esp.c 12.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
/*
 * QEMU ESP emulation
 * 
 * Copyright (c) 2005 Fabrice Bellard
 * 
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include "vl.h"

/* debug ESP card */
//#define DEBUG_ESP

#ifdef DEBUG_ESP
#define DPRINTF(fmt, args...) \
do { printf("ESP: " fmt , ##args); } while (0)
#else
#define DPRINTF(fmt, args...)
#endif

#define ESPDMA_REGS 4
#define ESPDMA_MAXADDR (ESPDMA_REGS * 4 - 1)
#define ESP_MAXREG 0x3f
#define TI_BUFSZ 65536
#define DMA_VER 0xa0000000
#define DMA_LOADED 0x04000000

typedef struct ESPState {
    BlockDriverState **bd;
    uint8_t rregs[ESP_MAXREG];
    uint8_t wregs[ESP_MAXREG];
    int irq;
    uint32_t espdmaregs[ESPDMA_REGS];
    uint32_t ti_size;
    uint32_t ti_rptr, ti_wptr;
    int ti_dir;
    uint8_t ti_buf[TI_BUFSZ];
    int dma;
} ESPState;

#define STAT_DO 0x00
#define STAT_DI 0x01
#define STAT_CD 0x02
#define STAT_ST 0x03
#define STAT_MI 0x06
#define STAT_MO 0x07

#define STAT_TC 0x10
#define STAT_IN 0x80

#define INTR_FC 0x08
#define INTR_BS 0x10
#define INTR_DC 0x20

#define SEQ_0 0x0
#define SEQ_CD 0x4

static void handle_satn(ESPState *s)
{
    uint8_t buf[32];
    uint32_t dmaptr, dmalen;
    unsigned int i;
    int64_t nb_sectors;
    int target;

    dmalen = s->wregs[0] | (s->wregs[1] << 8);
    target = s->wregs[4] & 7;
    DPRINTF("Select with ATN len %d target %d\n", dmalen, target);
    if (s->dma) {
	dmaptr = iommu_translate(s->espdmaregs[1]);
	DPRINTF("DMA Direction: %c, addr 0x%8.8x\n", s->espdmaregs[0] & 0x100? 'w': 'r', dmaptr);
	cpu_physical_memory_read(dmaptr, buf, dmalen);
    } else {
	buf[0] = 0;
	memcpy(&buf[1], s->ti_buf, dmalen);
	dmalen++;
    }
    for (i = 0; i < dmalen; i++) {
	DPRINTF("Command %2.2x\n", buf[i]);
    }
    s->ti_dir = 0;
    s->ti_size = 0;
    s->ti_rptr = 0;
    s->ti_wptr = 0;

    if (target > 4 || !s->bd[target]) { // No such drive
	s->rregs[4] = STAT_IN;
	s->rregs[5] = INTR_DC;
	s->rregs[6] = SEQ_0;
	s->espdmaregs[0] |= 1;
	pic_set_irq(s->irq, 1);
	return;
    }
    switch (buf[1]) {
    case 0x0:
	DPRINTF("Test Unit Ready (len %d)\n", buf[5]);
	break;
    case 0x12:
	DPRINTF("Inquiry (len %d)\n", buf[5]);
	memset(s->ti_buf, 0, 36);
	if (bdrv_get_type_hint(s->bd[target]) == BDRV_TYPE_CDROM) {
	    s->ti_buf[0] = 5;
	    memcpy(&s->ti_buf[16], "QEMU CDROM     ", 16);
	} else {
	    s->ti_buf[0] = 0;
	    memcpy(&s->ti_buf[16], "QEMU HARDDISK  ", 16);
	}
	memcpy(&s->ti_buf[8], "QEMU   ", 8);
	s->ti_buf[2] = 1;
	s->ti_buf[3] = 2;
	s->ti_dir = 1;
	s->ti_size = 36;
	break;
    case 0x1a:
	DPRINTF("Mode Sense(6) (page %d, len %d)\n", buf[3], buf[5]);
	break;
    case 0x25:
	DPRINTF("Read Capacity (len %d)\n", buf[5]);
	memset(s->ti_buf, 0, 8);
	bdrv_get_geometry(s->bd[target], &nb_sectors);
	s->ti_buf[0] = (nb_sectors >> 24) & 0xff;
	s->ti_buf[1] = (nb_sectors >> 16) & 0xff;
	s->ti_buf[2] = (nb_sectors >> 8) & 0xff;
	s->ti_buf[3] = nb_sectors & 0xff;
	s->ti_buf[4] = 0;
	s->ti_buf[5] = 0;
	if (bdrv_get_type_hint(s->bd[target]) == BDRV_TYPE_CDROM)
	    s->ti_buf[6] = 8; // sector size 2048
	else
	    s->ti_buf[6] = 2; // sector size 512
	s->ti_buf[7] = 0;
	s->ti_dir = 1;
	s->ti_size = 8;
	break;
    case 0x28:
	{
	    int64_t offset, len;

	    if (bdrv_get_type_hint(s->bd[target]) == BDRV_TYPE_CDROM) {
		offset = ((buf[3] << 24) | (buf[4] << 16) | (buf[5] << 8) | buf[6]) * 4;
		len = ((buf[8] << 8) | buf[9]) * 4;
		s->ti_size = len * 2048;
	    } else {
		offset = (buf[3] << 24) | (buf[4] << 16) | (buf[5] << 8) | buf[6];
		len = (buf[8] << 8) | buf[9];
		s->ti_size = len * 512;
	    }
	    DPRINTF("Read (10) (offset %lld len %lld)\n", offset, len);
	    bdrv_read(s->bd[target], offset, s->ti_buf, len);
	    // XXX error handling
	    s->ti_dir = 1;
	    break;
	}
    case 0x2a:
	{
	    int64_t offset, len;

	    if (bdrv_get_type_hint(s->bd[target]) == BDRV_TYPE_CDROM) {
		offset = ((buf[3] << 24) | (buf[4] << 16) | (buf[5] << 8) | buf[6]) * 4;
		len = ((buf[8] << 8) | buf[9]) * 4;
		s->ti_size = len * 2048;
	    } else {
		offset = (buf[3] << 24) | (buf[4] << 16) | (buf[5] << 8) | buf[6];
		len = (buf[8] << 8) | buf[9];
		s->ti_size = len * 512;
	    }
	    DPRINTF("Write (10) (offset %lld len %lld)\n", offset, len);
	    bdrv_write(s->bd[target], offset, s->ti_buf, len);
	    // XXX error handling
	    s->ti_dir = 0;
	    break;
	}
    default:
	DPRINTF("Unknown SCSI command (%2.2x)\n", buf[1]);
	break;
    }
    s->rregs[4] = STAT_IN | STAT_TC | STAT_DI;
    s->rregs[5] = INTR_BS | INTR_FC;
    s->rregs[6] = SEQ_CD;
    s->espdmaregs[0] |= 1;
    pic_set_irq(s->irq, 1);
}

static void dma_write(ESPState *s, const uint8_t *buf, uint32_t len)
{
    uint32_t dmaptr, dmalen;

    dmalen = s->wregs[0] | (s->wregs[1] << 8);
    DPRINTF("Transfer status len %d\n", dmalen);
    if (s->dma) {
	dmaptr = iommu_translate(s->espdmaregs[1]);
	DPRINTF("DMA Direction: %c\n", s->espdmaregs[0] & 0x100? 'w': 'r');
	cpu_physical_memory_write(dmaptr, buf, len);
	s->rregs[4] = STAT_IN | STAT_TC | STAT_ST;
	s->rregs[5] = INTR_BS | INTR_FC;
	s->rregs[6] = SEQ_CD;
	s->espdmaregs[0] |= 1;
    } else {
	memcpy(s->ti_buf, buf, len);
	s->ti_size = dmalen;
	s->ti_rptr = 0;
	s->ti_wptr = 0;
    }
    pic_set_irq(s->irq, 1);

}

static const uint8_t okbuf[] = {0, 0};

static void handle_ti(ESPState *s)
{
    uint32_t dmaptr, dmalen;
    unsigned int i;

    dmalen = s->wregs[0] | (s->wregs[1] << 8);
    DPRINTF("Transfer Information len %d\n", dmalen);
    if (s->dma) {
	dmaptr = iommu_translate(s->espdmaregs[1]);
	DPRINTF("DMA Direction: %c, addr 0x%8.8x\n", s->espdmaregs[0] & 0x100? 'w': 'r', dmaptr);
	for (i = 0; i < s->ti_size; i++) {
	    dmaptr = iommu_translate(s->espdmaregs[1] + i);
	    if (s->ti_dir)
		cpu_physical_memory_write(dmaptr, &s->ti_buf[i], 1);
	    else
		cpu_physical_memory_read(dmaptr, &s->ti_buf[i], 1);
	}
	s->rregs[4] = STAT_IN | STAT_TC | STAT_ST;
	s->rregs[5] = INTR_BS;
	s->rregs[6] = 0;
	s->espdmaregs[0] |= 1;
    } else {
	s->ti_size = dmalen;
	s->ti_rptr = 0;
	s->ti_wptr = 0;
    }	
    pic_set_irq(s->irq, 1);
}

static void esp_reset(void *opaque)
{
    ESPState *s = opaque;
    memset(s->rregs, 0, ESP_MAXREG);
    s->rregs[0x0e] = 0x4; // Indicate fas100a
    memset(s->espdmaregs, 0, ESPDMA_REGS * 4);
}

static uint32_t esp_mem_readb(void *opaque, target_phys_addr_t addr)
{
    ESPState *s = opaque;
    uint32_t saddr;

    saddr = (addr & ESP_MAXREG) >> 2;
    switch (saddr) {
    case 2:
	// FIFO
	if (s->ti_size > 0) {
	    s->ti_size--;
	    s->rregs[saddr] = s->ti_buf[s->ti_rptr++];
	    pic_set_irq(s->irq, 1);
	}
	if (s->ti_size == 0) {
            s->ti_rptr = 0;
            s->ti_wptr = 0;
        }
	break;
    default:
	break;
    }
    DPRINTF("read reg[%d]: 0x%2.2x\n", saddr, s->rregs[saddr]);

    return s->rregs[saddr];
}

static void esp_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
{
    ESPState *s = opaque;
    uint32_t saddr;

    saddr = (addr & ESP_MAXREG) >> 2;
    DPRINTF("write reg[%d]: 0x%2.2x -> 0x%2.2x\n", saddr, s->wregs[saddr], val);
    switch (saddr) {
    case 0:
    case 1:
        s->rregs[saddr] = val;
        break;
    case 2:
	// FIFO
	s->ti_size++;
	s->ti_buf[s->ti_wptr++] = val & 0xff;
	break;
    case 3:
        s->rregs[saddr] = val;
	// Command
	if (val & 0x80) {
	    s->dma = 1;
	} else {
	    s->dma = 0;
	}
	switch(val & 0x7f) {
	case 0:
	    DPRINTF("NOP (%2.2x)\n", val);
	    break;
	case 1:
	    DPRINTF("Flush FIFO (%2.2x)\n", val);
	    s->rregs[6] = 0;
	    s->rregs[5] = INTR_FC;
	    break;
	case 2:
	    DPRINTF("Chip reset (%2.2x)\n", val);
	    esp_reset(s);
	    break;
	case 3:
	    DPRINTF("Bus reset (%2.2x)\n", val);
	    break;
	case 0x10:
	    handle_ti(s);
	    break;
	case 0x11:
	    DPRINTF("Initiator Command Complete Sequence (%2.2x)\n", val);
	    dma_write(s, okbuf, 2);
	    break;
	case 0x12:
	    DPRINTF("Message Accepted (%2.2x)\n", val);
	    dma_write(s, okbuf, 2);
	    s->rregs[5] = INTR_DC;
	    s->rregs[6] = 0;
	    break;
	case 0x1a:
	    DPRINTF("Set ATN (%2.2x)\n", val);
	    break;
	case 0x42:
	    handle_satn(s);
	    break;
	case 0x43:
	    DPRINTF("Set ATN & stop (%2.2x)\n", val);
	    handle_satn(s);
	    break;
	default:
	    DPRINTF("Unhandled ESP command (%2.2x)\n", val);
	    break;
	}
	break;
    case 4 ... 7:
	break;
    case 8:
        s->rregs[saddr] = val;
        break;
    case 9 ... 10:
        break;
    case 11 ... 15:
        s->rregs[saddr] = val;
        break;
    default:
	break;
    }
    s->wregs[saddr] = val;
}

static CPUReadMemoryFunc *esp_mem_read[3] = {
    esp_mem_readb,
    esp_mem_readb,
    esp_mem_readb,
};

static CPUWriteMemoryFunc *esp_mem_write[3] = {
    esp_mem_writeb,
    esp_mem_writeb,
    esp_mem_writeb,
};

static uint32_t espdma_mem_readl(void *opaque, target_phys_addr_t addr)
{
    ESPState *s = opaque;
    uint32_t saddr;

    saddr = (addr & ESPDMA_MAXADDR) >> 2;
    DPRINTF("read dmareg[%d]: 0x%8.8x\n", saddr, s->espdmaregs[saddr]);

    return s->espdmaregs[saddr];
}

static void espdma_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
    ESPState *s = opaque;
    uint32_t saddr;

    saddr = (addr & ESPDMA_MAXADDR) >> 2;
    DPRINTF("write dmareg[%d]: 0x%8.8x -> 0x%8.8x\n", saddr, s->espdmaregs[saddr], val);
    switch (saddr) {
    case 0:
	if (!(val & 0x10))
	    pic_set_irq(s->irq, 0);
	if (val & 0x80) {
            esp_reset(s);
        } else if (val & 0x40) {
            val &= ~0x40;
        } else if (val == 0)
            val = 0x40;
        val &= 0x0fffffff;
        val |= DMA_VER;
	break;
    case 1:
        s->espdmaregs[0] = DMA_LOADED;
        break;
    default:
	break;
    }
    s->espdmaregs[saddr] = val;
}

static CPUReadMemoryFunc *espdma_mem_read[3] = {
    espdma_mem_readl,
    espdma_mem_readl,
    espdma_mem_readl,
};

static CPUWriteMemoryFunc *espdma_mem_write[3] = {
    espdma_mem_writel,
    espdma_mem_writel,
    espdma_mem_writel,
};

static void esp_save(QEMUFile *f, void *opaque)
{
    ESPState *s = opaque;
    unsigned int i;

    qemu_put_buffer(f, s->rregs, ESP_MAXREG);
    qemu_put_buffer(f, s->wregs, ESP_MAXREG);
    qemu_put_be32s(f, &s->irq);
    for (i = 0; i < ESPDMA_REGS; i++)
	qemu_put_be32s(f, &s->espdmaregs[i]);
    qemu_put_be32s(f, &s->ti_size);
    qemu_put_be32s(f, &s->ti_rptr);
    qemu_put_be32s(f, &s->ti_wptr);
    qemu_put_be32s(f, &s->ti_dir);
    qemu_put_buffer(f, s->ti_buf, TI_BUFSZ);
    qemu_put_be32s(f, &s->dma);
}

static int esp_load(QEMUFile *f, void *opaque, int version_id)
{
    ESPState *s = opaque;
    unsigned int i;
    
    if (version_id != 1)
        return -EINVAL;

    qemu_get_buffer(f, s->rregs, ESP_MAXREG);
    qemu_get_buffer(f, s->wregs, ESP_MAXREG);
    qemu_get_be32s(f, &s->irq);
    for (i = 0; i < ESPDMA_REGS; i++)
	qemu_get_be32s(f, &s->espdmaregs[i]);
    qemu_get_be32s(f, &s->ti_size);
    qemu_get_be32s(f, &s->ti_rptr);
    qemu_get_be32s(f, &s->ti_wptr);
    qemu_get_be32s(f, &s->ti_dir);
    qemu_get_buffer(f, s->ti_buf, TI_BUFSZ);
    qemu_get_be32s(f, &s->dma);

    return 0;
}

void esp_init(BlockDriverState **bd, int irq, uint32_t espaddr, uint32_t espdaddr)
{
    ESPState *s;
    int esp_io_memory, espdma_io_memory;

    s = qemu_mallocz(sizeof(ESPState));
    if (!s)
        return;

    s->bd = bd;
    s->irq = irq;

    esp_io_memory = cpu_register_io_memory(0, esp_mem_read, esp_mem_write, s);
    cpu_register_physical_memory(espaddr, ESP_MAXREG*4, esp_io_memory);

    espdma_io_memory = cpu_register_io_memory(0, espdma_mem_read, espdma_mem_write, s);
    cpu_register_physical_memory(espdaddr, 16, espdma_io_memory);

    esp_reset(s);

    register_savevm("esp", espaddr, 1, esp_save, esp_load, s);
    qemu_register_reset(esp_reset, s);
}