op_helper.c 52.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
#include "exec.h"
#include "host-utils.h"

//#define DEBUG_PCALL
//#define DEBUG_MMU
//#define DEBUG_MXCC
//#define DEBUG_UNALIGNED
//#define DEBUG_UNASSIGNED
//#define DEBUG_ASI

#ifdef DEBUG_MMU
#define DPRINTF_MMU(fmt, args...) \
do { printf("MMU: " fmt , ##args); } while (0)
#else
#define DPRINTF_MMU(fmt, args...)
#endif

#ifdef DEBUG_MXCC
#define DPRINTF_MXCC(fmt, args...) \
do { printf("MXCC: " fmt , ##args); } while (0)
#else
#define DPRINTF_MXCC(fmt, args...)
#endif

#ifdef DEBUG_ASI
#define DPRINTF_ASI(fmt, args...) \
do { printf("ASI: " fmt , ##args); } while (0)
#else
#define DPRINTF_ASI(fmt, args...)
#endif

void raise_exception(int tt)
{
    env->exception_index = tt;
    cpu_loop_exit();
}

void check_ieee_exceptions()
{
     T0 = get_float_exception_flags(&env->fp_status);
     if (T0)
     {
        /* Copy IEEE 754 flags into FSR */
        if (T0 & float_flag_invalid)
            env->fsr |= FSR_NVC;
        if (T0 & float_flag_overflow)
            env->fsr |= FSR_OFC;
        if (T0 & float_flag_underflow)
            env->fsr |= FSR_UFC;
        if (T0 & float_flag_divbyzero)
            env->fsr |= FSR_DZC;
        if (T0 & float_flag_inexact)
            env->fsr |= FSR_NXC;

        if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23))
        {
            /* Unmasked exception, generate a trap */
            env->fsr |= FSR_FTT_IEEE_EXCP;
            raise_exception(TT_FP_EXCP);
        }
        else
        {
            /* Accumulate exceptions */
            env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
        }
     }
}

#ifdef USE_INT_TO_FLOAT_HELPERS
void do_fitos(void)
{
    set_float_exception_flags(0, &env->fp_status);
    FT0 = int32_to_float32(*((int32_t *)&FT1), &env->fp_status);
    check_ieee_exceptions();
}

void do_fitod(void)
{
    DT0 = int32_to_float64(*((int32_t *)&FT1), &env->fp_status);
}

#if defined(CONFIG_USER_ONLY)
void do_fitoq(void)
{
    QT0 = int32_to_float128(*((int32_t *)&FT1), &env->fp_status);
}
#endif

#ifdef TARGET_SPARC64
void do_fxtos(void)
{
    set_float_exception_flags(0, &env->fp_status);
    FT0 = int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
    check_ieee_exceptions();
}

void do_fxtod(void)
{
    set_float_exception_flags(0, &env->fp_status);
    DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status);
    check_ieee_exceptions();
}

#if defined(CONFIG_USER_ONLY)
void do_fxtoq(void)
{
    set_float_exception_flags(0, &env->fp_status);
    QT0 = int64_to_float128(*((int32_t *)&DT1), &env->fp_status);
    check_ieee_exceptions();
}
#endif
#endif
#endif

void do_fabss(void)
{
    FT0 = float32_abs(FT1);
}

#ifdef TARGET_SPARC64
void do_fabsd(void)
{
    DT0 = float64_abs(DT1);
}

#if defined(CONFIG_USER_ONLY)
void do_fabsq(void)
{
    QT0 = float128_abs(QT1);
}
#endif
#endif

void do_fsqrts(void)
{
    set_float_exception_flags(0, &env->fp_status);
    FT0 = float32_sqrt(FT1, &env->fp_status);
    check_ieee_exceptions();
}

void do_fsqrtd(void)
{
    set_float_exception_flags(0, &env->fp_status);
    DT0 = float64_sqrt(DT1, &env->fp_status);
    check_ieee_exceptions();
}

#if defined(CONFIG_USER_ONLY)
void do_fsqrtq(void)
{
    set_float_exception_flags(0, &env->fp_status);
    QT0 = float128_sqrt(QT1, &env->fp_status);
    check_ieee_exceptions();
}
#endif

#define GEN_FCMP(name, size, reg1, reg2, FS, TRAP)                      \
    void glue(do_, name) (void)                                         \
    {                                                                   \
        env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS);                     \
        switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) {   \
        case float_relation_unordered:                                  \
            T0 = (FSR_FCC1 | FSR_FCC0) << FS;                           \
            if ((env->fsr & FSR_NVM) || TRAP) {                         \
                env->fsr |= T0;                                         \
                env->fsr |= FSR_NVC;                                    \
                env->fsr |= FSR_FTT_IEEE_EXCP;                          \
                raise_exception(TT_FP_EXCP);                            \
            } else {                                                    \
                env->fsr |= FSR_NVA;                                    \
            }                                                           \
            break;                                                      \
        case float_relation_less:                                       \
            T0 = FSR_FCC0 << FS;                                        \
            break;                                                      \
        case float_relation_greater:                                    \
            T0 = FSR_FCC1 << FS;                                        \
            break;                                                      \
        default:                                                        \
            T0 = 0;                                                     \
            break;                                                      \
        }                                                               \
        env->fsr |= T0;                                                 \
    }

GEN_FCMP(fcmps, float32, FT0, FT1, 0, 0);
GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);

GEN_FCMP(fcmpes, float32, FT0, FT1, 0, 1);
GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);

#ifdef CONFIG_USER_ONLY
GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0);
GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1);
#endif

#ifdef TARGET_SPARC64
GEN_FCMP(fcmps_fcc1, float32, FT0, FT1, 22, 0);
GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);

GEN_FCMP(fcmps_fcc2, float32, FT0, FT1, 24, 0);
GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);

GEN_FCMP(fcmps_fcc3, float32, FT0, FT1, 26, 0);
GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);

GEN_FCMP(fcmpes_fcc1, float32, FT0, FT1, 22, 1);
GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);

GEN_FCMP(fcmpes_fcc2, float32, FT0, FT1, 24, 1);
GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);

GEN_FCMP(fcmpes_fcc3, float32, FT0, FT1, 26, 1);
GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
#ifdef CONFIG_USER_ONLY
GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0);
GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0);
GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0);
GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1);
GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1);
GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1);
#endif
#endif

#ifndef TARGET_SPARC64
#ifndef CONFIG_USER_ONLY

#ifdef DEBUG_MXCC
static void dump_mxcc(CPUState *env)
{
    printf("mxccdata: %016llx %016llx %016llx %016llx\n",
        env->mxccdata[0], env->mxccdata[1], env->mxccdata[2], env->mxccdata[3]);
    printf("mxccregs: %016llx %016llx %016llx %016llx\n"
           "          %016llx %016llx %016llx %016llx\n",
        env->mxccregs[0], env->mxccregs[1], env->mxccregs[2], env->mxccregs[3],
        env->mxccregs[4], env->mxccregs[5], env->mxccregs[6], env->mxccregs[7]);
}
#endif

#ifdef DEBUG_ASI
static void dump_asi(const char * txt, uint32_t addr, int asi, int size,
                     uint32_t r1, uint32_t r2)
{
    switch (size)
    {
    case 1:
        DPRINTF_ASI("%s %08x asi 0x%02x = %02x\n", txt, addr, asi, r1 & 0xff);
        break;
    case 2:
        DPRINTF_ASI("%s %08x asi 0x%02x = %04x\n", txt, addr, asi, r1 & 0xffff);
        break;
    case 4:
        DPRINTF_ASI("%s %08x asi 0x%02x = %08x\n", txt, addr, asi, r1);
        break;
    case 8:
        DPRINTF_ASI("%s %08x asi 0x%02x = %016llx\n", txt, addr, asi,
                    r2 | ((uint64_t)r1 << 32));
        break;
    }
}
#endif

void helper_ld_asi(int asi, int size, int sign)
{
    uint32_t ret = 0;
    uint64_t tmp;
#if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
    uint32_t last_T0 = T0;
#endif

    switch (asi) {
    case 2: /* SuperSparc MXCC registers */
        switch (T0) {
        case 0x01c00a00: /* MXCC control register */
            if (size == 8) {
                ret = env->mxccregs[3] >> 32;
                T0 = env->mxccregs[3];
            } else
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
            break;
        case 0x01c00a04: /* MXCC control register */
            if (size == 4)
                ret = env->mxccregs[3];
            else
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
            break;
        case 0x01c00c00: /* Module reset register */
            if (size == 8) {
                ret = env->mxccregs[5] >> 32;
                T0 = env->mxccregs[5];
                // should we do something here?
            } else
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
            break;
        case 0x01c00f00: /* MBus port address register */
            if (size == 8) {
                ret = env->mxccregs[7] >> 32;
                T0 = env->mxccregs[7];
            } else
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
            break;
        default:
            DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", T0, size);
            break;
        }
        DPRINTF_MXCC("asi = %d, size = %d, sign = %d, T0 = %08x -> ret = %08x,"
                     "T0 = %08x\n", asi, size, sign, last_T0, ret, T0);
#ifdef DEBUG_MXCC
        dump_mxcc(env);
#endif
        break;
    case 3: /* MMU probe */
        {
            int mmulev;

            mmulev = (T0 >> 8) & 15;
            if (mmulev > 4)
                ret = 0;
            else {
                ret = mmu_probe(env, T0, mmulev);
                //bswap32s(&ret);
            }
            DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08x\n", T0, mmulev, ret);
        }
        break;
    case 4: /* read MMU regs */
        {
            int reg = (T0 >> 8) & 0x1f;

            ret = env->mmuregs[reg];
            if (reg == 3) /* Fault status cleared on read */
                env->mmuregs[3] = 0;
            else if (reg == 0x13) /* Fault status read */
                ret = env->mmuregs[3];
            else if (reg == 0x14) /* Fault address read */
                ret = env->mmuregs[4];
            DPRINTF_MMU("mmu_read: reg[%d] = 0x%08x\n", reg, ret);
        }
        break;
    case 9: /* Supervisor code access */
        switch(size) {
        case 1:
            ret = ldub_code(T0);
            break;
        case 2:
            ret = lduw_code(T0 & ~1);
            break;
        default:
        case 4:
            ret = ldl_code(T0 & ~3);
            break;
        case 8:
            tmp = ldq_code(T0 & ~7);
            ret = tmp >> 32;
            T0 = tmp;
            break;
        }
        break;
    case 0xa: /* User data access */
        switch(size) {
        case 1:
            ret = ldub_user(T0);
            break;
        case 2:
            ret = lduw_user(T0 & ~1);
            break;
        default:
        case 4:
            ret = ldl_user(T0 & ~3);
            break;
        case 8:
            tmp = ldq_user(T0 & ~7);
            ret = tmp >> 32;
            T0 = tmp;
            break;
        }
        break;
    case 0xb: /* Supervisor data access */
        switch(size) {
        case 1:
            ret = ldub_kernel(T0);
            break;
        case 2:
            ret = lduw_kernel(T0 & ~1);
            break;
        default:
        case 4:
            ret = ldl_kernel(T0 & ~3);
            break;
        case 8:
            tmp = ldq_kernel(T0 & ~7);
            ret = tmp >> 32;
            T0 = tmp;
            break;
        }
        break;
    case 0xc: /* I-cache tag */
    case 0xd: /* I-cache data */
    case 0xe: /* D-cache tag */
    case 0xf: /* D-cache data */
        break;
    case 0x20: /* MMU passthrough */
        switch(size) {
        case 1:
            ret = ldub_phys(T0);
            break;
        case 2:
            ret = lduw_phys(T0 & ~1);
            break;
        default:
        case 4:
            ret = ldl_phys(T0 & ~3);
            break;
        case 8:
            tmp = ldq_phys(T0 & ~7);
            ret = tmp >> 32;
            T0 = tmp;
            break;
        }
        break;
    case 0x2e: /* MMU passthrough, 0xexxxxxxxx */
    case 0x2f: /* MMU passthrough, 0xfxxxxxxxx */
        switch(size) {
        case 1:
            ret = ldub_phys((target_phys_addr_t)T0
                            | ((target_phys_addr_t)(asi & 0xf) << 32));
            break;
        case 2:
            ret = lduw_phys((target_phys_addr_t)(T0 & ~1)
                            | ((target_phys_addr_t)(asi & 0xf) << 32));
            break;
        default:
        case 4:
            ret = ldl_phys((target_phys_addr_t)(T0 & ~3)
                           | ((target_phys_addr_t)(asi & 0xf) << 32));
            break;
        case 8:
            tmp = ldq_phys((target_phys_addr_t)(T0 & ~7)
                           | ((target_phys_addr_t)(asi & 0xf) << 32));
            ret = tmp >> 32;
            T0 = tmp;
            break;
        }
        break;
    case 0x39: /* data cache diagnostic register */
        ret = 0;
        break;
    case 0x21 ... 0x2d: /* MMU passthrough, unassigned */
    default:
        do_unassigned_access(T0, 0, 0, asi);
        ret = 0;
        break;
    }
    if (sign) {
        switch(size) {
        case 1:
            T1 = (int8_t) ret;
            break;
        case 2:
            T1 = (int16_t) ret;
            break;
        default:
            T1 = ret;
            break;
        }
    }
    else
        T1 = ret;
#ifdef DEBUG_ASI
    dump_asi("read ", last_T0, asi, size, T1, T0);
#endif
}

void helper_st_asi(int asi, int size)
{
    switch(asi) {
    case 2: /* SuperSparc MXCC registers */
        switch (T0) {
        case 0x01c00000: /* MXCC stream data register 0 */
            if (size == 8)
                env->mxccdata[0] = ((uint64_t)T1 << 32) | T2;
            else
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
            break;
        case 0x01c00008: /* MXCC stream data register 1 */
            if (size == 8)
                env->mxccdata[1] = ((uint64_t)T1 << 32) | T2;
            else
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
            break;
        case 0x01c00010: /* MXCC stream data register 2 */
            if (size == 8)
                env->mxccdata[2] = ((uint64_t)T1 << 32) | T2;
            else
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
            break;
        case 0x01c00018: /* MXCC stream data register 3 */
            if (size == 8)
                env->mxccdata[3] = ((uint64_t)T1 << 32) | T2;
            else
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
            break;
        case 0x01c00100: /* MXCC stream source */
            if (size == 8)
                env->mxccregs[0] = ((uint64_t)T1 << 32) | T2;
            else
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
            env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +  0);
            env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +  8);
            env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 16);
            env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 24);
            break;
        case 0x01c00200: /* MXCC stream destination */
            if (size == 8)
                env->mxccregs[1] = ((uint64_t)T1 << 32) | T2;
            else
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
            stq_phys((env->mxccregs[1] & 0xffffffffULL) +  0, env->mxccdata[0]);
            stq_phys((env->mxccregs[1] & 0xffffffffULL) +  8, env->mxccdata[1]);
            stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16, env->mxccdata[2]);
            stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24, env->mxccdata[3]);
            break;
        case 0x01c00a00: /* MXCC control register */
            if (size == 8)
                env->mxccregs[3] = ((uint64_t)T1 << 32) | T2;
            else
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
            break;
        case 0x01c00a04: /* MXCC control register */
            if (size == 4)
                env->mxccregs[3] = (env->mxccregs[0xa] & 0xffffffff00000000ULL) | T1;
            else
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
            break;
        case 0x01c00e00: /* MXCC error register  */
            // writing a 1 bit clears the error
            if (size == 8)
                env->mxccregs[6] &= ~(((uint64_t)T1 << 32) | T2);
            else
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
            break;
        case 0x01c00f00: /* MBus port address register */
            if (size == 8)
                env->mxccregs[7] = ((uint64_t)T1 << 32) | T2;
            else
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
            break;
        default:
            DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", T0, size);
            break;
        }
        DPRINTF_MXCC("asi = %d, size = %d, T0 = %08x, T1 = %08x\n", asi, size, T0, T1);
#ifdef DEBUG_MXCC
        dump_mxcc(env);
#endif
        break;
    case 3: /* MMU flush */
        {
            int mmulev;

            mmulev = (T0 >> 8) & 15;
            DPRINTF_MMU("mmu flush level %d\n", mmulev);
            switch (mmulev) {
            case 0: // flush page
                tlb_flush_page(env, T0 & 0xfffff000);
                break;
            case 1: // flush segment (256k)
            case 2: // flush region (16M)
            case 3: // flush context (4G)
            case 4: // flush entire
                tlb_flush(env, 1);
                break;
            default:
                break;
            }
#ifdef DEBUG_MMU
            dump_mmu(env);
#endif
        }
        break;
    case 4: /* write MMU regs */
        {
            int reg = (T0 >> 8) & 0x1f;
            uint32_t oldreg;

            oldreg = env->mmuregs[reg];
            switch(reg) {
            case 0:
                env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
                                    (T1 & 0x00ffffff);
                // Mappings generated during no-fault mode or MMU
                // disabled mode are invalid in normal mode
                if ((oldreg & (MMU_E | MMU_NF | env->mmu_bm)) !=
                    (env->mmuregs[reg] & (MMU_E | MMU_NF | env->mmu_bm)))
                    tlb_flush(env, 1);
                break;
            case 2:
                env->mmuregs[reg] = T1;
                if (oldreg != env->mmuregs[reg]) {
                    /* we flush when the MMU context changes because
                       QEMU has no MMU context support */
                    tlb_flush(env, 1);
                }
                break;
            case 3:
            case 4:
                break;
            case 0x13:
                env->mmuregs[3] = T1;
                break;
            case 0x14:
                env->mmuregs[4] = T1;
                break;
            default:
                env->mmuregs[reg] = T1;
                break;
            }
            if (oldreg != env->mmuregs[reg]) {
                DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n", reg, oldreg, env->mmuregs[reg]);
            }
#ifdef DEBUG_MMU
            dump_mmu(env);
#endif
        }
        break;
    case 0xa: /* User data access */
        switch(size) {
        case 1:
            stb_user(T0, T1);
            break;
        case 2:
            stw_user(T0 & ~1, T1);
            break;
        default:
        case 4:
            stl_user(T0 & ~3, T1);
            break;
        case 8:
            stq_user(T0 & ~7, ((uint64_t)T1 << 32) | T2);
            break;
        }
        break;
    case 0xb: /* Supervisor data access */
        switch(size) {
        case 1:
            stb_kernel(T0, T1);
            break;
        case 2:
            stw_kernel(T0 & ~1, T1);
            break;
        default:
        case 4:
            stl_kernel(T0 & ~3, T1);
            break;
        case 8:
            stq_kernel(T0 & ~7, ((uint64_t)T1 << 32) | T2);
            break;
        }
        break;
    case 0xc: /* I-cache tag */
    case 0xd: /* I-cache data */
    case 0xe: /* D-cache tag */
    case 0xf: /* D-cache data */
    case 0x10: /* I/D-cache flush page */
    case 0x11: /* I/D-cache flush segment */
    case 0x12: /* I/D-cache flush region */
    case 0x13: /* I/D-cache flush context */
    case 0x14: /* I/D-cache flush user */
        break;
    case 0x17: /* Block copy, sta access */
        {
            // value (T1) = src
            // address (T0) = dst
            // copy 32 bytes
            unsigned int i;
            uint32_t src = T1 & ~3, dst = T0 & ~3, temp;

            for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
                temp = ldl_kernel(src);
                stl_kernel(dst, temp);
            }
        }
        break;
    case 0x1f: /* Block fill, stda access */
        {
            // value (T1, T2)
            // address (T0) = dst
            // fill 32 bytes
            unsigned int i;
            uint32_t dst = T0 & 7;
            uint64_t val;

            val = (((uint64_t)T1) << 32) | T2;

            for (i = 0; i < 32; i += 8, dst += 8)
                stq_kernel(dst, val);
        }
        break;
    case 0x20: /* MMU passthrough */
        {
            switch(size) {
            case 1:
                stb_phys(T0, T1);
                break;
            case 2:
                stw_phys(T0 & ~1, T1);
                break;
            case 4:
            default:
                stl_phys(T0 & ~3, T1);
                break;
            case 8:
                stq_phys(T0 & ~7, ((uint64_t)T1 << 32) | T2);
                break;
            }
        }
        break;
    case 0x2e: /* MMU passthrough, 0xexxxxxxxx */
    case 0x2f: /* MMU passthrough, 0xfxxxxxxxx */
        {
            switch(size) {
            case 1:
                stb_phys((target_phys_addr_t)T0
                         | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
                break;
            case 2:
                stw_phys((target_phys_addr_t)(T0 & ~1)
                            | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
                break;
            case 4:
            default:
                stl_phys((target_phys_addr_t)(T0 & ~3)
                           | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
                break;
            case 8:
                stq_phys((target_phys_addr_t)(T0 & ~7)
                           | ((target_phys_addr_t)(asi & 0xf) << 32),
                         ((uint64_t)T1 << 32) | T2);
                break;
            }
        }
        break;
    case 0x30: /* store buffer tags */
    case 0x31: /* store buffer data or Ross RT620 I-cache flush */
    case 0x32: /* store buffer control */
    case 0x36: /* I-cache flash clear */
    case 0x37: /* D-cache flash clear */
    case 0x38: /* breakpoint diagnostics */
    case 0x4c: /* breakpoint action */
        break;
    case 9: /* Supervisor code access, XXX */
    case 0x21 ... 0x2d: /* MMU passthrough, unassigned */
    default:
        do_unassigned_access(T0, 1, 0, asi);
        break;
    }
#ifdef DEBUG_ASI
    dump_asi("write", T0, asi, size, T1, T2);
#endif
}

#endif /* CONFIG_USER_ONLY */
#else /* TARGET_SPARC64 */

#ifdef CONFIG_USER_ONLY
void helper_ld_asi(int asi, int size, int sign)
{
    uint64_t ret = 0;

    if (asi < 0x80)
        raise_exception(TT_PRIV_ACT);

    switch (asi) {
    case 0x80: // Primary
    case 0x82: // Primary no-fault
    case 0x88: // Primary LE
    case 0x8a: // Primary no-fault LE
        {
            switch(size) {
            case 1:
                ret = ldub_raw(T0);
                break;
            case 2:
                ret = lduw_raw(T0 & ~1);
                break;
            case 4:
                ret = ldl_raw(T0 & ~3);
                break;
            default:
            case 8:
                ret = ldq_raw(T0 & ~7);
                break;
            }
        }
        break;
    case 0x81: // Secondary
    case 0x83: // Secondary no-fault
    case 0x89: // Secondary LE
    case 0x8b: // Secondary no-fault LE
        // XXX
        break;
    default:
        break;
    }

    /* Convert from little endian */
    switch (asi) {
    case 0x88: // Primary LE
    case 0x89: // Secondary LE
    case 0x8a: // Primary no-fault LE
    case 0x8b: // Secondary no-fault LE
        switch(size) {
        case 2:
            ret = bswap16(ret);
            break;
        case 4:
            ret = bswap32(ret);
            break;
        case 8:
            ret = bswap64(ret);
            break;
        default:
            break;
        }
    default:
        break;
    }

    /* Convert to signed number */
    if (sign) {
        switch(size) {
        case 1:
            ret = (int8_t) ret;
            break;
        case 2:
            ret = (int16_t) ret;
            break;
        case 4:
            ret = (int32_t) ret;
            break;
        default:
            break;
        }
    }
    T1 = ret;
}

void helper_st_asi(int asi, int size)
{
    if (asi < 0x80)
        raise_exception(TT_PRIV_ACT);

    /* Convert to little endian */
    switch (asi) {
    case 0x88: // Primary LE
    case 0x89: // Secondary LE
        switch(size) {
        case 2:
            T0 = bswap16(T0);
            break;
        case 4:
            T0 = bswap32(T0);
            break;
        case 8:
            T0 = bswap64(T0);
            break;
        default:
            break;
        }
    default:
        break;
    }

    switch(asi) {
    case 0x80: // Primary
    case 0x88: // Primary LE
        {
            switch(size) {
            case 1:
                stb_raw(T0, T1);
                break;
            case 2:
                stw_raw(T0 & ~1, T1);
                break;
            case 4:
                stl_raw(T0 & ~3, T1);
                break;
            case 8:
            default:
                stq_raw(T0 & ~7, T1);
                break;
            }
        }
        break;
    case 0x81: // Secondary
    case 0x89: // Secondary LE
        // XXX
        return;

    case 0x82: // Primary no-fault, RO
    case 0x83: // Secondary no-fault, RO
    case 0x8a: // Primary no-fault LE, RO
    case 0x8b: // Secondary no-fault LE, RO
    default:
        do_unassigned_access(T0, 1, 0, 1);
        return;
    }
}

#else /* CONFIG_USER_ONLY */

void helper_ld_asi(int asi, int size, int sign)
{
    uint64_t ret = 0;

    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
        || (asi >= 0x30 && asi < 0x80 && !(env->hpstate & HS_PRIV)))
        raise_exception(TT_PRIV_ACT);

    switch (asi) {
    case 0x10: // As if user primary
    case 0x18: // As if user primary LE
    case 0x80: // Primary
    case 0x82: // Primary no-fault
    case 0x88: // Primary LE
    case 0x8a: // Primary no-fault LE
        if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
            if (env->hpstate & HS_PRIV) {
                switch(size) {
                case 1:
                    ret = ldub_hypv(T0);
                    break;
                case 2:
                    ret = lduw_hypv(T0 & ~1);
                    break;
                case 4:
                    ret = ldl_hypv(T0 & ~3);
                    break;
                default:
                case 8:
                    ret = ldq_hypv(T0 & ~7);
                    break;
                }
            } else {
                switch(size) {
                case 1:
                    ret = ldub_kernel(T0);
                    break;
                case 2:
                    ret = lduw_kernel(T0 & ~1);
                    break;
                case 4:
                    ret = ldl_kernel(T0 & ~3);
                    break;
                default:
                case 8:
                    ret = ldq_kernel(T0 & ~7);
                    break;
                }
            }
        } else {
            switch(size) {
            case 1:
                ret = ldub_user(T0);
                break;
            case 2:
                ret = lduw_user(T0 & ~1);
                break;
            case 4:
                ret = ldl_user(T0 & ~3);
                break;
            default:
            case 8:
                ret = ldq_user(T0 & ~7);
                break;
            }
        }
        break;
    case 0x14: // Bypass
    case 0x15: // Bypass, non-cacheable
    case 0x1c: // Bypass LE
    case 0x1d: // Bypass, non-cacheable LE
        {
            switch(size) {
            case 1:
                ret = ldub_phys(T0);
                break;
            case 2:
                ret = lduw_phys(T0 & ~1);
                break;
            case 4:
                ret = ldl_phys(T0 & ~3);
                break;
            default:
            case 8:
                ret = ldq_phys(T0 & ~7);
                break;
            }
            break;
        }
    case 0x04: // Nucleus
    case 0x0c: // Nucleus Little Endian (LE)
    case 0x11: // As if user secondary
    case 0x19: // As if user secondary LE
    case 0x24: // Nucleus quad LDD 128 bit atomic
    case 0x2c: // Nucleus quad LDD 128 bit atomic
    case 0x4a: // UPA config
    case 0x81: // Secondary
    case 0x83: // Secondary no-fault
    case 0x89: // Secondary LE
    case 0x8b: // Secondary no-fault LE
        // XXX
        break;
    case 0x45: // LSU
        ret = env->lsu;
        break;
    case 0x50: // I-MMU regs
        {
            int reg = (T0 >> 3) & 0xf;

            ret = env->immuregs[reg];
            break;
        }
    case 0x51: // I-MMU 8k TSB pointer
    case 0x52: // I-MMU 64k TSB pointer
    case 0x55: // I-MMU data access
        // XXX
        break;
    case 0x56: // I-MMU tag read
        {
            unsigned int i;

            for (i = 0; i < 64; i++) {
                // Valid, ctx match, vaddr match
                if ((env->itlb_tte[i] & 0x8000000000000000ULL) != 0 &&
                    env->itlb_tag[i] == T0) {
                    ret = env->itlb_tag[i];
                    break;
                }
            }
            break;
        }
    case 0x58: // D-MMU regs
        {
            int reg = (T0 >> 3) & 0xf;

            ret = env->dmmuregs[reg];
            break;
        }
    case 0x5e: // D-MMU tag read
        {
            unsigned int i;

            for (i = 0; i < 64; i++) {
                // Valid, ctx match, vaddr match
                if ((env->dtlb_tte[i] & 0x8000000000000000ULL) != 0 &&
                    env->dtlb_tag[i] == T0) {
                    ret = env->dtlb_tag[i];
                    break;
                }
            }
            break;
        }
    case 0x59: // D-MMU 8k TSB pointer
    case 0x5a: // D-MMU 64k TSB pointer
    case 0x5b: // D-MMU data pointer
    case 0x5d: // D-MMU data access
    case 0x48: // Interrupt dispatch, RO
    case 0x49: // Interrupt data receive
    case 0x7f: // Incoming interrupt vector, RO
        // XXX
        break;
    case 0x54: // I-MMU data in, WO
    case 0x57: // I-MMU demap, WO
    case 0x5c: // D-MMU data in, WO
    case 0x5f: // D-MMU demap, WO
    case 0x77: // Interrupt vector, WO
    default:
        do_unassigned_access(T0, 0, 0, 1);
        ret = 0;
        break;
    }

    /* Convert from little endian */
    switch (asi) {
    case 0x0c: // Nucleus Little Endian (LE)
    case 0x18: // As if user primary LE
    case 0x19: // As if user secondary LE
    case 0x1c: // Bypass LE
    case 0x1d: // Bypass, non-cacheable LE
    case 0x88: // Primary LE
    case 0x89: // Secondary LE
    case 0x8a: // Primary no-fault LE
    case 0x8b: // Secondary no-fault LE
        switch(size) {
        case 2:
            ret = bswap16(ret);
            break;
        case 4:
            ret = bswap32(ret);
            break;
        case 8:
            ret = bswap64(ret);
            break;
        default:
            break;
        }
    default:
        break;
    }

    /* Convert to signed number */
    if (sign) {
        switch(size) {
        case 1:
            ret = (int8_t) ret;
            break;
        case 2:
            ret = (int16_t) ret;
            break;
        case 4:
            ret = (int32_t) ret;
            break;
        default:
            break;
        }
    }
    T1 = ret;
}

void helper_st_asi(int asi, int size)
{
    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
        || (asi >= 0x30 && asi < 0x80 && !(env->hpstate & HS_PRIV)))
        raise_exception(TT_PRIV_ACT);

    /* Convert to little endian */
    switch (asi) {
    case 0x0c: // Nucleus Little Endian (LE)
    case 0x18: // As if user primary LE
    case 0x19: // As if user secondary LE
    case 0x1c: // Bypass LE
    case 0x1d: // Bypass, non-cacheable LE
    case 0x88: // Primary LE
    case 0x89: // Secondary LE
        switch(size) {
        case 2:
            T0 = bswap16(T0);
            break;
        case 4:
            T0 = bswap32(T0);
            break;
        case 8:
            T0 = bswap64(T0);
            break;
        default:
            break;
        }
    default:
        break;
    }

    switch(asi) {
    case 0x10: // As if user primary
    case 0x18: // As if user primary LE
    case 0x80: // Primary
    case 0x88: // Primary LE
        if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
            if (env->hpstate & HS_PRIV) {
                switch(size) {
                case 1:
                    stb_hypv(T0, T1);
                    break;
                case 2:
                    stw_hypv(T0 & ~1, T1);
                    break;
                case 4:
                    stl_hypv(T0 & ~3, T1);
                    break;
                case 8:
                default:
                    stq_hypv(T0 & ~7, T1);
                    break;
                }
            } else {
                switch(size) {
                case 1:
                    stb_kernel(T0, T1);
                    break;
                case 2:
                    stw_kernel(T0 & ~1, T1);
                    break;
                case 4:
                    stl_kernel(T0 & ~3, T1);
                    break;
                case 8:
                default:
                    stq_kernel(T0 & ~7, T1);
                    break;
                }
            }
        } else {
            switch(size) {
            case 1:
                stb_user(T0, T1);
                break;
            case 2:
                stw_user(T0 & ~1, T1);
                break;
            case 4:
                stl_user(T0 & ~3, T1);
                break;
            case 8:
            default:
                stq_user(T0 & ~7, T1);
                break;
            }
        }
        break;
    case 0x14: // Bypass
    case 0x15: // Bypass, non-cacheable
    case 0x1c: // Bypass LE
    case 0x1d: // Bypass, non-cacheable LE
        {
            switch(size) {
            case 1:
                stb_phys(T0, T1);
                break;
            case 2:
                stw_phys(T0 & ~1, T1);
                break;
            case 4:
                stl_phys(T0 & ~3, T1);
                break;
            case 8:
            default:
                stq_phys(T0 & ~7, T1);
                break;
            }
        }
        return;
    case 0x04: // Nucleus
    case 0x0c: // Nucleus Little Endian (LE)
    case 0x11: // As if user secondary
    case 0x19: // As if user secondary LE
    case 0x24: // Nucleus quad LDD 128 bit atomic
    case 0x2c: // Nucleus quad LDD 128 bit atomic
    case 0x4a: // UPA config
    case 0x81: // Secondary
    case 0x89: // Secondary LE
        // XXX
        return;
    case 0x45: // LSU
        {
            uint64_t oldreg;

            oldreg = env->lsu;
            env->lsu = T1 & (DMMU_E | IMMU_E);
            // Mappings generated during D/I MMU disabled mode are
            // invalid in normal mode
            if (oldreg != env->lsu) {
                DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n", oldreg, env->lsu);
#ifdef DEBUG_MMU
                dump_mmu(env);
#endif
                tlb_flush(env, 1);
            }
            return;
        }
    case 0x50: // I-MMU regs
        {
            int reg = (T0 >> 3) & 0xf;
            uint64_t oldreg;

            oldreg = env->immuregs[reg];
            switch(reg) {
            case 0: // RO
            case 4:
                return;
            case 1: // Not in I-MMU
            case 2:
            case 7:
            case 8:
                return;
            case 3: // SFSR
                if ((T1 & 1) == 0)
                    T1 = 0; // Clear SFSR
                break;
            case 5: // TSB access
            case 6: // Tag access
            default:
                break;
            }
            env->immuregs[reg] = T1;
            if (oldreg != env->immuregs[reg]) {
                DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
            }
#ifdef DEBUG_MMU
            dump_mmu(env);
#endif
            return;
        }
    case 0x54: // I-MMU data in
        {
            unsigned int i;

            // Try finding an invalid entry
            for (i = 0; i < 64; i++) {
                if ((env->itlb_tte[i] & 0x8000000000000000ULL) == 0) {
                    env->itlb_tag[i] = env->immuregs[6];
                    env->itlb_tte[i] = T1;
                    return;
                }
            }
            // Try finding an unlocked entry
            for (i = 0; i < 64; i++) {
                if ((env->itlb_tte[i] & 0x40) == 0) {
                    env->itlb_tag[i] = env->immuregs[6];
                    env->itlb_tte[i] = T1;
                    return;
                }
            }
            // error state?
            return;
        }
    case 0x55: // I-MMU data access
        {
            unsigned int i = (T0 >> 3) & 0x3f;

            env->itlb_tag[i] = env->immuregs[6];
            env->itlb_tte[i] = T1;
            return;
        }
    case 0x57: // I-MMU demap
        // XXX
        return;
    case 0x58: // D-MMU regs
        {
            int reg = (T0 >> 3) & 0xf;
            uint64_t oldreg;

            oldreg = env->dmmuregs[reg];
            switch(reg) {
            case 0: // RO
            case 4:
                return;
            case 3: // SFSR
                if ((T1 & 1) == 0) {
                    T1 = 0; // Clear SFSR, Fault address
                    env->dmmuregs[4] = 0;
                }
                env->dmmuregs[reg] = T1;
                break;
            case 1: // Primary context
            case 2: // Secondary context
            case 5: // TSB access
            case 6: // Tag access
            case 7: // Virtual Watchpoint
            case 8: // Physical Watchpoint
            default:
                break;
            }
            env->dmmuregs[reg] = T1;
            if (oldreg != env->dmmuregs[reg]) {
                DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
            }
#ifdef DEBUG_MMU
            dump_mmu(env);
#endif
            return;
        }
    case 0x5c: // D-MMU data in
        {
            unsigned int i;

            // Try finding an invalid entry
            for (i = 0; i < 64; i++) {
                if ((env->dtlb_tte[i] & 0x8000000000000000ULL) == 0) {
                    env->dtlb_tag[i] = env->dmmuregs[6];
                    env->dtlb_tte[i] = T1;
                    return;
                }
            }
            // Try finding an unlocked entry
            for (i = 0; i < 64; i++) {
                if ((env->dtlb_tte[i] & 0x40) == 0) {
                    env->dtlb_tag[i] = env->dmmuregs[6];
                    env->dtlb_tte[i] = T1;
                    return;
                }
            }
            // error state?
            return;
        }
    case 0x5d: // D-MMU data access
        {
            unsigned int i = (T0 >> 3) & 0x3f;

            env->dtlb_tag[i] = env->dmmuregs[6];
            env->dtlb_tte[i] = T1;
            return;
        }
    case 0x5f: // D-MMU demap
    case 0x49: // Interrupt data receive
        // XXX
        return;
    case 0x51: // I-MMU 8k TSB pointer, RO
    case 0x52: // I-MMU 64k TSB pointer, RO
    case 0x56: // I-MMU tag read, RO
    case 0x59: // D-MMU 8k TSB pointer, RO
    case 0x5a: // D-MMU 64k TSB pointer, RO
    case 0x5b: // D-MMU data pointer, RO
    case 0x5e: // D-MMU tag read, RO
    case 0x48: // Interrupt dispatch, RO
    case 0x7f: // Incoming interrupt vector, RO
    case 0x82: // Primary no-fault, RO
    case 0x83: // Secondary no-fault, RO
    case 0x8a: // Primary no-fault LE, RO
    case 0x8b: // Secondary no-fault LE, RO
    default:
        do_unassigned_access(T0, 1, 0, 1);
        return;
    }
}
#endif /* CONFIG_USER_ONLY */

void helper_ldf_asi(int asi, int size, int rd)
{
    target_ulong tmp_T0 = T0, tmp_T1 = T1;
    unsigned int i;

    switch (asi) {
    case 0xf0: // Block load primary
    case 0xf1: // Block load secondary
    case 0xf8: // Block load primary LE
    case 0xf9: // Block load secondary LE
        if (rd & 7) {
            raise_exception(TT_ILL_INSN);
            return;
        }
        if (T0 & 0x3f) {
            raise_exception(TT_UNALIGNED);
            return;
        }
        for (i = 0; i < 16; i++) {
            helper_ld_asi(asi & 0x8f, 4, 0);
            *(uint32_t *)&env->fpr[rd++] = T1;
            T0 += 4;
        }
        T0 = tmp_T0;
        T1 = tmp_T1;

        return;
    default:
        break;
    }

    helper_ld_asi(asi, size, 0);
    switch(size) {
    default:
    case 4:
        *((uint32_t *)&FT0) = T1;
        break;
    case 8:
        *((int64_t *)&DT0) = T1;
        break;
#if defined(CONFIG_USER_ONLY)
    case 16:
        // XXX
        break;
#endif
    }
    T1 = tmp_T1;
}

void helper_stf_asi(int asi, int size, int rd)
{
    target_ulong tmp_T0 = T0, tmp_T1 = T1;
    unsigned int i;

    switch (asi) {
    case 0xf0: // Block store primary
    case 0xf1: // Block store secondary
    case 0xf8: // Block store primary LE
    case 0xf9: // Block store secondary LE
        if (rd & 7) {
            raise_exception(TT_ILL_INSN);
            return;
        }
        if (T0 & 0x3f) {
            raise_exception(TT_UNALIGNED);
            return;
        }
        for (i = 0; i < 16; i++) {
            T1 = *(uint32_t *)&env->fpr[rd++];
            helper_st_asi(asi & 0x8f, 4);
            T0 += 4;
        }
        T0 = tmp_T0;
        T1 = tmp_T1;

        return;
    default:
        break;
    }

    switch(size) {
    default:
    case 4:
        T1 = *((uint32_t *)&FT0);
        break;
    case 8:
        T1 = *((int64_t *)&DT0);
        break;
#if defined(CONFIG_USER_ONLY)
    case 16:
        // XXX
        break;
#endif
    }
    helper_st_asi(asi, size);
    T1 = tmp_T1;
}

#endif /* TARGET_SPARC64 */

#ifndef TARGET_SPARC64
void helper_rett()
{
    unsigned int cwp;

    if (env->psret == 1)
        raise_exception(TT_ILL_INSN);

    env->psret = 1;
    cwp = (env->cwp + 1) & (NWINDOWS - 1);
    if (env->wim & (1 << cwp)) {
        raise_exception(TT_WIN_UNF);
    }
    set_cwp(cwp);
    env->psrs = env->psrps;
}
#endif

void helper_ldfsr(void)
{
    int rnd_mode;
    switch (env->fsr & FSR_RD_MASK) {
    case FSR_RD_NEAREST:
        rnd_mode = float_round_nearest_even;
        break;
    default:
    case FSR_RD_ZERO:
        rnd_mode = float_round_to_zero;
        break;
    case FSR_RD_POS:
        rnd_mode = float_round_up;
        break;
    case FSR_RD_NEG:
        rnd_mode = float_round_down;
        break;
    }
    set_float_rounding_mode(rnd_mode, &env->fp_status);
}

void helper_debug()
{
    env->exception_index = EXCP_DEBUG;
    cpu_loop_exit();
}

#ifndef TARGET_SPARC64
void do_wrpsr()
{
    if ((T0 & PSR_CWP) >= NWINDOWS)
        raise_exception(TT_ILL_INSN);
    else
        PUT_PSR(env, T0);
}

void do_rdpsr()
{
    T0 = GET_PSR(env);
}

#else

void do_popc()
{
    T0 = ctpop64(T1);
}

static inline uint64_t *get_gregset(uint64_t pstate)
{
    switch (pstate) {
    default:
    case 0:
        return env->bgregs;
    case PS_AG:
        return env->agregs;
    case PS_MG:
        return env->mgregs;
    case PS_IG:
        return env->igregs;
    }
}

static inline void change_pstate(uint64_t new_pstate)
{
    uint64_t pstate_regs, new_pstate_regs;
    uint64_t *src, *dst;

    pstate_regs = env->pstate & 0xc01;
    new_pstate_regs = new_pstate & 0xc01;
    if (new_pstate_regs != pstate_regs) {
        // Switch global register bank
        src = get_gregset(new_pstate_regs);
        dst = get_gregset(pstate_regs);
        memcpy32(dst, env->gregs);
        memcpy32(env->gregs, src);
    }
    env->pstate = new_pstate;
}

void do_wrpstate(void)
{
    change_pstate(T0 & 0xf3f);
}

void do_done(void)
{
    env->tl--;
    env->pc = env->tnpc[env->tl];
    env->npc = env->tnpc[env->tl] + 4;
    PUT_CCR(env, env->tstate[env->tl] >> 32);
    env->asi = (env->tstate[env->tl] >> 24) & 0xff;
    change_pstate((env->tstate[env->tl] >> 8) & 0xf3f);
    PUT_CWP64(env, env->tstate[env->tl] & 0xff);
}

void do_retry(void)
{
    env->tl--;
    env->pc = env->tpc[env->tl];
    env->npc = env->tnpc[env->tl];
    PUT_CCR(env, env->tstate[env->tl] >> 32);
    env->asi = (env->tstate[env->tl] >> 24) & 0xff;
    change_pstate((env->tstate[env->tl] >> 8) & 0xf3f);
    PUT_CWP64(env, env->tstate[env->tl] & 0xff);
}
#endif

void set_cwp(int new_cwp)
{
    /* put the modified wrap registers at their proper location */
    if (env->cwp == (NWINDOWS - 1))
        memcpy32(env->regbase, env->regbase + NWINDOWS * 16);
    env->cwp = new_cwp;
    /* put the wrap registers at their temporary location */
    if (new_cwp == (NWINDOWS - 1))
        memcpy32(env->regbase + NWINDOWS * 16, env->regbase);
    env->regwptr = env->regbase + (new_cwp * 16);
    REGWPTR = env->regwptr;
}

void cpu_set_cwp(CPUState *env1, int new_cwp)
{
    CPUState *saved_env;
#ifdef reg_REGWPTR
    target_ulong *saved_regwptr;
#endif

    saved_env = env;
#ifdef reg_REGWPTR
    saved_regwptr = REGWPTR;
#endif
    env = env1;
    set_cwp(new_cwp);
    env = saved_env;
#ifdef reg_REGWPTR
    REGWPTR = saved_regwptr;
#endif
}

#ifdef TARGET_SPARC64
void do_interrupt(int intno)
{
#ifdef DEBUG_PCALL
    if (loglevel & CPU_LOG_INT) {
        static int count;
        fprintf(logfile, "%6d: v=%04x pc=%016" PRIx64 " npc=%016" PRIx64 " SP=%016" PRIx64 "\n",
                count, intno,
                env->pc,
                env->npc, env->regwptr[6]);
        cpu_dump_state(env, logfile, fprintf, 0);
#if 0
        {
            int i;
            uint8_t *ptr;

            fprintf(logfile, "       code=");
            ptr = (uint8_t *)env->pc;
            for(i = 0; i < 16; i++) {
                fprintf(logfile, " %02x", ldub(ptr + i));
            }
            fprintf(logfile, "\n");
        }
#endif
        count++;
    }
#endif
#if !defined(CONFIG_USER_ONLY)
    if (env->tl == MAXTL) {
        cpu_abort(env, "Trap 0x%04x while trap level is MAXTL, Error state", env->exception_index);
        return;
    }
#endif
    env->tstate[env->tl] = ((uint64_t)GET_CCR(env) << 32) | ((env->asi & 0xff) << 24) |
        ((env->pstate & 0xf3f) << 8) | GET_CWP64(env);
    env->tpc[env->tl] = env->pc;
    env->tnpc[env->tl] = env->npc;
    env->tt[env->tl] = intno;
    change_pstate(PS_PEF | PS_PRIV | PS_AG);

    if (intno == TT_CLRWIN)
        set_cwp((env->cwp - 1) & (NWINDOWS - 1));
    else if ((intno & 0x1c0) == TT_SPILL)
        set_cwp((env->cwp - env->cansave - 2) & (NWINDOWS - 1));
    else if ((intno & 0x1c0) == TT_FILL)
        set_cwp((env->cwp + 1) & (NWINDOWS - 1));
    env->tbr &= ~0x7fffULL;
    env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5);
    if (env->tl < MAXTL - 1) {
        env->tl++;
    } else {
        env->pstate |= PS_RED;
        if (env->tl != MAXTL)
            env->tl++;
    }
    env->pc = env->tbr;
    env->npc = env->pc + 4;
    env->exception_index = 0;
}
#else
void do_interrupt(int intno)
{
    int cwp;

#ifdef DEBUG_PCALL
    if (loglevel & CPU_LOG_INT) {
        static int count;
        fprintf(logfile, "%6d: v=%02x pc=%08x npc=%08x SP=%08x\n",
                count, intno,
                env->pc,
                env->npc, env->regwptr[6]);
        cpu_dump_state(env, logfile, fprintf, 0);
#if 0
        {
            int i;
            uint8_t *ptr;

            fprintf(logfile, "       code=");
            ptr = (uint8_t *)env->pc;
            for(i = 0; i < 16; i++) {
                fprintf(logfile, " %02x", ldub(ptr + i));
            }
            fprintf(logfile, "\n");
        }
#endif
        count++;
    }
#endif
#if !defined(CONFIG_USER_ONLY)
    if (env->psret == 0) {
        cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state", env->exception_index);
        return;
    }
#endif
    env->psret = 0;
    cwp = (env->cwp - 1) & (NWINDOWS - 1);
    set_cwp(cwp);
    env->regwptr[9] = env->pc;
    env->regwptr[10] = env->npc;
    env->psrps = env->psrs;
    env->psrs = 1;
    env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4);
    env->pc = env->tbr;
    env->npc = env->pc + 4;
    env->exception_index = 0;
}
#endif

#if !defined(CONFIG_USER_ONLY)

static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
                                void *retaddr);

#define MMUSUFFIX _mmu
#define ALIGNED_ONLY
#ifdef __s390__
# define GETPC() ((void*)((unsigned long)__builtin_return_address(0) & 0x7fffffffUL))
#else
# define GETPC() (__builtin_return_address(0))
#endif

#define SHIFT 0
#include "softmmu_template.h"

#define SHIFT 1
#include "softmmu_template.h"

#define SHIFT 2
#include "softmmu_template.h"

#define SHIFT 3
#include "softmmu_template.h"

static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
                                void *retaddr)
{
#ifdef DEBUG_UNALIGNED
    printf("Unaligned access to 0x%x from 0x%x\n", addr, env->pc);
#endif
    raise_exception(TT_UNALIGNED);
}

/* try to fill the TLB and return an exception if error. If retaddr is
   NULL, it means that the function was called in C code (i.e. not
   from generated code or from helper.c) */
/* XXX: fix it to restore all registers */
void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
{
    TranslationBlock *tb;
    int ret;
    unsigned long pc;
    CPUState *saved_env;

    /* XXX: hack to restore env in all cases, even if not called from
       generated code */
    saved_env = env;
    env = cpu_single_env;

    ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
    if (ret) {
        if (retaddr) {
            /* now we have a real cpu fault */
            pc = (unsigned long)retaddr;
            tb = tb_find_pc(pc);
            if (tb) {
                /* the PC is inside the translated code. It means that we have
                   a virtual CPU fault */
                cpu_restore_state(tb, env, pc, (void *)T2);
            }
        }
        cpu_loop_exit();
    }
    env = saved_env;
}

#endif

#ifndef TARGET_SPARC64
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
                          int is_asi)
{
    CPUState *saved_env;

    /* XXX: hack to restore env in all cases, even if not called from
       generated code */
    saved_env = env;
    env = cpu_single_env;
#ifdef DEBUG_UNASSIGNED
    if (is_asi)
        printf("Unassigned mem %s access to " TARGET_FMT_plx " asi 0x%02x from "
               TARGET_FMT_lx "\n",
               is_exec ? "exec" : is_write ? "write" : "read", addr, is_asi,
               env->pc);
    else
        printf("Unassigned mem %s access to " TARGET_FMT_plx " from "
               TARGET_FMT_lx "\n",
               is_exec ? "exec" : is_write ? "write" : "read", addr, env->pc);
#endif
    if (env->mmuregs[3]) /* Fault status register */
        env->mmuregs[3] = 1; /* overflow (not read before another fault) */
    if (is_asi)
        env->mmuregs[3] |= 1 << 16;
    if (env->psrs)
        env->mmuregs[3] |= 1 << 5;
    if (is_exec)
        env->mmuregs[3] |= 1 << 6;
    if (is_write)
        env->mmuregs[3] |= 1 << 7;
    env->mmuregs[3] |= (5 << 2) | 2;
    env->mmuregs[4] = addr; /* Fault address register */
    if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
        if (is_exec)
            raise_exception(TT_CODE_ACCESS);
        else
            raise_exception(TT_DATA_ACCESS);
    }
    env = saved_env;
}
#else
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
                          int is_asi)
{
#ifdef DEBUG_UNASSIGNED
    CPUState *saved_env;

    /* XXX: hack to restore env in all cases, even if not called from
       generated code */
    saved_env = env;
    env = cpu_single_env;
    printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx "\n",
           addr, env->pc);
    env = saved_env;
#endif
    if (is_exec)
        raise_exception(TT_CODE_ACCESS);
    else
        raise_exception(TT_DATA_ACCESS);
}
#endif