exec-i386.c 11.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
/*
 *  i386 emulator main execution loop
 * 
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
#include "exec-i386.h"
#include "disas.h"

//#define DEBUG_EXEC
//#define DEBUG_SIGNAL

/* main execution loop */

/* thread support */

spinlock_t global_cpu_lock = SPIN_LOCK_UNLOCKED;

void cpu_lock(void)
{
    spin_lock(&global_cpu_lock);
}

void cpu_unlock(void)
{
    spin_unlock(&global_cpu_lock);
}

void cpu_loop_exit(void)
{
    /* NOTE: the register at this point must be saved by hand because
       longjmp restore them */
#ifdef __sparc__
	/* We have to stay in the same register window as our caller,
	 * thus this trick.
	 */
	__asm__ __volatile__("restore\n\t"
			     "mov\t%o0, %i0");
#endif
#ifdef reg_EAX
    env->regs[R_EAX] = EAX;
#endif
#ifdef reg_ECX
    env->regs[R_ECX] = ECX;
#endif
#ifdef reg_EDX
    env->regs[R_EDX] = EDX;
#endif
#ifdef reg_EBX
    env->regs[R_EBX] = EBX;
#endif
#ifdef reg_ESP
    env->regs[R_ESP] = ESP;
#endif
#ifdef reg_EBP
    env->regs[R_EBP] = EBP;
#endif
#ifdef reg_ESI
    env->regs[R_ESI] = ESI;
#endif
#ifdef reg_EDI
    env->regs[R_EDI] = EDI;
#endif
    longjmp(env->jmp_env, 1);
}

int cpu_x86_exec(CPUX86State *env1)
{
    int saved_T0, saved_T1, saved_A0;
    CPUX86State *saved_env;
#ifdef reg_EAX
    int saved_EAX;
#endif
#ifdef reg_ECX
    int saved_ECX;
#endif
#ifdef reg_EDX
    int saved_EDX;
#endif
#ifdef reg_EBX
    int saved_EBX;
#endif
#ifdef reg_ESP
    int saved_ESP;
#endif
#ifdef reg_EBP
    int saved_EBP;
#endif
#ifdef reg_ESI
    int saved_ESI;
#endif
#ifdef reg_EDI
    int saved_EDI;
#endif
    int code_gen_size, ret;
    void (*gen_func)(void);
    TranslationBlock *tb, **ptb;
    uint8_t *tc_ptr, *cs_base, *pc;
    unsigned int flags;
    
    /* first we save global registers */
    saved_T0 = T0;
    saved_T1 = T1;
    saved_A0 = A0;
    saved_env = env;
    env = env1;
#ifdef reg_EAX
    saved_EAX = EAX;
    EAX = env->regs[R_EAX];
#endif
#ifdef reg_ECX
    saved_ECX = ECX;
    ECX = env->regs[R_ECX];
#endif
#ifdef reg_EDX
    saved_EDX = EDX;
    EDX = env->regs[R_EDX];
#endif
#ifdef reg_EBX
    saved_EBX = EBX;
    EBX = env->regs[R_EBX];
#endif
#ifdef reg_ESP
    saved_ESP = ESP;
    ESP = env->regs[R_ESP];
#endif
#ifdef reg_EBP
    saved_EBP = EBP;
    EBP = env->regs[R_EBP];
#endif
#ifdef reg_ESI
    saved_ESI = ESI;
    ESI = env->regs[R_ESI];
#endif
#ifdef reg_EDI
    saved_EDI = EDI;
    EDI = env->regs[R_EDI];
#endif
    
    /* put eflags in CPU temporary format */
    CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
    DF = 1 - (2 * ((env->eflags >> 10) & 1));
    CC_OP = CC_OP_EFLAGS;
    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
    env->interrupt_request = 0;

    /* prepare setjmp context for exception handling */
    if (setjmp(env->jmp_env) == 0) {
        T0 = 0; /* force lookup of first TB */
        for(;;) {
            if (env->interrupt_request) {
                env->exception_index = EXCP_INTERRUPT;
                cpu_loop_exit();
            }
#ifdef DEBUG_EXEC
            if (loglevel) {
                /* XXX: save all volatile state in cpu state */
                /* restore flags in standard format */
                env->regs[R_EAX] = EAX;
                env->regs[R_EBX] = EBX;
                env->regs[R_ECX] = ECX;
                env->regs[R_EDX] = EDX;
                env->regs[R_ESI] = ESI;
                env->regs[R_EDI] = EDI;
                env->regs[R_EBP] = EBP;
                env->regs[R_ESP] = ESP;
                env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
                cpu_x86_dump_state(env, logfile, 0);
                env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
            }
#endif
            /* we compute the CPU state. We assume it will not
               change during the whole generated block. */
            flags = env->seg_cache[R_CS].seg_32bit << GEN_FLAG_CODE32_SHIFT;
            flags |= env->seg_cache[R_SS].seg_32bit << GEN_FLAG_SS32_SHIFT;
            flags |= (((unsigned long)env->seg_cache[R_DS].base | 
                       (unsigned long)env->seg_cache[R_ES].base |
                       (unsigned long)env->seg_cache[R_SS].base) != 0) << 
                GEN_FLAG_ADDSEG_SHIFT;
            if (!(env->eflags & VM_MASK)) {
                flags |= (env->segs[R_CS] & 3) << GEN_FLAG_CPL_SHIFT;
            } else {
                /* NOTE: a dummy CPL is kept */
                flags |= (1 << GEN_FLAG_VM_SHIFT);
                flags |= (3 << GEN_FLAG_CPL_SHIFT);
            }
            flags |= (env->eflags & (IOPL_MASK | TF_MASK));
            cs_base = env->seg_cache[R_CS].base;
            pc = cs_base + env->eip;
            tb = tb_find(&ptb, (unsigned long)pc, (unsigned long)cs_base, 
                         flags);
            if (!tb) {
                spin_lock(&tb_lock);
                /* if no translated code available, then translate it now */
                tb = tb_alloc((unsigned long)pc);
                if (!tb) {
                    /* flush must be done */
                    tb_flush();
                    /* cannot fail at this point */
                    tb = tb_alloc((unsigned long)pc);
                    /* don't forget to invalidate previous TB info */
                    ptb = &tb_hash[tb_hash_func((unsigned long)pc)];
                    T0 = 0;
                }
                tc_ptr = code_gen_ptr;
                tb->tc_ptr = tc_ptr;
                tb->cs_base = (unsigned long)cs_base;
                tb->flags = flags;
                ret = cpu_x86_gen_code(tb, CODE_GEN_MAX_SIZE, &code_gen_size);
                /* if invalid instruction, signal it */
                if (ret != 0) {
                    /* NOTE: the tb is allocated but not linked, so we
                       can leave it */
                    spin_unlock(&tb_lock);
                    raise_exception(EXCP06_ILLOP);
                }
                *ptb = tb;
                tb->hash_next = NULL;
                tb_link(tb);
                code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
                spin_unlock(&tb_lock);
            }
#ifdef DEBUG_EXEC
	    if (loglevel) {
		fprintf(logfile, "Trace 0x%08lx [0x%08lx] %s\n",
			(long)tb->tc_ptr, (long)tb->pc,
			lookup_symbol((void *)tb->pc));
	    }
#endif
            /* see if we can patch the calling TB */
            if (T0 != 0 && !(env->eflags & TF_MASK)) {
                spin_lock(&tb_lock);
                tb_add_jump((TranslationBlock *)(T0 & ~3), T0 & 3, tb);
                spin_unlock(&tb_lock);
            }

            tc_ptr = tb->tc_ptr;

            /* execute the generated code */
            gen_func = (void *)tc_ptr;
#ifdef __sparc__
	    __asm__ __volatile__("call	%0\n\t"
				 " mov	%%o7,%%i0"
				 : /* no outputs */
				 : "r" (gen_func) 
				 : "i0", "i1", "i2", "i3", "i4", "i5");
#else
            gen_func();
#endif
        }
    }
    ret = env->exception_index;

    /* restore flags in standard format */
    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);

    /* restore global registers */
#ifdef reg_EAX
    EAX = saved_EAX;
#endif
#ifdef reg_ECX
    ECX = saved_ECX;
#endif
#ifdef reg_EDX
    EDX = saved_EDX;
#endif
#ifdef reg_EBX
    EBX = saved_EBX;
#endif
#ifdef reg_ESP
    ESP = saved_ESP;
#endif
#ifdef reg_EBP
    EBP = saved_EBP;
#endif
#ifdef reg_ESI
    ESI = saved_ESI;
#endif
#ifdef reg_EDI
    EDI = saved_EDI;
#endif
    T0 = saved_T0;
    T1 = saved_T1;
    A0 = saved_A0;
    env = saved_env;
    return ret;
}

void cpu_x86_interrupt(CPUX86State *s)
{
    s->interrupt_request = 1;
}


void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
{
    CPUX86State *saved_env;

    saved_env = env;
    env = s;
    if (env->eflags & VM_MASK) {
        SegmentCache *sc;
        selector &= 0xffff;
        sc = &env->seg_cache[seg_reg];
        /* NOTE: in VM86 mode, limit and seg_32bit are never reloaded,
           so we must load them here */
        sc->base = (void *)(selector << 4);
        sc->limit = 0xffff;
        sc->seg_32bit = 0;
        env->segs[seg_reg] = selector;
    } else {
        load_seg(seg_reg, selector, 0);
    }
    env = saved_env;
}

#undef EAX
#undef ECX
#undef EDX
#undef EBX
#undef ESP
#undef EBP
#undef ESI
#undef EDI
#undef EIP
#include <signal.h>
#include <sys/ucontext.h>

/* 'pc' is the host PC at which the exception was raised. 'address' is
   the effective address of the memory exception. 'is_write' is 1 if a
   write caused the exception and otherwise 0'. 'old_set' is the
   signal set which should be restored */
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
                                    int is_write, sigset_t *old_set)
{
    TranslationBlock *tb;
    int ret;
    uint32_t found_pc;
    
#if defined(DEBUG_SIGNAL)
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx wr=%d oldset=0x%08lx\n", 
           pc, address, is_write, *(unsigned long *)old_set);
#endif
    /* XXX: locking issue */
    if (is_write && page_unprotect(address)) {
        return 1;
    }
    tb = tb_find_pc(pc);
    if (tb) {
        /* the PC is inside the translated code. It means that we have
           a virtual CPU fault */
        ret = cpu_x86_search_pc(tb, &found_pc, pc);
        if (ret < 0)
            return 0;
        env->eip = found_pc - tb->cs_base;
        env->cr2 = address;
        /* we restore the process signal mask as the sigreturn should
           do it (XXX: use sigsetjmp) */
        sigprocmask(SIG_SETMASK, old_set, NULL);
        raise_exception_err(EXCP0E_PAGE, 4 | (is_write << 1));
        /* never comes here */
        return 1;
    } else {
        return 0;
    }
}

#if defined(__i386__)

int cpu_x86_signal_handler(int host_signum, struct siginfo *info, 
                           void *puc)
{
    struct ucontext *uc = puc;
    unsigned long pc;
    
#ifndef REG_EIP
/* for glibc 2.1 */
#define REG_EIP    EIP
#define REG_ERR    ERR
#define REG_TRAPNO TRAPNO
#endif
    pc = uc->uc_mcontext.gregs[REG_EIP];
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
                             uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ? 
                             (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
                             &uc->uc_sigmask);
}

#elif defined(__powerpc)

int cpu_x86_signal_handler(int host_signum, struct siginfo *info, 
                           void *puc)
{
    struct ucontext *uc = puc;
    struct pt_regs *regs = uc->uc_mcontext.regs;
    unsigned long pc;
    int is_write;

    pc = regs->nip;
    is_write = 0;
#if 0
    /* ppc 4xx case */
    if (regs->dsisr & 0x00800000)
        is_write = 1;
#else
    if (regs->trap != 0x400 && (regs->dsisr & 0x02000000))
        is_write = 1;
#endif
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
                             is_write, &uc->uc_sigmask);
}

#else

#error CPU specific signal handler needed

#endif