cpu-all.h 9.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
/*
 * defines common to all virtual CPUs
 * 
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
#ifndef CPU_ALL_H
#define CPU_ALL_H

/* CPU memory access without any memory or io remapping */

static inline int ldub_raw(void *ptr)
{
    return *(uint8_t *)ptr;
}

static inline int ldsb_raw(void *ptr)
{
    return *(int8_t *)ptr;
}

static inline void stb_raw(void *ptr, int v)
{
    *(uint8_t *)ptr = v;
}

/* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
   kernel handles unaligned load/stores may give better results, but
   it is a system wide setting : bad */
#if defined(WORDS_BIGENDIAN) || defined(__arm__)

/* conservative code for little endian unaligned accesses */
static inline int lduw_raw(void *ptr)
{
#ifdef __powerpc__
    int val;
    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
    return val;
#else
    uint8_t *p = ptr;
    return p[0] | (p[1] << 8);
#endif
}

static inline int ldsw_raw(void *ptr)
{
#ifdef __powerpc__
    int val;
    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
    return (int16_t)val;
#else
    uint8_t *p = ptr;
    return (int16_t)(p[0] | (p[1] << 8));
#endif
}

static inline int ldl_raw(void *ptr)
{
#ifdef __powerpc__
    int val;
    __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
    return val;
#else
    uint8_t *p = ptr;
    return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
#endif
}

static inline uint64_t ldq_raw(void *ptr)
{
    uint8_t *p = ptr;
    uint32_t v1, v2;
    v1 = ldl_raw(p);
    v2 = ldl_raw(p + 4);
    return v1 | ((uint64_t)v2 << 32);
}

static inline void stw_raw(void *ptr, int v)
{
#ifdef __powerpc__
    __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
#else
    uint8_t *p = ptr;
    p[0] = v;
    p[1] = v >> 8;
#endif
}

static inline void stl_raw(void *ptr, int v)
{
#ifdef __powerpc__
    __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
#else
    uint8_t *p = ptr;
    p[0] = v;
    p[1] = v >> 8;
    p[2] = v >> 16;
    p[3] = v >> 24;
#endif
}

static inline void stq_raw(void *ptr, uint64_t v)
{
    uint8_t *p = ptr;
    stl_raw(p, (uint32_t)v);
    stl_raw(p + 4, v >> 32);
}

/* float access */

static inline float ldfl_raw(void *ptr)
{
    union {
        float f;
        uint32_t i;
    } u;
    u.i = ldl_raw(ptr);
    return u.f;
}

static inline void stfl_raw(void *ptr, float v)
{
    union {
        float f;
        uint32_t i;
    } u;
    u.f = v;
    stl_raw(ptr, u.i);
}


#if defined(__arm__) && !defined(WORDS_BIGENDIAN)

/* NOTE: arm is horrible as double 32 bit words are stored in big endian ! */
static inline double ldfq_raw(void *ptr)
{
    union {
        double d;
        uint32_t tab[2];
    } u;
    u.tab[1] = ldl_raw(ptr);
    u.tab[0] = ldl_raw(ptr + 4);
    return u.d;
}

static inline void stfq_raw(void *ptr, double v)
{
    union {
        double d;
        uint32_t tab[2];
    } u;
    u.d = v;
    stl_raw(ptr, u.tab[1]);
    stl_raw(ptr + 4, u.tab[0]);
}

#else
static inline double ldfq_raw(void *ptr)
{
    union {
        double d;
        uint64_t i;
    } u;
    u.i = ldq_raw(ptr);
    return u.d;
}

static inline void stfq_raw(void *ptr, double v)
{
    union {
        double d;
        uint64_t i;
    } u;
    u.d = v;
    stq_raw(ptr, u.i);
}
#endif

#elif defined(TARGET_WORDS_BIGENDIAN) && !defined(WORDS_BIGENDIAN)

static inline int lduw_raw(void *ptr)
{
    uint8_t *b = (uint8_t *) ptr;
    return (b[0]<<8|b[1]);
}

static inline int ldsw_raw(void *ptr)
{
    int8_t *b = (int8_t *) ptr;
    return (b[0]<<8|b[1]);
}

static inline int ldl_raw(void *ptr)
{
    uint8_t *b = (uint8_t *) ptr;
    return (b[0]<<24|b[1]<<16|b[2]<<8|b[3]);
}

static inline uint64_t ldq_raw(void *ptr)
{
    uint32_t a,b;
    a = ldl (ptr);
    b = ldl (ptr+4);
    return (((uint64_t)a<<32)|b);
}

static inline void stw_raw(void *ptr, int v)
{
    uint8_t *d = (uint8_t *) ptr;
    d[0] = v >> 8;
    d[1] = v;
}

static inline void stl_raw(void *ptr, int v)
{
    uint8_t *d = (uint8_t *) ptr;
    d[0] = v >> 24;
    d[1] = v >> 16;
    d[2] = v >> 8;
    d[3] = v;
}

static inline void stq_raw(void *ptr, uint64_t v)
{
    stl (ptr, v);
    stl (ptr+4, v >> 32);
}

#else

static inline int lduw_raw(void *ptr)
{
    return *(uint16_t *)ptr;
}

static inline int ldsw_raw(void *ptr)
{
    return *(int16_t *)ptr;
}

static inline int ldl_raw(void *ptr)
{
    return *(uint32_t *)ptr;
}

static inline uint64_t ldq_raw(void *ptr)
{
    return *(uint64_t *)ptr;
}

static inline void stw_raw(void *ptr, int v)
{
    *(uint16_t *)ptr = v;
}

static inline void stl_raw(void *ptr, int v)
{
    *(uint32_t *)ptr = v;
}

static inline void stq_raw(void *ptr, uint64_t v)
{
    *(uint64_t *)ptr = v;
}

/* float access */

static inline float ldfl_raw(void *ptr)
{
    return *(float *)ptr;
}

static inline double ldfq_raw(void *ptr)
{
    return *(double *)ptr;
}

static inline void stfl_raw(void *ptr, float v)
{
    *(float *)ptr = v;
}

static inline void stfq_raw(void *ptr, double v)
{
    *(double *)ptr = v;
}
#endif

/* MMU memory access macros */

#if defined(CONFIG_USER_ONLY) 

/* if user mode, no other memory access functions */
#define ldub(p) ldub_raw(p)
#define ldsb(p) ldsb_raw(p)
#define lduw(p) lduw_raw(p)
#define ldsw(p) ldsw_raw(p)
#define ldl(p) ldl_raw(p)
#define ldq(p) ldq_raw(p)
#define ldfl(p) ldfl_raw(p)
#define ldfq(p) ldfq_raw(p)
#define stb(p, v) stb_raw(p, v)
#define stw(p, v) stw_raw(p, v)
#define stl(p, v) stl_raw(p, v)
#define stq(p, v) stq_raw(p, v)
#define stfl(p, v) stfl_raw(p, v)
#define stfq(p, v) stfq_raw(p, v)

#define ldub_code(p) ldub_raw(p)
#define ldsb_code(p) ldsb_raw(p)
#define lduw_code(p) lduw_raw(p)
#define ldsw_code(p) ldsw_raw(p)
#define ldl_code(p) ldl_raw(p)

#define ldub_kernel(p) ldub_raw(p)
#define ldsb_kernel(p) ldsb_raw(p)
#define lduw_kernel(p) lduw_raw(p)
#define ldsw_kernel(p) ldsw_raw(p)
#define ldl_kernel(p) ldl_raw(p)
#define stb_kernel(p, v) stb_raw(p, v)
#define stw_kernel(p, v) stw_raw(p, v)
#define stl_kernel(p, v) stl_raw(p, v)
#define stq_kernel(p, v) stq_raw(p, v)

#endif /* defined(CONFIG_USER_ONLY) */

/* page related stuff */

#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)

extern unsigned long real_host_page_size;
extern unsigned long host_page_bits;
extern unsigned long host_page_size;
extern unsigned long host_page_mask;

#define HOST_PAGE_ALIGN(addr) (((addr) + host_page_size - 1) & host_page_mask)

/* same as PROT_xxx */
#define PAGE_READ      0x0001
#define PAGE_WRITE     0x0002
#define PAGE_EXEC      0x0004
#define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
#define PAGE_VALID     0x0008
/* original state of the write flag (used when tracking self-modifying
   code */
#define PAGE_WRITE_ORG 0x0010 

void page_dump(FILE *f);
int page_get_flags(unsigned long address);
void page_set_flags(unsigned long start, unsigned long end, int flags);
void page_unprotect_range(uint8_t *data, unsigned long data_size);

#define SINGLE_CPU_DEFINES
#ifdef SINGLE_CPU_DEFINES

#if defined(TARGET_I386)

#define CPUState CPUX86State
#define cpu_init cpu_x86_init
#define cpu_exec cpu_x86_exec
#define cpu_gen_code cpu_x86_gen_code
#define cpu_interrupt cpu_x86_interrupt
#define cpu_signal_handler cpu_x86_signal_handler

#elif defined(TARGET_ARM)

#define CPUState CPUARMState
#define cpu_init cpu_arm_init
#define cpu_exec cpu_arm_exec
#define cpu_gen_code cpu_arm_gen_code
#define cpu_interrupt cpu_arm_interrupt
#define cpu_signal_handler cpu_arm_signal_handler

#elif defined(TARGET_SPARC)

#define CPUState CPUSPARCState
#define cpu_init cpu_sparc_init
#define cpu_exec cpu_sparc_exec
#define cpu_gen_code cpu_sparc_gen_code
#define cpu_interrupt cpu_sparc_interrupt
#define cpu_signal_handler cpu_sparc_signal_handler

#else

#error unsupported target CPU

#endif

#endif /* SINGLE_CPU_DEFINES */

#define DEFAULT_GDBSTUB_PORT 1234

void cpu_abort(CPUState *env, const char *fmt, ...);
extern CPUState *cpu_single_env;

#define CPU_INTERRUPT_EXIT 0x01 /* wants exit from main loop */
#define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
void cpu_interrupt(CPUState *s, int mask);

int cpu_breakpoint_insert(CPUState *env, uint32_t pc);
int cpu_breakpoint_remove(CPUState *env, uint32_t pc);
void cpu_single_step(CPUState *env, int enabled);

#define CPU_LOG_ALL 1
void cpu_set_log(int log_flags);
void cpu_set_log_filename(const char *filename);

/* memory API */

typedef void CPUWriteMemoryFunc(uint32_t addr, uint32_t value);
typedef uint32_t CPUReadMemoryFunc(uint32_t addr);

void cpu_register_physical_memory(unsigned long start_addr, unsigned long size,
                                  long phys_offset);
int cpu_register_io_memory(int io_index,
                           CPUReadMemoryFunc **mem_read,
                           CPUWriteMemoryFunc **mem_write);

/* gdb stub API */
extern int gdbstub_fd;
CPUState *cpu_gdbstub_get_env(void *opaque);
int cpu_gdbstub(void *opaque, int (*main_loop)(void *opaque), int port);

#endif /* CPU_ALL_H */