op_helper.c
5.63 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
#include <math.h>
#include <fenv.h>
#include "exec.h"
//#define DEBUG_MMU
void raise_exception(int tt)
{
env->exception_index = tt;
cpu_loop_exit();
}
#ifdef USE_INT_TO_FLOAT_HELPERS
void do_fitos(void)
{
FT0 = (float) *((int32_t *)&FT1);
}
void do_fitod(void)
{
DT0 = (double) *((int32_t *)&FT1);
}
#endif
void do_fabss(void)
{
FT0 = fabsf(FT1);
}
void do_fsqrts(void)
{
FT0 = sqrtf(FT1);
}
void do_fsqrtd(void)
{
DT0 = sqrt(DT1);
}
void do_fcmps (void)
{
if (isnan(FT0) || isnan(FT1)) {
T0 = FSR_FCC1 | FSR_FCC0;
env->fsr &= ~(FSR_FCC1 | FSR_FCC0);
env->fsr |= T0;
if (env->fsr & FSR_NVM) {
raise_exception(TT_FP_EXCP);
} else {
env->fsr |= FSR_NVA;
}
} else if (FT0 < FT1) {
T0 = FSR_FCC0;
} else if (FT0 > FT1) {
T0 = FSR_FCC1;
} else {
T0 = 0;
}
env->fsr = T0;
}
void do_fcmpd (void)
{
if (isnan(DT0) || isnan(DT1)) {
T0 = FSR_FCC1 | FSR_FCC0;
env->fsr &= ~(FSR_FCC1 | FSR_FCC0);
env->fsr |= T0;
if (env->fsr & FSR_NVM) {
raise_exception(TT_FP_EXCP);
} else {
env->fsr |= FSR_NVA;
}
} else if (DT0 < DT1) {
T0 = FSR_FCC0;
} else if (DT0 > DT1) {
T0 = FSR_FCC1;
} else {
T0 = 0;
}
env->fsr = T0;
}
void helper_ld_asi(int asi, int size, int sign)
{
uint32_t ret;
switch (asi) {
case 3: /* MMU probe */
{
int mmulev;
mmulev = (T0 >> 8) & 15;
if (mmulev > 4)
ret = 0;
else {
ret = mmu_probe(T0, mmulev);
//bswap32s(&ret);
}
#ifdef DEBUG_MMU
printf("mmu_probe: 0x%08x (lev %d) -> 0x%08x\n", T0, mmulev, ret);
#endif
}
break;
case 4: /* read MMU regs */
{
int reg = (T0 >> 8) & 0xf;
ret = env->mmuregs[reg];
if (reg == 3) /* Fault status cleared on read */
env->mmuregs[reg] = 0;
#ifdef DEBUG_MMU
printf("mmu_read: reg[%d] = 0x%08x\n", reg, ret);
#endif
}
break;
case 0x20 ... 0x2f: /* MMU passthrough */
cpu_physical_memory_read(T0, (void *) &ret, size);
if (size == 4)
tswap32s(&ret);
else if (size == 2)
tswap16s((uint16_t *)&ret);
break;
default:
ret = 0;
break;
}
T1 = ret;
}
void helper_st_asi(int asi, int size, int sign)
{
switch(asi) {
case 3: /* MMU flush */
{
int mmulev;
mmulev = (T0 >> 8) & 15;
#ifdef DEBUG_MMU
printf("mmu flush level %d\n", mmulev);
#endif
switch (mmulev) {
case 0: // flush page
tlb_flush_page(env, T0 & 0xfffff000);
break;
case 1: // flush segment (256k)
case 2: // flush region (16M)
case 3: // flush context (4G)
case 4: // flush entire
tlb_flush(env, 1);
break;
default:
break;
}
#ifdef DEBUG_MMU
dump_mmu();
#endif
return;
}
case 4: /* write MMU regs */
{
int reg = (T0 >> 8) & 0xf, oldreg;
oldreg = env->mmuregs[reg];
switch(reg) {
case 0:
env->mmuregs[reg] &= ~(MMU_E | MMU_NF);
env->mmuregs[reg] |= T1 & (MMU_E | MMU_NF);
// Mappings generated during no-fault mode or MMU
// disabled mode are invalid in normal mode
if (oldreg != env->mmuregs[reg])
tlb_flush(env, 1);
break;
case 2:
env->mmuregs[reg] = T1;
if (oldreg != env->mmuregs[reg]) {
/* we flush when the MMU context changes because
QEMU has no MMU context support */
tlb_flush(env, 1);
}
break;
case 3:
case 4:
break;
default:
env->mmuregs[reg] = T1;
break;
}
#ifdef DEBUG_MMU
if (oldreg != env->mmuregs[reg]) {
printf("mmu change reg[%d]: 0x%08x -> 0x%08x\n", reg, oldreg, env->mmuregs[reg]);
}
dump_mmu();
#endif
return;
}
case 0x17: /* Block copy, sta access */
{
// value (T1) = src
// address (T0) = dst
// copy 32 bytes
int src = T1, dst = T0;
uint8_t temp[32];
tswap32s(&src);
cpu_physical_memory_read(src, (void *) &temp, 32);
cpu_physical_memory_write(dst, (void *) &temp, 32);
}
return;
case 0x1f: /* Block fill, stda access */
{
// value (T1, T2)
// address (T0) = dst
// fill 32 bytes
int i, dst = T0;
uint64_t val;
val = (((uint64_t)T1) << 32) | T2;
tswap64s(&val);
for (i = 0; i < 32; i += 8, dst += 8) {
cpu_physical_memory_write(dst, (void *) &val, 8);
}
}
return;
case 0x20 ... 0x2f: /* MMU passthrough */
{
int temp = T1;
if (size == 4)
tswap32s(&temp);
else if (size == 2)
tswap16s((uint16_t *)&temp);
cpu_physical_memory_write(T0, (void *) &temp, size);
}
return;
default:
return;
}
}
void helper_rett()
{
unsigned int cwp;
env->psret = 1;
cwp = (env->cwp + 1) & (NWINDOWS - 1);
if (env->wim & (1 << cwp)) {
raise_exception(TT_WIN_UNF);
}
set_cwp(cwp);
env->psrs = env->psrps;
}
void helper_ldfsr(void)
{
switch (env->fsr & FSR_RD_MASK) {
case FSR_RD_NEAREST:
fesetround(FE_TONEAREST);
break;
case FSR_RD_ZERO:
fesetround(FE_TOWARDZERO);
break;
case FSR_RD_POS:
fesetround(FE_UPWARD);
break;
case FSR_RD_NEG:
fesetround(FE_DOWNWARD);
break;
}
}
void cpu_get_fp64(uint64_t *pmant, uint16_t *pexp, double f)
{
int exptemp;
*pmant = ldexp(frexp(f, &exptemp), 53);
*pexp = exptemp;
}
double cpu_put_fp64(uint64_t mant, uint16_t exp)
{
return ldexp((double) mant, exp - 53);
}
void helper_debug()
{
env->exception_index = EXCP_DEBUG;
cpu_loop_exit();
}
void do_wrpsr()
{
PUT_PSR(env, T0);
}
void do_rdpsr()
{
T0 = GET_PSR(env);
}