mc146818rtc.c 16.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
/*
 * QEMU MC146818 RTC emulation
 * 
 * Copyright (c) 2003-2004 Fabrice Bellard
 * 
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include "vl.h"

//#define DEBUG_CMOS

#define RTC_SECONDS             0
#define RTC_SECONDS_ALARM       1
#define RTC_MINUTES             2
#define RTC_MINUTES_ALARM       3
#define RTC_HOURS               4
#define RTC_HOURS_ALARM         5
#define RTC_ALARM_DONT_CARE    0xC0

#define RTC_DAY_OF_WEEK         6
#define RTC_DAY_OF_MONTH        7
#define RTC_MONTH               8
#define RTC_YEAR                9

#define RTC_REG_A               10
#define RTC_REG_B               11
#define RTC_REG_C               12
#define RTC_REG_D               13

#define REG_A_UIP 0x80

#define REG_B_SET 0x80
#define REG_B_PIE 0x40
#define REG_B_AIE 0x20
#define REG_B_UIE 0x10

struct RTCState {
    uint8_t cmos_data[128];
    uint8_t cmos_index;
    struct tm current_tm;
    qemu_irq irq;
    target_phys_addr_t base;
    /* periodic timer */
    QEMUTimer *periodic_timer;
    int64_t next_periodic_time;
    /* second update */
    int64_t next_second_time;
    QEMUTimer *second_timer;
    QEMUTimer *second_timer2;
};

static void rtc_set_time(RTCState *s);
static void rtc_copy_date(RTCState *s);

static void rtc_timer_update(RTCState *s, int64_t current_time)
{
    int period_code, period;
    int64_t cur_clock, next_irq_clock;

    period_code = s->cmos_data[RTC_REG_A] & 0x0f;
    if (period_code != 0 && 
        (s->cmos_data[RTC_REG_B] & REG_B_PIE)) {
        if (period_code <= 2)
            period_code += 7;
        /* period in 32 Khz cycles */
        period = 1 << (period_code - 1);
        /* compute 32 khz clock */
        cur_clock = muldiv64(current_time, 32768, ticks_per_sec);
        next_irq_clock = (cur_clock & ~(period - 1)) + period;
        s->next_periodic_time = muldiv64(next_irq_clock, ticks_per_sec, 32768) + 1;
        qemu_mod_timer(s->periodic_timer, s->next_periodic_time);
    } else {
        qemu_del_timer(s->periodic_timer);
    }
}

static void rtc_periodic_timer(void *opaque)
{
    RTCState *s = opaque;

    rtc_timer_update(s, s->next_periodic_time);
    s->cmos_data[RTC_REG_C] |= 0xc0;
    qemu_irq_raise(s->irq);
}

static void cmos_ioport_write(void *opaque, uint32_t addr, uint32_t data)
{
    RTCState *s = opaque;

    if ((addr & 1) == 0) {
        s->cmos_index = data & 0x7f;
    } else {
#ifdef DEBUG_CMOS
        printf("cmos: write index=0x%02x val=0x%02x\n",
               s->cmos_index, data);
#endif        
        switch(s->cmos_index) {
        case RTC_SECONDS_ALARM:
        case RTC_MINUTES_ALARM:
        case RTC_HOURS_ALARM:
            /* XXX: not supported */
            s->cmos_data[s->cmos_index] = data;
            break;
        case RTC_SECONDS:
        case RTC_MINUTES:
        case RTC_HOURS:
        case RTC_DAY_OF_WEEK:
        case RTC_DAY_OF_MONTH:
        case RTC_MONTH:
        case RTC_YEAR:
            s->cmos_data[s->cmos_index] = data;
            /* if in set mode, do not update the time */
            if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
                rtc_set_time(s);
            }
            break;
        case RTC_REG_A:
            /* UIP bit is read only */
            s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
                (s->cmos_data[RTC_REG_A] & REG_A_UIP);
            rtc_timer_update(s, qemu_get_clock(vm_clock));
            break;
        case RTC_REG_B:
            if (data & REG_B_SET) {
                /* set mode: reset UIP mode */
                s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
                data &= ~REG_B_UIE;
            } else {
                /* if disabling set mode, update the time */
                if (s->cmos_data[RTC_REG_B] & REG_B_SET) {
                    rtc_set_time(s);
                }
            }
            s->cmos_data[RTC_REG_B] = data;
            rtc_timer_update(s, qemu_get_clock(vm_clock));
            break;
        case RTC_REG_C:
        case RTC_REG_D:
            /* cannot write to them */
            break;
        default:
            s->cmos_data[s->cmos_index] = data;
            break;
        }
    }
}

static inline int to_bcd(RTCState *s, int a)
{
    if (s->cmos_data[RTC_REG_B] & 0x04) {
        return a;
    } else {
        return ((a / 10) << 4) | (a % 10);
    }
}

static inline int from_bcd(RTCState *s, int a)
{
    if (s->cmos_data[RTC_REG_B] & 0x04) {
        return a;
    } else {
        return ((a >> 4) * 10) + (a & 0x0f);
    }
}

static void rtc_set_time(RTCState *s)
{
    struct tm *tm = &s->current_tm;

    tm->tm_sec = from_bcd(s, s->cmos_data[RTC_SECONDS]);
    tm->tm_min = from_bcd(s, s->cmos_data[RTC_MINUTES]);
    tm->tm_hour = from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
    if (!(s->cmos_data[RTC_REG_B] & 0x02) &&
        (s->cmos_data[RTC_HOURS] & 0x80)) {
        tm->tm_hour += 12;
    }
    tm->tm_wday = from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]);
    tm->tm_mday = from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
    tm->tm_mon = from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
    tm->tm_year = from_bcd(s, s->cmos_data[RTC_YEAR]) + 100;
}

static void rtc_copy_date(RTCState *s)
{
    const struct tm *tm = &s->current_tm;

    s->cmos_data[RTC_SECONDS] = to_bcd(s, tm->tm_sec);
    s->cmos_data[RTC_MINUTES] = to_bcd(s, tm->tm_min);
    if (s->cmos_data[RTC_REG_B] & 0x02) {
        /* 24 hour format */
        s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour);
    } else {
        /* 12 hour format */
        s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour % 12);
        if (tm->tm_hour >= 12)
            s->cmos_data[RTC_HOURS] |= 0x80;
    }
    s->cmos_data[RTC_DAY_OF_WEEK] = to_bcd(s, tm->tm_wday);
    s->cmos_data[RTC_DAY_OF_MONTH] = to_bcd(s, tm->tm_mday);
    s->cmos_data[RTC_MONTH] = to_bcd(s, tm->tm_mon + 1);
    s->cmos_data[RTC_YEAR] = to_bcd(s, tm->tm_year % 100);
}

/* month is between 0 and 11. */
static int get_days_in_month(int month, int year)
{
    static const int days_tab[12] = { 
        31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 
    };
    int d;
    if ((unsigned )month >= 12)
        return 31;
    d = days_tab[month];
    if (month == 1) {
        if ((year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0))
            d++;
    }
    return d;
}

/* update 'tm' to the next second */
static void rtc_next_second(struct tm *tm)
{
    int days_in_month;

    tm->tm_sec++;
    if ((unsigned)tm->tm_sec >= 60) {
        tm->tm_sec = 0;
        tm->tm_min++;
        if ((unsigned)tm->tm_min >= 60) {
            tm->tm_min = 0;
            tm->tm_hour++;
            if ((unsigned)tm->tm_hour >= 24) {
                tm->tm_hour = 0;
                /* next day */
                tm->tm_wday++;
                if ((unsigned)tm->tm_wday >= 7)
                    tm->tm_wday = 0;
                days_in_month = get_days_in_month(tm->tm_mon, 
                                                  tm->tm_year + 1900);
                tm->tm_mday++;
                if (tm->tm_mday < 1) {
                    tm->tm_mday = 1;
                } else if (tm->tm_mday > days_in_month) {
                    tm->tm_mday = 1;
                    tm->tm_mon++;
                    if (tm->tm_mon >= 12) {
                        tm->tm_mon = 0;
                        tm->tm_year++;
                    }
                }
            }
        }
    }
}


static void rtc_update_second(void *opaque)
{
    RTCState *s = opaque;
    int64_t delay;

    /* if the oscillator is not in normal operation, we do not update */
    if ((s->cmos_data[RTC_REG_A] & 0x70) != 0x20) {
        s->next_second_time += ticks_per_sec;
        qemu_mod_timer(s->second_timer, s->next_second_time);
    } else {
        rtc_next_second(&s->current_tm);
        
        if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
            /* update in progress bit */
            s->cmos_data[RTC_REG_A] |= REG_A_UIP;
        }
        /* should be 244 us = 8 / 32768 seconds, but currently the
           timers do not have the necessary resolution. */
        delay = (ticks_per_sec * 1) / 100;
        if (delay < 1)
            delay = 1;
        qemu_mod_timer(s->second_timer2, 
                       s->next_second_time + delay);
    }
}

static void rtc_update_second2(void *opaque)
{
    RTCState *s = opaque;

    if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
        rtc_copy_date(s);
    }

    /* check alarm */
    if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
        if (((s->cmos_data[RTC_SECONDS_ALARM] & 0xc0) == 0xc0 ||
             s->cmos_data[RTC_SECONDS_ALARM] == s->current_tm.tm_sec) &&
            ((s->cmos_data[RTC_MINUTES_ALARM] & 0xc0) == 0xc0 ||
             s->cmos_data[RTC_MINUTES_ALARM] == s->current_tm.tm_mon) &&
            ((s->cmos_data[RTC_HOURS_ALARM] & 0xc0) == 0xc0 ||
             s->cmos_data[RTC_HOURS_ALARM] == s->current_tm.tm_hour)) {

            s->cmos_data[RTC_REG_C] |= 0xa0; 
            qemu_irq_raise(s->irq);
        }
    }

    /* update ended interrupt */
    if (s->cmos_data[RTC_REG_B] & REG_B_UIE) {
        s->cmos_data[RTC_REG_C] |= 0x90; 
        qemu_irq_raise(s->irq);
    }

    /* clear update in progress bit */
    s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;

    s->next_second_time += ticks_per_sec;
    qemu_mod_timer(s->second_timer, s->next_second_time);
}

static uint32_t cmos_ioport_read(void *opaque, uint32_t addr)
{
    RTCState *s = opaque;
    int ret;
    if ((addr & 1) == 0) {
        return 0xff;
    } else {
        switch(s->cmos_index) {
        case RTC_SECONDS:
        case RTC_MINUTES:
        case RTC_HOURS:
        case RTC_DAY_OF_WEEK:
        case RTC_DAY_OF_MONTH:
        case RTC_MONTH:
        case RTC_YEAR:
            ret = s->cmos_data[s->cmos_index];
            break;
        case RTC_REG_A:
            ret = s->cmos_data[s->cmos_index];
            break;
        case RTC_REG_C:
            ret = s->cmos_data[s->cmos_index];
            qemu_irq_lower(s->irq);
            s->cmos_data[RTC_REG_C] = 0x00; 
            break;
        default:
            ret = s->cmos_data[s->cmos_index];
            break;
        }
#ifdef DEBUG_CMOS
        printf("cmos: read index=0x%02x val=0x%02x\n",
               s->cmos_index, ret);
#endif
        return ret;
    }
}

void rtc_set_memory(RTCState *s, int addr, int val)
{
    if (addr >= 0 && addr <= 127)
        s->cmos_data[addr] = val;
}

void rtc_set_date(RTCState *s, const struct tm *tm)
{
    s->current_tm = *tm;
    rtc_copy_date(s);
}

/* PC cmos mappings */
#define REG_IBM_CENTURY_BYTE        0x32
#define REG_IBM_PS2_CENTURY_BYTE    0x37

void rtc_set_date_from_host(RTCState *s)
{
    time_t ti;
    struct tm *tm;
    int val;

    /* set the CMOS date */
    time(&ti);
    if (rtc_utc)
        tm = gmtime(&ti);
    else
        tm = localtime(&ti);
    rtc_set_date(s, tm);

    val = to_bcd(s, (tm->tm_year / 100) + 19);
    rtc_set_memory(s, REG_IBM_CENTURY_BYTE, val);
    rtc_set_memory(s, REG_IBM_PS2_CENTURY_BYTE, val);
}

static void rtc_save(QEMUFile *f, void *opaque)
{
    RTCState *s = opaque;

    qemu_put_buffer(f, s->cmos_data, 128);
    qemu_put_8s(f, &s->cmos_index);
    
    qemu_put_be32s(f, &s->current_tm.tm_sec);
    qemu_put_be32s(f, &s->current_tm.tm_min);
    qemu_put_be32s(f, &s->current_tm.tm_hour);
    qemu_put_be32s(f, &s->current_tm.tm_wday);
    qemu_put_be32s(f, &s->current_tm.tm_mday);
    qemu_put_be32s(f, &s->current_tm.tm_mon);
    qemu_put_be32s(f, &s->current_tm.tm_year);

    qemu_put_timer(f, s->periodic_timer);
    qemu_put_be64s(f, &s->next_periodic_time);

    qemu_put_be64s(f, &s->next_second_time);
    qemu_put_timer(f, s->second_timer);
    qemu_put_timer(f, s->second_timer2);
}

static int rtc_load(QEMUFile *f, void *opaque, int version_id)
{
    RTCState *s = opaque;

    if (version_id != 1)
        return -EINVAL;

    qemu_get_buffer(f, s->cmos_data, 128);
    qemu_get_8s(f, &s->cmos_index);

    qemu_get_be32s(f, &s->current_tm.tm_sec);
    qemu_get_be32s(f, &s->current_tm.tm_min);
    qemu_get_be32s(f, &s->current_tm.tm_hour);
    qemu_get_be32s(f, &s->current_tm.tm_wday);
    qemu_get_be32s(f, &s->current_tm.tm_mday);
    qemu_get_be32s(f, &s->current_tm.tm_mon);
    qemu_get_be32s(f, &s->current_tm.tm_year);

    qemu_get_timer(f, s->periodic_timer);
    qemu_get_be64s(f, &s->next_periodic_time);

    qemu_get_be64s(f, &s->next_second_time);
    qemu_get_timer(f, s->second_timer);
    qemu_get_timer(f, s->second_timer2);
    return 0;
}

RTCState *rtc_init(int base, qemu_irq irq)
{
    RTCState *s;

    s = qemu_mallocz(sizeof(RTCState));
    if (!s)
        return NULL;

    s->irq = irq;
    s->cmos_data[RTC_REG_A] = 0x26;
    s->cmos_data[RTC_REG_B] = 0x02;
    s->cmos_data[RTC_REG_C] = 0x00;
    s->cmos_data[RTC_REG_D] = 0x80;

    rtc_set_date_from_host(s);

    s->periodic_timer = qemu_new_timer(vm_clock, 
                                       rtc_periodic_timer, s);
    s->second_timer = qemu_new_timer(vm_clock, 
                                     rtc_update_second, s);
    s->second_timer2 = qemu_new_timer(vm_clock, 
                                      rtc_update_second2, s);

    s->next_second_time = qemu_get_clock(vm_clock) + (ticks_per_sec * 99) / 100;
    qemu_mod_timer(s->second_timer2, s->next_second_time);

    register_ioport_write(base, 2, 1, cmos_ioport_write, s);
    register_ioport_read(base, 2, 1, cmos_ioport_read, s);

    register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s);
    return s;
}

/* Memory mapped interface */
uint32_t cmos_mm_readb (void *opaque, target_phys_addr_t addr)
{
    RTCState *s = opaque;

    return cmos_ioport_read(s, addr - s->base) & 0xFF;
}

void cmos_mm_writeb (void *opaque,
                     target_phys_addr_t addr, uint32_t value)
{
    RTCState *s = opaque;

    cmos_ioport_write(s, addr - s->base, value & 0xFF);
}

uint32_t cmos_mm_readw (void *opaque, target_phys_addr_t addr)
{
    RTCState *s = opaque;

    return cmos_ioport_read(s, addr - s->base) & 0xFFFF;
}

void cmos_mm_writew (void *opaque,
                     target_phys_addr_t addr, uint32_t value)
{
    RTCState *s = opaque;

    cmos_ioport_write(s, addr - s->base, value & 0xFFFF);
}

uint32_t cmos_mm_readl (void *opaque, target_phys_addr_t addr)
{
    RTCState *s = opaque;

    return cmos_ioport_read(s, addr - s->base);
}

void cmos_mm_writel (void *opaque,
                     target_phys_addr_t addr, uint32_t value)
{
    RTCState *s = opaque;

    cmos_ioport_write(s, addr - s->base, value);
}

static CPUReadMemoryFunc *rtc_mm_read[] = {
    &cmos_mm_readb,
    &cmos_mm_readw,
    &cmos_mm_readl,
};

static CPUWriteMemoryFunc *rtc_mm_write[] = {
    &cmos_mm_writeb,
    &cmos_mm_writew,
    &cmos_mm_writel,
};

RTCState *rtc_mm_init(target_phys_addr_t base, qemu_irq irq)
{
    RTCState *s;
    int io_memory;

    s = qemu_mallocz(sizeof(RTCState));
    if (!s)
        return NULL;

    s->irq = irq;
    s->cmos_data[RTC_REG_A] = 0x26;
    s->cmos_data[RTC_REG_B] = 0x02;
    s->cmos_data[RTC_REG_C] = 0x00;
    s->cmos_data[RTC_REG_D] = 0x80;
    s->base = base;

    rtc_set_date_from_host(s);

    s->periodic_timer = qemu_new_timer(vm_clock,
                                       rtc_periodic_timer, s);
    s->second_timer = qemu_new_timer(vm_clock,
                                     rtc_update_second, s);
    s->second_timer2 = qemu_new_timer(vm_clock,
                                      rtc_update_second2, s);

    s->next_second_time = qemu_get_clock(vm_clock) + (ticks_per_sec * 99) / 100;
    qemu_mod_timer(s->second_timer2, s->next_second_time);

    io_memory = cpu_register_io_memory(0, rtc_mm_read, rtc_mm_write, s);
    cpu_register_physical_memory(base, 2, io_memory);

    register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s);
    return s;
}