kqemu.c 27.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
/*
 *  KQEMU support
 *
 *  Copyright (c) 2005-2008 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */
#include "config.h"
#ifdef _WIN32
#include <windows.h>
#include <winioctl.h>
#else
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/ioctl.h>
#endif
#ifdef HOST_SOLARIS
#include <sys/ioccom.h>
#endif
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <inttypes.h>

#include "cpu.h"
#include "exec-all.h"
#include "qemu-common.h"

#ifdef CONFIG_KQEMU

#define DEBUG
//#define PROFILE


#ifdef DEBUG
#  define LOG_INT(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
#  define LOG_INT_STATE(env) log_cpu_state_mask(CPU_LOG_INT, (env), 0)
#else
#  define LOG_INT(...) do { } while (0)
#  define LOG_INT_STATE(env) do { } while (0)
#endif

#include <unistd.h>
#include <fcntl.h>
#include "kqemu.h"

#ifdef _WIN32
#define KQEMU_DEVICE "\\\\.\\kqemu"
#else
#define KQEMU_DEVICE "/dev/kqemu"
#endif

static void qpi_init(void);

#ifdef _WIN32
#define KQEMU_INVALID_FD INVALID_HANDLE_VALUE
HANDLE kqemu_fd = KQEMU_INVALID_FD;
#define kqemu_closefd(x) CloseHandle(x)
#else
#define KQEMU_INVALID_FD -1
int kqemu_fd = KQEMU_INVALID_FD;
#define kqemu_closefd(x) close(x)
#endif

/* 0 = not allowed
   1 = user kqemu
   2 = kernel kqemu
*/
int kqemu_allowed = 0;
uint64_t *pages_to_flush;
unsigned int nb_pages_to_flush;
uint64_t *ram_pages_to_update;
unsigned int nb_ram_pages_to_update;
uint64_t *modified_ram_pages;
unsigned int nb_modified_ram_pages;
uint8_t *modified_ram_pages_table;
int qpi_io_memory;
uint32_t kqemu_comm_base; /* physical address of the QPI communication page */
ram_addr_t kqemu_phys_ram_size;
uint8_t *kqemu_phys_ram_base;

#define cpuid(index, eax, ebx, ecx, edx) \
  asm volatile ("cpuid" \
                : "=a" (eax), "=b" (ebx), "=c" (ecx), "=d" (edx) \
                : "0" (index))

#ifdef __x86_64__
static int is_cpuid_supported(void)
{
    return 1;
}
#else
static int is_cpuid_supported(void)
{
    int v0, v1;
    asm volatile ("pushf\n"
                  "popl %0\n"
                  "movl %0, %1\n"
                  "xorl $0x00200000, %0\n"
                  "pushl %0\n"
                  "popf\n"
                  "pushf\n"
                  "popl %0\n"
                  : "=a" (v0), "=d" (v1)
                  :
                  : "cc");
    return (v0 != v1);
}
#endif

static void kqemu_update_cpuid(CPUState *env)
{
    int critical_features_mask, features, ext_features, ext_features_mask;
    uint32_t eax, ebx, ecx, edx;

    /* the following features are kept identical on the host and
       target cpus because they are important for user code. Strictly
       speaking, only SSE really matters because the OS must support
       it if the user code uses it. */
    critical_features_mask =
        CPUID_CMOV | CPUID_CX8 |
        CPUID_FXSR | CPUID_MMX | CPUID_SSE |
        CPUID_SSE2 | CPUID_SEP;
    ext_features_mask = CPUID_EXT_SSE3 | CPUID_EXT_MONITOR;
    if (!is_cpuid_supported()) {
        features = 0;
        ext_features = 0;
    } else {
        cpuid(1, eax, ebx, ecx, edx);
        features = edx;
        ext_features = ecx;
    }
#ifdef __x86_64__
    /* NOTE: on x86_64 CPUs, SYSENTER is not supported in
       compatibility mode, so in order to have the best performances
       it is better not to use it */
    features &= ~CPUID_SEP;
#endif
    env->cpuid_features = (env->cpuid_features & ~critical_features_mask) |
        (features & critical_features_mask);
    env->cpuid_ext_features = (env->cpuid_ext_features & ~ext_features_mask) |
        (ext_features & ext_features_mask);
    /* XXX: we could update more of the target CPUID state so that the
       non accelerated code sees exactly the same CPU features as the
       accelerated code */
}

int kqemu_init(CPUState *env)
{
    struct kqemu_init kinit;
    int ret, version;
#ifdef _WIN32
    DWORD temp;
#endif

    if (!kqemu_allowed)
        return -1;

#ifdef _WIN32
    kqemu_fd = CreateFile(KQEMU_DEVICE, GENERIC_WRITE | GENERIC_READ,
                          FILE_SHARE_READ | FILE_SHARE_WRITE,
                          NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL,
                          NULL);
    if (kqemu_fd == KQEMU_INVALID_FD) {
        fprintf(stderr, "Could not open '%s' - QEMU acceleration layer not activated: %lu\n",
                KQEMU_DEVICE, GetLastError());
        return -1;
    }
#else
    kqemu_fd = open(KQEMU_DEVICE, O_RDWR);
    if (kqemu_fd == KQEMU_INVALID_FD) {
        fprintf(stderr, "Could not open '%s' - QEMU acceleration layer not activated: %s\n",
                KQEMU_DEVICE, strerror(errno));
        return -1;
    }
#endif
    version = 0;
#ifdef _WIN32
    DeviceIoControl(kqemu_fd, KQEMU_GET_VERSION, NULL, 0,
                    &version, sizeof(version), &temp, NULL);
#else
    ioctl(kqemu_fd, KQEMU_GET_VERSION, &version);
#endif
    if (version != KQEMU_VERSION) {
        fprintf(stderr, "Version mismatch between kqemu module and qemu (%08x %08x) - disabling kqemu use\n",
                version, KQEMU_VERSION);
        goto fail;
    }

    pages_to_flush = qemu_vmalloc(KQEMU_MAX_PAGES_TO_FLUSH *
                                  sizeof(uint64_t));
    if (!pages_to_flush)
        goto fail;

    ram_pages_to_update = qemu_vmalloc(KQEMU_MAX_RAM_PAGES_TO_UPDATE *
                                       sizeof(uint64_t));
    if (!ram_pages_to_update)
        goto fail;

    modified_ram_pages = qemu_vmalloc(KQEMU_MAX_MODIFIED_RAM_PAGES *
                                      sizeof(uint64_t));
    if (!modified_ram_pages)
        goto fail;
    modified_ram_pages_table =
        qemu_mallocz(kqemu_phys_ram_size >> TARGET_PAGE_BITS);
    if (!modified_ram_pages_table)
        goto fail;

    memset(&kinit, 0, sizeof(kinit)); /* set the paddings to zero */
    kinit.ram_base = kqemu_phys_ram_base;
    kinit.ram_size = kqemu_phys_ram_size;
    kinit.ram_dirty = phys_ram_dirty;
    kinit.pages_to_flush = pages_to_flush;
    kinit.ram_pages_to_update = ram_pages_to_update;
    kinit.modified_ram_pages = modified_ram_pages;
#ifdef _WIN32
    ret = DeviceIoControl(kqemu_fd, KQEMU_INIT, &kinit, sizeof(kinit),
                          NULL, 0, &temp, NULL) == TRUE ? 0 : -1;
#else
    ret = ioctl(kqemu_fd, KQEMU_INIT, &kinit);
#endif
    if (ret < 0) {
        fprintf(stderr, "Error %d while initializing QEMU acceleration layer - disabling it for now\n", ret);
    fail:
        kqemu_closefd(kqemu_fd);
        kqemu_fd = KQEMU_INVALID_FD;
        return -1;
    }
    kqemu_update_cpuid(env);
    env->kqemu_enabled = kqemu_allowed;
    nb_pages_to_flush = 0;
    nb_ram_pages_to_update = 0;

    qpi_init();
    return 0;
}

void kqemu_flush_page(CPUState *env, target_ulong addr)
{
    LOG_INT("kqemu_flush_page: addr=" TARGET_FMT_lx "\n", addr);
    if (nb_pages_to_flush >= KQEMU_MAX_PAGES_TO_FLUSH)
        nb_pages_to_flush = KQEMU_FLUSH_ALL;
    else
        pages_to_flush[nb_pages_to_flush++] = addr;
}

void kqemu_flush(CPUState *env, int global)
{
    LOG_INT("kqemu_flush:\n");
    nb_pages_to_flush = KQEMU_FLUSH_ALL;
}

void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr)
{
    LOG_INT("kqemu_set_notdirty: addr=%08lx\n", 
                (unsigned long)ram_addr);
    /* we only track transitions to dirty state */
    if (phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] != 0xff)
        return;
    if (nb_ram_pages_to_update >= KQEMU_MAX_RAM_PAGES_TO_UPDATE)
        nb_ram_pages_to_update = KQEMU_RAM_PAGES_UPDATE_ALL;
    else
        ram_pages_to_update[nb_ram_pages_to_update++] = ram_addr;
}

static void kqemu_reset_modified_ram_pages(void)
{
    int i;
    unsigned long page_index;

    for(i = 0; i < nb_modified_ram_pages; i++) {
        page_index = modified_ram_pages[i] >> TARGET_PAGE_BITS;
        modified_ram_pages_table[page_index] = 0;
    }
    nb_modified_ram_pages = 0;
}

void kqemu_modify_page(CPUState *env, ram_addr_t ram_addr)
{
    unsigned long page_index;
    int ret;
#ifdef _WIN32
    DWORD temp;
#endif

    page_index = ram_addr >> TARGET_PAGE_BITS;
    if (!modified_ram_pages_table[page_index]) {
#if 0
        printf("%d: modify_page=%08lx\n", nb_modified_ram_pages, ram_addr);
#endif
        modified_ram_pages_table[page_index] = 1;
        modified_ram_pages[nb_modified_ram_pages++] = ram_addr;
        if (nb_modified_ram_pages >= KQEMU_MAX_MODIFIED_RAM_PAGES) {
            /* flush */
#ifdef _WIN32
            ret = DeviceIoControl(kqemu_fd, KQEMU_MODIFY_RAM_PAGES,
                                  &nb_modified_ram_pages,
                                  sizeof(nb_modified_ram_pages),
                                  NULL, 0, &temp, NULL);
#else
            ret = ioctl(kqemu_fd, KQEMU_MODIFY_RAM_PAGES,
                        &nb_modified_ram_pages);
#endif
            kqemu_reset_modified_ram_pages();
        }
    }
}

void kqemu_set_phys_mem(uint64_t start_addr, ram_addr_t size, 
                        ram_addr_t phys_offset)
{
    struct kqemu_phys_mem kphys_mem1, *kphys_mem = &kphys_mem1;
    uint64_t end;
    int ret, io_index;

    end = (start_addr + size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
    start_addr &= TARGET_PAGE_MASK;
    kphys_mem->phys_addr = start_addr;
    kphys_mem->size = end - start_addr;
    kphys_mem->ram_addr = phys_offset & TARGET_PAGE_MASK;
    io_index = phys_offset & ~TARGET_PAGE_MASK;
    switch(io_index) {
    case IO_MEM_RAM:
        kphys_mem->io_index = KQEMU_IO_MEM_RAM;
        break;
    case IO_MEM_ROM:
        kphys_mem->io_index = KQEMU_IO_MEM_ROM;
        break;
    default:
        if (qpi_io_memory == io_index) {
            kphys_mem->io_index = KQEMU_IO_MEM_COMM;
        } else {
            kphys_mem->io_index = KQEMU_IO_MEM_UNASSIGNED;
        }
        break;
    }
#ifdef _WIN32
    {
        DWORD temp;
        ret = DeviceIoControl(kqemu_fd, KQEMU_SET_PHYS_MEM, 
                              kphys_mem, sizeof(*kphys_mem),
                              NULL, 0, &temp, NULL) == TRUE ? 0 : -1;
    }
#else
    ret = ioctl(kqemu_fd, KQEMU_SET_PHYS_MEM, kphys_mem);
#endif
    if (ret < 0) {
        fprintf(stderr, "kqemu: KQEMU_SET_PHYS_PAGE error=%d: start_addr=0x%016" PRIx64 " size=0x%08lx phys_offset=0x%08lx\n",
                ret, start_addr, 
                (unsigned long)size, (unsigned long)phys_offset);
    }
}

struct fpstate {
    uint16_t fpuc;
    uint16_t dummy1;
    uint16_t fpus;
    uint16_t dummy2;
    uint16_t fptag;
    uint16_t dummy3;

    uint32_t fpip;
    uint32_t fpcs;
    uint32_t fpoo;
    uint32_t fpos;
    uint8_t fpregs1[8 * 10];
};

struct fpxstate {
    uint16_t fpuc;
    uint16_t fpus;
    uint16_t fptag;
    uint16_t fop;
    uint32_t fpuip;
    uint16_t cs_sel;
    uint16_t dummy0;
    uint32_t fpudp;
    uint16_t ds_sel;
    uint16_t dummy1;
    uint32_t mxcsr;
    uint32_t mxcsr_mask;
    uint8_t fpregs1[8 * 16];
    uint8_t xmm_regs[16 * 16];
    uint8_t dummy2[96];
};

static struct fpxstate fpx1 __attribute__((aligned(16)));

static void restore_native_fp_frstor(CPUState *env)
{
    int fptag, i, j;
    struct fpstate fp1, *fp = &fp1;

    fp->fpuc = env->fpuc;
    fp->fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
    fptag = 0;
    for (i=7; i>=0; i--) {
	fptag <<= 2;
	if (env->fptags[i]) {
            fptag |= 3;
        } else {
            /* the FPU automatically computes it */
        }
    }
    fp->fptag = fptag;
    j = env->fpstt;
    for(i = 0;i < 8; i++) {
        memcpy(&fp->fpregs1[i * 10], &env->fpregs[j].d, 10);
        j = (j + 1) & 7;
    }
    asm volatile ("frstor %0" : "=m" (*fp));
}

static void save_native_fp_fsave(CPUState *env)
{
    int fptag, i, j;
    uint16_t fpuc;
    struct fpstate fp1, *fp = &fp1;

    asm volatile ("fsave %0" : : "m" (*fp));
    env->fpuc = fp->fpuc;
    env->fpstt = (fp->fpus >> 11) & 7;
    env->fpus = fp->fpus & ~0x3800;
    fptag = fp->fptag;
    for(i = 0;i < 8; i++) {
        env->fptags[i] = ((fptag & 3) == 3);
        fptag >>= 2;
    }
    j = env->fpstt;
    for(i = 0;i < 8; i++) {
        memcpy(&env->fpregs[j].d, &fp->fpregs1[i * 10], 10);
        j = (j + 1) & 7;
    }
    /* we must restore the default rounding state */
    fpuc = 0x037f | (env->fpuc & (3 << 10));
    asm volatile("fldcw %0" : : "m" (fpuc));
}

static void restore_native_fp_fxrstor(CPUState *env)
{
    struct fpxstate *fp = &fpx1;
    int i, j, fptag;

    fp->fpuc = env->fpuc;
    fp->fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
    fptag = 0;
    for(i = 0; i < 8; i++)
        fptag |= (env->fptags[i] << i);
    fp->fptag = fptag ^ 0xff;

    j = env->fpstt;
    for(i = 0;i < 8; i++) {
        memcpy(&fp->fpregs1[i * 16], &env->fpregs[j].d, 10);
        j = (j + 1) & 7;
    }
    if (env->cpuid_features & CPUID_SSE) {
        fp->mxcsr = env->mxcsr;
        /* XXX: check if DAZ is not available */
        fp->mxcsr_mask = 0xffff;
        memcpy(fp->xmm_regs, env->xmm_regs, CPU_NB_REGS * 16);
    }
    asm volatile ("fxrstor %0" : "=m" (*fp));
}

static void save_native_fp_fxsave(CPUState *env)
{
    struct fpxstate *fp = &fpx1;
    int fptag, i, j;
    uint16_t fpuc;

    asm volatile ("fxsave %0" : : "m" (*fp));
    env->fpuc = fp->fpuc;
    env->fpstt = (fp->fpus >> 11) & 7;
    env->fpus = fp->fpus & ~0x3800;
    fptag = fp->fptag ^ 0xff;
    for(i = 0;i < 8; i++) {
        env->fptags[i] = (fptag >> i) & 1;
    }
    j = env->fpstt;
    for(i = 0;i < 8; i++) {
        memcpy(&env->fpregs[j].d, &fp->fpregs1[i * 16], 10);
        j = (j + 1) & 7;
    }
    if (env->cpuid_features & CPUID_SSE) {
        env->mxcsr = fp->mxcsr;
        memcpy(env->xmm_regs, fp->xmm_regs, CPU_NB_REGS * 16);
    }

    /* we must restore the default rounding state */
    asm volatile ("fninit");
    fpuc = 0x037f | (env->fpuc & (3 << 10));
    asm volatile("fldcw %0" : : "m" (fpuc));
}

static int do_syscall(CPUState *env,
                      struct kqemu_cpu_state *kenv)
{
    int selector;

    selector = (env->star >> 32) & 0xffff;
#ifdef TARGET_X86_64
    if (env->hflags & HF_LMA_MASK) {
        int code64;

        env->regs[R_ECX] = kenv->next_eip;
        env->regs[11] = env->eflags;

        code64 = env->hflags & HF_CS64_MASK;

        cpu_x86_set_cpl(env, 0);
        cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc,
                               0, 0xffffffff,
                               DESC_G_MASK | DESC_P_MASK |
                               DESC_S_MASK |
                               DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK | DESC_L_MASK);
        cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc,
                               0, 0xffffffff,
                               DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
                               DESC_S_MASK |
                               DESC_W_MASK | DESC_A_MASK);
        env->eflags &= ~env->fmask;
        if (code64)
            env->eip = env->lstar;
        else
            env->eip = env->cstar;
    } else
#endif
    {
        env->regs[R_ECX] = (uint32_t)kenv->next_eip;

        cpu_x86_set_cpl(env, 0);
        cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc,
                           0, 0xffffffff,
                               DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
                               DESC_S_MASK |
                               DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK);
        cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc,
                               0, 0xffffffff,
                               DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
                               DESC_S_MASK |
                               DESC_W_MASK | DESC_A_MASK);
        env->eflags &= ~(IF_MASK | RF_MASK | VM_MASK);
        env->eip = (uint32_t)env->star;
    }
    return 2;
}

#ifdef CONFIG_PROFILER

#define PC_REC_SIZE 1
#define PC_REC_HASH_BITS 16
#define PC_REC_HASH_SIZE (1 << PC_REC_HASH_BITS)

typedef struct PCRecord {
    unsigned long pc;
    int64_t count;
    struct PCRecord *next;
} PCRecord;

static PCRecord *pc_rec_hash[PC_REC_HASH_SIZE];
static int nb_pc_records;

static void kqemu_record_pc(unsigned long pc)
{
    unsigned long h;
    PCRecord **pr, *r;

    h = pc / PC_REC_SIZE;
    h = h ^ (h >> PC_REC_HASH_BITS);
    h &= (PC_REC_HASH_SIZE - 1);
    pr = &pc_rec_hash[h];
    for(;;) {
        r = *pr;
        if (r == NULL)
            break;
        if (r->pc == pc) {
            r->count++;
            return;
        }
        pr = &r->next;
    }
    r = malloc(sizeof(PCRecord));
    r->count = 1;
    r->pc = pc;
    r->next = NULL;
    *pr = r;
    nb_pc_records++;
}

static int pc_rec_cmp(const void *p1, const void *p2)
{
    PCRecord *r1 = *(PCRecord **)p1;
    PCRecord *r2 = *(PCRecord **)p2;
    if (r1->count < r2->count)
        return 1;
    else if (r1->count == r2->count)
        return 0;
    else
        return -1;
}

static void kqemu_record_flush(void)
{
    PCRecord *r, *r_next;
    int h;

    for(h = 0; h < PC_REC_HASH_SIZE; h++) {
        for(r = pc_rec_hash[h]; r != NULL; r = r_next) {
            r_next = r->next;
            free(r);
        }
        pc_rec_hash[h] = NULL;
    }
    nb_pc_records = 0;
}

void kqemu_record_dump(void)
{
    PCRecord **pr, *r;
    int i, h;
    FILE *f;
    int64_t total, sum;

    pr = malloc(sizeof(PCRecord *) * nb_pc_records);
    i = 0;
    total = 0;
    for(h = 0; h < PC_REC_HASH_SIZE; h++) {
        for(r = pc_rec_hash[h]; r != NULL; r = r->next) {
            pr[i++] = r;
            total += r->count;
        }
    }
    qsort(pr, nb_pc_records, sizeof(PCRecord *), pc_rec_cmp);

    f = fopen("/tmp/kqemu.stats", "w");
    if (!f) {
        perror("/tmp/kqemu.stats");
        exit(1);
    }
    fprintf(f, "total: %" PRId64 "\n", total);
    sum = 0;
    for(i = 0; i < nb_pc_records; i++) {
        r = pr[i];
        sum += r->count;
        fprintf(f, "%08lx: %" PRId64 " %0.2f%% %0.2f%%\n",
                r->pc,
                r->count,
                (double)r->count / (double)total * 100.0,
                (double)sum / (double)total * 100.0);
    }
    fclose(f);
    free(pr);

    kqemu_record_flush();
}
#endif

static inline void kqemu_load_seg(struct kqemu_segment_cache *ksc,
                                  const SegmentCache *sc)
{
    ksc->selector = sc->selector;
    ksc->flags = sc->flags;
    ksc->limit = sc->limit;
    ksc->base = sc->base;
}

static inline void kqemu_save_seg(SegmentCache *sc,
                                  const struct kqemu_segment_cache *ksc)
{
    sc->selector = ksc->selector;
    sc->flags = ksc->flags;
    sc->limit = ksc->limit;
    sc->base = ksc->base;
}

int kqemu_cpu_exec(CPUState *env)
{
    struct kqemu_cpu_state kcpu_state, *kenv = &kcpu_state;
    int ret, cpl, i;
#ifdef CONFIG_PROFILER
    int64_t ti;
#endif
#ifdef _WIN32
    DWORD temp;
#endif

#ifdef CONFIG_PROFILER
    ti = profile_getclock();
#endif
    LOG_INT("kqemu: cpu_exec: enter\n");
    LOG_INT_STATE(env);
    for(i = 0; i < CPU_NB_REGS; i++)
        kenv->regs[i] = env->regs[i];
    kenv->eip = env->eip;
    kenv->eflags = env->eflags;
    for(i = 0; i < 6; i++)
        kqemu_load_seg(&kenv->segs[i], &env->segs[i]);
    kqemu_load_seg(&kenv->ldt, &env->ldt);
    kqemu_load_seg(&kenv->tr, &env->tr);
    kqemu_load_seg(&kenv->gdt, &env->gdt);
    kqemu_load_seg(&kenv->idt, &env->idt);
    kenv->cr0 = env->cr[0];
    kenv->cr2 = env->cr[2];
    kenv->cr3 = env->cr[3];
    kenv->cr4 = env->cr[4];
    kenv->a20_mask = env->a20_mask;
    kenv->efer = env->efer;
    kenv->tsc_offset = 0;
    kenv->star = env->star;
    kenv->sysenter_cs = env->sysenter_cs;
    kenv->sysenter_esp = env->sysenter_esp;
    kenv->sysenter_eip = env->sysenter_eip;
#ifdef TARGET_X86_64
    kenv->lstar = env->lstar;
    kenv->cstar = env->cstar;
    kenv->fmask = env->fmask;
    kenv->kernelgsbase = env->kernelgsbase;
#endif
    if (env->dr[7] & 0xff) {
        kenv->dr7 = env->dr[7];
        kenv->dr0 = env->dr[0];
        kenv->dr1 = env->dr[1];
        kenv->dr2 = env->dr[2];
        kenv->dr3 = env->dr[3];
    } else {
        kenv->dr7 = 0;
    }
    kenv->dr6 = env->dr[6];
    cpl = (env->hflags & HF_CPL_MASK);
    kenv->cpl = cpl;
    kenv->nb_pages_to_flush = nb_pages_to_flush;
    kenv->user_only = (env->kqemu_enabled == 1);
    kenv->nb_ram_pages_to_update = nb_ram_pages_to_update;
    nb_ram_pages_to_update = 0;
    kenv->nb_modified_ram_pages = nb_modified_ram_pages;

    kqemu_reset_modified_ram_pages();

    if (env->cpuid_features & CPUID_FXSR)
        restore_native_fp_fxrstor(env);
    else
        restore_native_fp_frstor(env);

#ifdef _WIN32
    if (DeviceIoControl(kqemu_fd, KQEMU_EXEC,
                        kenv, sizeof(struct kqemu_cpu_state),
                        kenv, sizeof(struct kqemu_cpu_state),
                        &temp, NULL)) {
        ret = kenv->retval;
    } else {
        ret = -1;
    }
#else
    ioctl(kqemu_fd, KQEMU_EXEC, kenv);
    ret = kenv->retval;
#endif
    if (env->cpuid_features & CPUID_FXSR)
        save_native_fp_fxsave(env);
    else
        save_native_fp_fsave(env);

    for(i = 0; i < CPU_NB_REGS; i++)
        env->regs[i] = kenv->regs[i];
    env->eip = kenv->eip;
    env->eflags = kenv->eflags;
    for(i = 0; i < 6; i++)
        kqemu_save_seg(&env->segs[i], &kenv->segs[i]);
    cpu_x86_set_cpl(env, kenv->cpl);
    kqemu_save_seg(&env->ldt, &kenv->ldt);
    env->cr[0] = kenv->cr0;
    env->cr[4] = kenv->cr4;
    env->cr[3] = kenv->cr3;
    env->cr[2] = kenv->cr2;
    env->dr[6] = kenv->dr6;
#ifdef TARGET_X86_64
    env->kernelgsbase = kenv->kernelgsbase;
#endif

    /* flush pages as indicated by kqemu */
    if (kenv->nb_pages_to_flush >= KQEMU_FLUSH_ALL) {
        tlb_flush(env, 1);
    } else {
        for(i = 0; i < kenv->nb_pages_to_flush; i++) {
            tlb_flush_page(env, pages_to_flush[i]);
        }
    }
    nb_pages_to_flush = 0;

#ifdef CONFIG_PROFILER
    kqemu_time += profile_getclock() - ti;
    kqemu_exec_count++;
#endif

    if (kenv->nb_ram_pages_to_update > 0) {
        cpu_tlb_update_dirty(env);
    }

    if (kenv->nb_modified_ram_pages > 0) {
        for(i = 0; i < kenv->nb_modified_ram_pages; i++) {
            unsigned long addr;
            addr = modified_ram_pages[i];
            tb_invalidate_phys_page_range(addr, addr + TARGET_PAGE_SIZE, 0);
        }
    }

    /* restore the hidden flags */
    {
        unsigned int new_hflags;
#ifdef TARGET_X86_64
        if ((env->hflags & HF_LMA_MASK) &&
            (env->segs[R_CS].flags & DESC_L_MASK)) {
            /* long mode */
            new_hflags = HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
        } else
#endif
        {
            /* legacy / compatibility case */
            new_hflags = (env->segs[R_CS].flags & DESC_B_MASK)
                >> (DESC_B_SHIFT - HF_CS32_SHIFT);
            new_hflags |= (env->segs[R_SS].flags & DESC_B_MASK)
                >> (DESC_B_SHIFT - HF_SS32_SHIFT);
            if (!(env->cr[0] & CR0_PE_MASK) ||
                   (env->eflags & VM_MASK) ||
                   !(env->hflags & HF_CS32_MASK)) {
                /* XXX: try to avoid this test. The problem comes from the
                   fact that is real mode or vm86 mode we only modify the
                   'base' and 'selector' fields of the segment cache to go
                   faster. A solution may be to force addseg to one in
                   translate-i386.c. */
                new_hflags |= HF_ADDSEG_MASK;
            } else {
                new_hflags |= ((env->segs[R_DS].base |
                                env->segs[R_ES].base |
                                env->segs[R_SS].base) != 0) <<
                    HF_ADDSEG_SHIFT;
            }
        }
        env->hflags = (env->hflags &
           ~(HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)) |
            new_hflags;
    }
    /* update FPU flags */
    env->hflags = (env->hflags & ~(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)) |
        ((env->cr[0] << (HF_MP_SHIFT - 1)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK));
    if (env->cr[4] & CR4_OSFXSR_MASK)
        env->hflags |= HF_OSFXSR_MASK;
    else
        env->hflags &= ~HF_OSFXSR_MASK;

    LOG_INT("kqemu: kqemu_cpu_exec: ret=0x%x\n", ret);
    if (ret == KQEMU_RET_SYSCALL) {
        /* syscall instruction */
        return do_syscall(env, kenv);
    } else
    if ((ret & 0xff00) == KQEMU_RET_INT) {
        env->exception_index = ret & 0xff;
        env->error_code = 0;
        env->exception_is_int = 1;
        env->exception_next_eip = kenv->next_eip;
#ifdef CONFIG_PROFILER
        kqemu_ret_int_count++;
#endif
        LOG_INT("kqemu: interrupt v=%02x:\n", env->exception_index);
        LOG_INT_STATE(env);
        return 1;
    } else if ((ret & 0xff00) == KQEMU_RET_EXCEPTION) {
        env->exception_index = ret & 0xff;
        env->error_code = kenv->error_code;
        env->exception_is_int = 0;
        env->exception_next_eip = 0;
#ifdef CONFIG_PROFILER
        kqemu_ret_excp_count++;
#endif
        LOG_INT("kqemu: exception v=%02x e=%04x:\n",
                    env->exception_index, env->error_code);
        LOG_INT_STATE(env);
        return 1;
    } else if (ret == KQEMU_RET_INTR) {
#ifdef CONFIG_PROFILER
        kqemu_ret_intr_count++;
#endif
        LOG_INT_STATE(env);
        return 0;
    } else if (ret == KQEMU_RET_SOFTMMU) {
#ifdef CONFIG_PROFILER
        {
            unsigned long pc = env->eip + env->segs[R_CS].base;
            kqemu_record_pc(pc);
        }
#endif
        LOG_INT_STATE(env);
        return 2;
    } else {
        cpu_dump_state(env, stderr, fprintf, 0);
        fprintf(stderr, "Unsupported return value: 0x%x\n", ret);
        exit(1);
    }
    return 0;
}

void kqemu_cpu_interrupt(CPUState *env)
{
#if defined(_WIN32)
    /* cancelling the I/O request causes KQEMU to finish executing the
       current block and successfully returning. */
    CancelIo(kqemu_fd);
#endif
}

/* 
   QEMU paravirtualization interface. The current interface only
   allows to modify the IF and IOPL flags when running in
   kqemu.

   At this point it is not very satisfactory. I leave it for reference
   as it adds little complexity.
*/

#define QPI_COMM_PAGE_PHYS_ADDR 0xff000000

static uint32_t qpi_mem_readb(void *opaque, target_phys_addr_t addr)
{
    return 0;
}

static uint32_t qpi_mem_readw(void *opaque, target_phys_addr_t addr)
{
    return 0;
}

static void qpi_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
{
}

static void qpi_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
{
}

static uint32_t qpi_mem_readl(void *opaque, target_phys_addr_t addr)
{
    CPUState *env;

    env = cpu_single_env;
    if (!env)
        return 0;
    return env->eflags & (IF_MASK | IOPL_MASK);
}

/* Note: after writing to this address, the guest code must make sure
   it is exiting the current TB. pushf/popf can be used for that
   purpose. */
static void qpi_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
    CPUState *env;

    env = cpu_single_env;
    if (!env)
        return;
    env->eflags = (env->eflags & ~(IF_MASK | IOPL_MASK)) | 
        (val & (IF_MASK | IOPL_MASK));
}

static CPUReadMemoryFunc *qpi_mem_read[3] = {
    qpi_mem_readb,
    qpi_mem_readw,
    qpi_mem_readl,
};

static CPUWriteMemoryFunc *qpi_mem_write[3] = {
    qpi_mem_writeb,
    qpi_mem_writew,
    qpi_mem_writel,
};

static void qpi_init(void)
{
    kqemu_comm_base = 0xff000000 | 1;
    qpi_io_memory = cpu_register_io_memory(
                                           qpi_mem_read, 
                                           qpi_mem_write, NULL);
    cpu_register_physical_memory(kqemu_comm_base & ~0xfff, 
                                 0x1000, qpi_io_memory);
}
#endif