softmmu_template.h
11.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
/*
* Software MMU support
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#define DATA_SIZE (1 << SHIFT)
#if DATA_SIZE == 8
#define SUFFIX q
#define USUFFIX q
#define DATA_TYPE uint64_t
#elif DATA_SIZE == 4
#define SUFFIX l
#define USUFFIX l
#define DATA_TYPE uint32_t
#elif DATA_SIZE == 2
#define SUFFIX w
#define USUFFIX uw
#define DATA_TYPE uint16_t
#elif DATA_SIZE == 1
#define SUFFIX b
#define USUFFIX ub
#define DATA_TYPE uint8_t
#else
#error unsupported data size
#endif
#ifdef SOFTMMU_CODE_ACCESS
#define READ_ACCESS_TYPE 2
#define ADDR_READ addr_code
#else
#define READ_ACCESS_TYPE 0
#define ADDR_READ addr_read
#endif
static DATA_TYPE glue(glue(slow_ld, SUFFIX), MMUSUFFIX)(target_ulong addr,
int mmu_idx,
void *retaddr);
static inline DATA_TYPE glue(io_read, SUFFIX)(target_phys_addr_t physaddr,
target_ulong tlb_addr)
{
DATA_TYPE res;
int index;
index = (tlb_addr >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
#if SHIFT <= 2
res = io_mem_read[index][SHIFT](io_mem_opaque[index], physaddr);
#else
#ifdef TARGET_WORDS_BIGENDIAN
res = (uint64_t)io_mem_read[index][2](io_mem_opaque[index], physaddr) << 32;
res |= io_mem_read[index][2](io_mem_opaque[index], physaddr + 4);
#else
res = io_mem_read[index][2](io_mem_opaque[index], physaddr);
res |= (uint64_t)io_mem_read[index][2](io_mem_opaque[index], physaddr + 4) << 32;
#endif
#endif /* SHIFT > 2 */
#ifdef USE_KQEMU
env->last_io_time = cpu_get_time_fast();
#endif
return res;
}
/* handle all cases except unaligned access which span two pages */
DATA_TYPE REGPARM(1) glue(glue(__ld, SUFFIX), MMUSUFFIX)(target_ulong addr,
int mmu_idx)
{
DATA_TYPE res;
int index;
target_ulong tlb_addr;
target_phys_addr_t physaddr;
void *retaddr;
/* test if there is match for unaligned or IO access */
/* XXX: could done more in memory macro in a non portable way */
index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
redo:
tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
if ((addr & TARGET_PAGE_MASK) == (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
physaddr = addr + env->tlb_table[mmu_idx][index].addend;
if (tlb_addr & ~TARGET_PAGE_MASK) {
/* IO access */
if ((addr & (DATA_SIZE - 1)) != 0)
goto do_unaligned_access;
res = glue(io_read, SUFFIX)(physaddr, tlb_addr);
} else if (((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1) >= TARGET_PAGE_SIZE) {
/* slow unaligned access (it spans two pages or IO) */
do_unaligned_access:
retaddr = GETPC();
#ifdef ALIGNED_ONLY
do_unaligned_access(addr, READ_ACCESS_TYPE, mmu_idx, retaddr);
#endif
res = glue(glue(slow_ld, SUFFIX), MMUSUFFIX)(addr,
mmu_idx, retaddr);
} else {
/* unaligned/aligned access in the same page */
#ifdef ALIGNED_ONLY
if ((addr & (DATA_SIZE - 1)) != 0) {
retaddr = GETPC();
do_unaligned_access(addr, READ_ACCESS_TYPE, mmu_idx, retaddr);
}
#endif
res = glue(glue(ld, USUFFIX), _raw)((uint8_t *)(long)physaddr);
}
} else {
/* the page is not in the TLB : fill it */
retaddr = GETPC();
#ifdef ALIGNED_ONLY
if ((addr & (DATA_SIZE - 1)) != 0)
do_unaligned_access(addr, READ_ACCESS_TYPE, mmu_idx, retaddr);
#endif
tlb_fill(addr, READ_ACCESS_TYPE, mmu_idx, retaddr);
goto redo;
}
return res;
}
/* handle all unaligned cases */
static DATA_TYPE glue(glue(slow_ld, SUFFIX), MMUSUFFIX)(target_ulong addr,
int mmu_idx,
void *retaddr)
{
DATA_TYPE res, res1, res2;
int index, shift;
target_phys_addr_t physaddr;
target_ulong tlb_addr, addr1, addr2;
index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
redo:
tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
if ((addr & TARGET_PAGE_MASK) == (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
physaddr = addr + env->tlb_table[mmu_idx][index].addend;
if (tlb_addr & ~TARGET_PAGE_MASK) {
/* IO access */
if ((addr & (DATA_SIZE - 1)) != 0)
goto do_unaligned_access;
res = glue(io_read, SUFFIX)(physaddr, tlb_addr);
} else if (((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1) >= TARGET_PAGE_SIZE) {
do_unaligned_access:
/* slow unaligned access (it spans two pages) */
addr1 = addr & ~(DATA_SIZE - 1);
addr2 = addr1 + DATA_SIZE;
res1 = glue(glue(slow_ld, SUFFIX), MMUSUFFIX)(addr1,
mmu_idx, retaddr);
res2 = glue(glue(slow_ld, SUFFIX), MMUSUFFIX)(addr2,
mmu_idx, retaddr);
shift = (addr & (DATA_SIZE - 1)) * 8;
#ifdef TARGET_WORDS_BIGENDIAN
res = (res1 << shift) | (res2 >> ((DATA_SIZE * 8) - shift));
#else
res = (res1 >> shift) | (res2 << ((DATA_SIZE * 8) - shift));
#endif
res = (DATA_TYPE)res;
} else {
/* unaligned/aligned access in the same page */
res = glue(glue(ld, USUFFIX), _raw)((uint8_t *)(long)physaddr);
}
} else {
/* the page is not in the TLB : fill it */
tlb_fill(addr, READ_ACCESS_TYPE, mmu_idx, retaddr);
goto redo;
}
return res;
}
#ifndef SOFTMMU_CODE_ACCESS
static void glue(glue(slow_st, SUFFIX), MMUSUFFIX)(target_ulong addr,
DATA_TYPE val,
int mmu_idx,
void *retaddr);
static inline void glue(io_write, SUFFIX)(target_phys_addr_t physaddr,
DATA_TYPE val,
target_ulong tlb_addr,
void *retaddr)
{
int index;
index = (tlb_addr >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
env->mem_write_vaddr = tlb_addr;
env->mem_write_pc = (unsigned long)retaddr;
#if SHIFT <= 2
io_mem_write[index][SHIFT](io_mem_opaque[index], physaddr, val);
#else
#ifdef TARGET_WORDS_BIGENDIAN
io_mem_write[index][2](io_mem_opaque[index], physaddr, val >> 32);
io_mem_write[index][2](io_mem_opaque[index], physaddr + 4, val);
#else
io_mem_write[index][2](io_mem_opaque[index], physaddr, val);
io_mem_write[index][2](io_mem_opaque[index], physaddr + 4, val >> 32);
#endif
#endif /* SHIFT > 2 */
#ifdef USE_KQEMU
env->last_io_time = cpu_get_time_fast();
#endif
}
void REGPARM(2) glue(glue(__st, SUFFIX), MMUSUFFIX)(target_ulong addr,
DATA_TYPE val,
int mmu_idx)
{
target_phys_addr_t physaddr;
target_ulong tlb_addr;
void *retaddr;
int index;
index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
redo:
tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
if ((addr & TARGET_PAGE_MASK) == (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
physaddr = addr + env->tlb_table[mmu_idx][index].addend;
if (tlb_addr & ~TARGET_PAGE_MASK) {
/* IO access */
if ((addr & (DATA_SIZE - 1)) != 0)
goto do_unaligned_access;
retaddr = GETPC();
glue(io_write, SUFFIX)(physaddr, val, tlb_addr, retaddr);
} else if (((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1) >= TARGET_PAGE_SIZE) {
do_unaligned_access:
retaddr = GETPC();
#ifdef ALIGNED_ONLY
do_unaligned_access(addr, 1, mmu_idx, retaddr);
#endif
glue(glue(slow_st, SUFFIX), MMUSUFFIX)(addr, val,
mmu_idx, retaddr);
} else {
/* aligned/unaligned access in the same page */
#ifdef ALIGNED_ONLY
if ((addr & (DATA_SIZE - 1)) != 0) {
retaddr = GETPC();
do_unaligned_access(addr, 1, mmu_idx, retaddr);
}
#endif
glue(glue(st, SUFFIX), _raw)((uint8_t *)(long)physaddr, val);
}
} else {
/* the page is not in the TLB : fill it */
retaddr = GETPC();
#ifdef ALIGNED_ONLY
if ((addr & (DATA_SIZE - 1)) != 0)
do_unaligned_access(addr, 1, mmu_idx, retaddr);
#endif
tlb_fill(addr, 1, mmu_idx, retaddr);
goto redo;
}
}
/* handles all unaligned cases */
static void glue(glue(slow_st, SUFFIX), MMUSUFFIX)(target_ulong addr,
DATA_TYPE val,
int mmu_idx,
void *retaddr)
{
target_phys_addr_t physaddr;
target_ulong tlb_addr;
int index, i;
index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
redo:
tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
if ((addr & TARGET_PAGE_MASK) == (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
physaddr = addr + env->tlb_table[mmu_idx][index].addend;
if (tlb_addr & ~TARGET_PAGE_MASK) {
/* IO access */
if ((addr & (DATA_SIZE - 1)) != 0)
goto do_unaligned_access;
glue(io_write, SUFFIX)(physaddr, val, tlb_addr, retaddr);
} else if (((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1) >= TARGET_PAGE_SIZE) {
do_unaligned_access:
/* XXX: not efficient, but simple */
for(i = DATA_SIZE - 1; i >= 0; i--) {
#ifdef TARGET_WORDS_BIGENDIAN
glue(slow_stb, MMUSUFFIX)(addr + i, val >> (((DATA_SIZE - 1) * 8) - (i * 8)),
mmu_idx, retaddr);
#else
glue(slow_stb, MMUSUFFIX)(addr + i, val >> (i * 8),
mmu_idx, retaddr);
#endif
}
} else {
/* aligned/unaligned access in the same page */
glue(glue(st, SUFFIX), _raw)((uint8_t *)(long)physaddr, val);
}
} else {
/* the page is not in the TLB : fill it */
tlb_fill(addr, 1, mmu_idx, retaddr);
goto redo;
}
}
#endif /* !defined(SOFTMMU_CODE_ACCESS) */
#undef READ_ACCESS_TYPE
#undef SHIFT
#undef DATA_TYPE
#undef SUFFIX
#undef USUFFIX
#undef DATA_SIZE
#undef ADDR_READ