *p;
            p = p_end - 1;
            /* find ret */
            while (p > p_start && *p != 0xc3)
                p--;
            /* skip double ret */
            if (p > p_start && p[-1] == 0xc3)
                p--;
            if (p == p_start)
                error("empty code for %s", name);
            copy_size = p - p_start;
        }
        break;
    case EM_PPC:
        {
            uint8_t *p;
            p = (void *)(p_end - 4);
            /* find ret */
            while (p > p_start && get32((uint32_t *)p) != 0x4e800020)
                p -= 4;
            /* skip double ret */
            if (p > p_start && get32((uint32_t *)(p - 4)) == 0x4e800020)
                p -= 4;
            if (p == p_start)
                error("empty code for %s", name);
            copy_size = p - p_start;
        }
        break;
    default:
        error("unsupported CPU (%d)", e_machine);
    }

    /* compute the number of arguments by looking at the relocations */
    for(i = 0;i < MAX_ARGS; i++)
        args_present[i] = 0;

    if (reloc_sh_type == SHT_REL) {
        Elf32_Rel *rel;
        int n;
        for(i = 0, rel = relocs;i < nb_relocs; i++, rel++) {
            if (rel->r_offset >= offset && rel->r_offset < offset + copy_size) {
                sym_name = strtab + symtab[ELF32_R_SYM(rel->r_info)].st_name;
                if (strstart(sym_name, "__op_param", &p)) {
                    n = strtoul(p, NULL, 10);
                    if (n >= MAX_ARGS)
                        error("too many arguments in %s", name);
                    args_present[n - 1] = 1;
                } else {
                    fprintf(outfile, "extern char %s;\n", sym_name);
                }
            }
        }
    } else {
        Elf32_Rela *rel;
        int n;
        for(i = 0, rel = relocs;i < nb_relocs; i++, rel++) {
            if (rel->r_offset >= offset && rel->r_offset < offset + copy_size) {
                sym_name = strtab + symtab[ELF32_R_SYM(rel->r_info)].st_name;
                if (strstart(sym_name, "__op_param", &p)) {
                    n = strtoul(p, NULL, 10);
                    if (n >= MAX_ARGS)
                        error("too many arguments in %s", name);
                    args_present[n - 1] = 1;
                } else {
                    fprintf(outfile, "extern char %s;\n", sym_name);
                }
            }
        }
    }
    
    nb_args = 0;
    while (nb_args < MAX_ARGS && args_present[nb_args])
        nb_args++;
    for(i = nb_args; i < MAX_ARGS; i++) {
        if (args_present[i])
            error("inconsistent argument numbering in %s", name);
    }

    /* output C code */
    fprintf(outfile, "extern void %s();\n", name);
    fprintf(outfile, "static inline void gen_%s(", name);
    if (nb_args == 0) {
        fprintf(outfile, "void");
    } else {
        for(i = 0; i < nb_args; i++) {
            if (i != 0)
                fprintf(outfile, ", ");
            fprintf(outfile, "long param%d", i + 1);
        }
    }
    fprintf(outfile, ")\n");
    fprintf(outfile, "{\n");
    fprintf(outfile, "    memcpy(gen_code_ptr, &%s, %d);\n", name, copy_size);
    
    /* patch relocations */
    switch(e_machine) {
    case EM_386:
        {
            Elf32_Rel *rel;
            char name[256];
            int type;
            long addend;
            for(i = 0, rel = relocs;i < nb_relocs; i++, rel++) {
                if (rel->r_offset >= offset && rel->r_offset < offset + copy_size) {
                    sym_name = strtab + symtab[ELF32_R_SYM(rel->r_info)].st_name;
                    if (strstart(sym_name, "__op_param", &p)) {
                        snprintf(name, sizeof(name), "param%s", p);
                    } else {
                        snprintf(name, sizeof(name), "(long)(&%s)", sym_name);
                    }
                    type = ELF32_R_TYPE(rel->r_info);
                    addend = get32((uint32_t *)(text + rel->r_offset));
                    switch(type) {
                    case R_386_32:
                        fprintf(outfile, "    *(uint32_t *)(gen_code_ptr + %ld) = %s + %ld;\n", 
                                rel->r_offset - offset, name, addend);
                        break;
                    case R_386_PC32:
                        fprintf(outfile, "    *(uint32_t *)(gen_code_ptr + %ld) = %s - (long)(gen_code_ptr + %ld) + %ld;\n", 
                                rel->r_offset - offset, name, rel->r_offset - offset, addend);
                        break;
                    default:
                        error("unsupported i386 relocation (%d)", type);
                    }
                }
            }
        }
        break;
    default:
        error("unsupported CPU for relocations (%d)", e_machine);
    }


    fprintf(outfile, "    gen_code_ptr += %d;\n", copy_size);
    fprintf(outfile, "}\n\n");
}

/* load an elf object file */
int load_elf(const char *filename, FILE *outfile)
{
    int fd;
    Elf32_Ehdr ehdr;
    Elf32_Shdr *sec, *shdr, *symtab_sec, *strtab_sec, *text_sec;
    int i, j, nb_syms;
    Elf32_Sym *symtab, *sym;
    const char *cpu_name;
    char *shstr, *strtab;
    uint8_t *text;
    void *relocs;
    int nb_relocs, reloc_sh_type;
    
    fd = open(filename, O_RDONLY);
    if (fd < 0) 
        error("can't open file '%s'", filename);
    
    /* Read ELF header.  */
    if (read(fd, &ehdr, sizeof (ehdr)) != sizeof (ehdr))
        error("unable to read file header");

    /* Check ELF identification.  */
    if (ehdr.e_ident[EI_MAG0] != ELFMAG0
     || ehdr.e_ident[EI_MAG1] != ELFMAG1
     || ehdr.e_ident[EI_MAG2] != ELFMAG2
     || ehdr.e_ident[EI_MAG3] != ELFMAG3
     || ehdr.e_ident[EI_CLASS] != ELFCLASS32
     || ehdr.e_ident[EI_VERSION] != EV_CURRENT) {
        error("bad ELF header");
    }

    do_swap = elf_must_swap(&ehdr);
    if (do_swap)
        elf_swap_ehdr(&ehdr);
    if (ehdr.e_type != ET_REL)
        error("ELF object file expected");
    if (ehdr.e_version != EV_CURRENT)
        error("Invalid ELF version");
    e_machine = ehdr.e_machine;

    /* read section headers */
    shdr = load_data(fd, ehdr.e_shoff, ehdr.e_shnum * sizeof(Elf32_Shdr));
    if (do_swap) {
        for(i = 0; i < ehdr.e_shnum; i++) {
            elf_swap_shdr(&shdr[i]);
        }
    }

    sec = &shdr[ehdr.e_shstrndx];
    shstr = load_data(fd, sec->sh_offset, sec->sh_size);

    /* text section */

    text_sec = find_elf_section(shdr, ehdr.e_shnum, shstr, ".text");
    if (!text_sec)
        error("could not find .text section");
    text = load_data(fd, text_sec->sh_offset, text_sec->sh_size);

    /* find text relocations, if any */
    nb_relocs = 0;
    relocs = NULL;
    reloc_sh_type = 0;
    for(i = 0; i < ehdr.e_shnum; i++) {
        sec = &shdr[i];
        if ((sec->sh_type == SHT_REL || sec->sh_type == SHT_RELA) &&
            sec->sh_info == (text_sec - shdr)) {
            reloc_sh_type = sec->sh_type;
            relocs = load_data(fd, sec->sh_offset, sec->sh_size);
            nb_relocs = sec->sh_size / sec->sh_entsize;
            if (do_swap) {
                if (sec->sh_type == SHT_REL) {
                    Elf32_Rel *rel = relocs;
                    for(j = 0, rel = relocs; j < nb_relocs; j++, rel++) {
                        swab32s(&rel->r_offset);
                        swab32s(&rel->r_info);
                    }
                } else {
                    Elf32_Rela *rel = relocs;
                    for(j = 0, rel = relocs; j < nb_relocs; j++, rel++) {
                        swab32s(&rel->r_offset);
                        swab32s(&rel->r_info);
                        swab32s(&rel->r_addend);
                    }
                }
            }
            break;
        }
    }

    symtab_sec = find_elf_section(shdr, ehdr.e_shnum, shstr, ".symtab");
    if (!symtab_sec)
        error("could not find .symtab section");
    strtab_sec = &shdr[symtab_sec->sh_link];

    symtab = load_data(fd, symtab_sec->sh_offset, symtab_sec->sh_size);
    strtab = load_data(fd, strtab_sec->sh_offset, strtab_sec->sh_size);
    
    nb_syms = symtab_sec->sh_size / sizeof(Elf32_Sym);
    if (do_swap) {
        for(i = 0, sym = symtab; i < nb_syms; i++, sym++) {
            swab32s(&sym->st_name);
            swab32s(&sym->st_value);
            swab32s(&sym->st_size);
            swab16s(&sym->st_shndx);
        }
    }

    switch(e_machine) {
    case EM_386:
        cpu_name = "i386";
        break;
    case EM_PPC:
        cpu_name = "ppc";
        break;
    case EM_MIPS:
        cpu_name = "mips";
        break;
    case EM_ARM:
        cpu_name = "arm";
        break;
    case EM_SPARC:
        cpu_name = "sparc";
        break;
    default:
        error("unsupported CPU (e_machine=%d)", e_machine);
    }

    fprintf(outfile, "#include \"gen-%s.h\"\n\n", cpu_name);

    for(i = 0, sym = symtab; i < nb_syms; i++, sym++) {
        const char *name;
        name = strtab + sym->st_name;
        if (strstart(name, "op_", NULL) ||
            strstart(name, "op1_", NULL) ||
            strstart(name, "op2_", NULL) ||
            strstart(name, "op3_", NULL)) {
#if 0
            printf("%4d: %s pos=0x%08x len=%d\n", 
                   i, name, sym->st_value, sym->st_size);
#endif
            if (sym->st_shndx != (text_sec - shdr))
                error("invalid section for opcode (0x%x)", sym->st_shndx);
            gen_code(name, sym->st_value, sym->st_size, outfile, 
                     text, relocs, nb_relocs, reloc_sh_type, symtab, strtab);
        }
    }

    close(fd);
    return 0;
}

void usage(void)
{
    printf("dyngen (c) 2003 Fabrice Bellard\n"
           "usage: dyngen [-o outfile] objfile\n"
           "Generate a dynamic code generator from an object file\n");
    exit(1);
}

int main(int argc, char **argv)
{
    int c;
    const char *filename, *outfilename;
    FILE *outfile;

    outfilename = "out.c";
    for(;;) {
        c = getopt(argc, argv, "ho:");
        if (c == -1)
            break;
        switch(c) {
        case 'h':
            usage();
            break;
        case 'o':
            outfilename = optarg;
            break;
        }
    }
    if (optind >= argc)
        usage();
    filename = argv[optind];
    outfile = fopen(outfilename, "w");
    if (!outfile)
        error("could not open '%s'", outfilename);
    load_elf(filename, outfile);
    fclose(outfile);
    return 0;
}