cpu-i386.h 12.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
/*
 * i386 virtual CPU header
 * 
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
#ifndef CPU_I386_H
#define CPU_I386_H

#include "config.h"
#include <setjmp.h>

#define R_EAX 0
#define R_ECX 1
#define R_EDX 2
#define R_EBX 3
#define R_ESP 4
#define R_EBP 5
#define R_ESI 6
#define R_EDI 7

#define R_AL 0
#define R_CL 1
#define R_DL 2
#define R_BL 3
#define R_AH 4
#define R_CH 5
#define R_DH 6
#define R_BH 7

#define R_ES 0
#define R_CS 1
#define R_SS 2
#define R_DS 3
#define R_FS 4
#define R_GS 5

/* eflags masks */
#define CC_C   	0x0001
#define CC_P 	0x0004
#define CC_A	0x0010
#define CC_Z	0x0040
#define CC_S    0x0080
#define CC_O    0x0800

#define TF_MASK 		0x00000100
#define IF_MASK 		0x00000200
#define DF_MASK 		0x00000400
#define IOPL_MASK		0x00003000
#define NT_MASK	         	0x00004000
#define RF_MASK			0x00010000
#define VM_MASK			0x00020000
#define AC_MASK			0x00040000 
#define VIF_MASK                0x00080000
#define VIP_MASK                0x00100000
#define ID_MASK                 0x00200000

#define EXCP00_DIVZ	0
#define EXCP01_SSTP	1
#define EXCP02_NMI	2
#define EXCP03_INT3	3
#define EXCP04_INTO	4
#define EXCP05_BOUND	5
#define EXCP06_ILLOP	6
#define EXCP07_PREX	7
#define EXCP08_DBLE	8
#define EXCP09_XERR	9
#define EXCP0A_TSS	10
#define EXCP0B_NOSEG	11
#define EXCP0C_STACK	12
#define EXCP0D_GPF	13
#define EXCP0E_PAGE	14
#define EXCP10_COPR	16
#define EXCP11_ALGN	17
#define EXCP12_MCHK	18

#define EXCP_INTERRUPT 	256 /* async interruption */

enum {
    CC_OP_DYNAMIC, /* must use dynamic code to get cc_op */
    CC_OP_EFLAGS,  /* all cc are explicitely computed, CC_SRC = flags */
    CC_OP_MUL, /* modify all flags, C, O = (CC_SRC != 0) */

    CC_OP_ADDB, /* modify all flags, CC_DST = res, CC_SRC = src1 */
    CC_OP_ADDW,
    CC_OP_ADDL,

    CC_OP_ADCB, /* modify all flags, CC_DST = res, CC_SRC = src1 */
    CC_OP_ADCW,
    CC_OP_ADCL,

    CC_OP_SUBB, /* modify all flags, CC_DST = res, CC_SRC = src1 */
    CC_OP_SUBW,
    CC_OP_SUBL,

    CC_OP_SBBB, /* modify all flags, CC_DST = res, CC_SRC = src1 */
    CC_OP_SBBW,
    CC_OP_SBBL,

    CC_OP_LOGICB, /* modify all flags, CC_DST = res */
    CC_OP_LOGICW,
    CC_OP_LOGICL,

    CC_OP_INCB, /* modify all flags except, CC_DST = res, CC_SRC = C */
    CC_OP_INCW,
    CC_OP_INCL,

    CC_OP_DECB, /* modify all flags except, CC_DST = res, CC_SRC = C  */
    CC_OP_DECW,
    CC_OP_DECL,

    CC_OP_SHLB, /* modify all flags, CC_DST = res, CC_SRC.lsb = C */
    CC_OP_SHLW,
    CC_OP_SHLL,

    CC_OP_SARB, /* modify all flags, CC_DST = res, CC_SRC.lsb = C */
    CC_OP_SARW,
    CC_OP_SARL,

    CC_OP_NB,
};

#ifdef __i386__
#define USE_X86LDOUBLE
#endif

#ifdef USE_X86LDOUBLE
typedef long double CPU86_LDouble;
#else
typedef double CPU86_LDouble;
#endif

typedef struct SegmentCache {
    uint8_t *base;
    unsigned long limit;
    uint8_t seg_32bit;
} SegmentCache;

typedef struct SegmentDescriptorTable {
    uint8_t *base;
    unsigned long limit;
    /* this is the returned base when reading the register, just to
    avoid that the emulated program modifies it */
    unsigned long emu_base;
} SegmentDescriptorTable;

typedef struct CPUX86State {
    /* standard registers */
    uint32_t regs[8];
    uint32_t eip;
    uint32_t eflags; /* eflags register. During CPU emulation, CC
                        flags and DF are set to zero because they are
                        stored elsewhere */

    /* emulator internal eflags handling */
    uint32_t cc_src;
    uint32_t cc_dst;
    uint32_t cc_op;
    int32_t df; /* D flag : 1 if D = 0, -1 if D = 1 */

    /* FPU state */
    unsigned int fpstt; /* top of stack index */
    unsigned int fpus;
    unsigned int fpuc;
    uint8_t fptags[8];   /* 0 = valid, 1 = empty */
    CPU86_LDouble fpregs[8];    

    /* emulator internal variables */
    CPU86_LDouble ft0;
    union {
	float f;
        double d;
	int i32;
        int64_t i64;
    } fp_convert;
    
    /* segments */
    uint32_t segs[6]; /* selector values */
    SegmentCache seg_cache[6]; /* info taken from LDT/GDT */
    SegmentDescriptorTable gdt;
    SegmentDescriptorTable ldt;
    SegmentDescriptorTable idt;
    
    /* exception/interrupt handling */
    jmp_buf jmp_env;
    int exception_index;
    int error_code;
    uint32_t cr2;
    int interrupt_request;

    /* user data */
    void *opaque;
} CPUX86State;

/* all CPU memory access use these macros */
static inline int ldub(void *ptr)
{
    return *(uint8_t *)ptr;
}

static inline int ldsb(void *ptr)
{
    return *(int8_t *)ptr;
}

static inline void stb(void *ptr, int v)
{
    *(uint8_t *)ptr = v;
}

#ifdef WORDS_BIGENDIAN

/* conservative code for little endian unaligned accesses */
static inline int lduw(void *ptr)
{
#ifdef __powerpc__
    int val;
    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
    return val;
#else
    uint8_t *p = ptr;
    return p[0] | (p[1] << 8);
#endif
}

static inline int ldsw(void *ptr)
{
#ifdef __powerpc__
    int val;
    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
    return (int16_t)val;
#else
    uint8_t *p = ptr;
    return (int16_t)(p[0] | (p[1] << 8));
#endif
}

static inline int ldl(void *ptr)
{
#ifdef __powerpc__
    int val;
    __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
    return val;
#else
    uint8_t *p = ptr;
    return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
#endif
}

static inline uint64_t ldq(void *ptr)
{
    uint8_t *p = ptr;
    uint32_t v1, v2;
    v1 = ldl(p);
    v2 = ldl(p + 4);
    return v1 | ((uint64_t)v2 << 32);
}

static inline void stw(void *ptr, int v)
{
#ifdef __powerpc__
    __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
#else
    uint8_t *p = ptr;
    p[0] = v;
    p[1] = v >> 8;
#endif
}

static inline void stl(void *ptr, int v)
{
#ifdef __powerpc__
    __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
#else
    uint8_t *p = ptr;
    p[0] = v;
    p[1] = v >> 8;
    p[2] = v >> 16;
    p[3] = v >> 24;
#endif
}

static inline void stq(void *ptr, uint64_t v)
{
    uint8_t *p = ptr;
    stl(p, (uint32_t)v);
    stl(p + 4, v >> 32);
}

/* float access */

static inline float ldfl(void *ptr)
{
    union {
        float f;
        uint32_t i;
    } u;
    u.i = ldl(ptr);
    return u.f;
}

static inline double ldfq(void *ptr)
{
    union {
        double d;
        uint64_t i;
    } u;
    u.i = ldq(ptr);
    return u.d;
}

static inline void stfl(void *ptr, float v)
{
    union {
        float f;
        uint32_t i;
    } u;
    u.f = v;
    stl(ptr, u.i);
}

static inline void stfq(void *ptr, double v)
{
    union {
        double d;
        uint64_t i;
    } u;
    u.d = v;
    stq(ptr, u.i);
}

#else

static inline int lduw(void *ptr)
{
    return *(uint16_t *)ptr;
}

static inline int ldsw(void *ptr)
{
    return *(int16_t *)ptr;
}

static inline int ldl(void *ptr)
{
    return *(uint32_t *)ptr;
}

static inline uint64_t ldq(void *ptr)
{
    return *(uint64_t *)ptr;
}

static inline void stw(void *ptr, int v)
{
    *(uint16_t *)ptr = v;
}

static inline void stl(void *ptr, int v)
{
    *(uint32_t *)ptr = v;
}

static inline void stq(void *ptr, uint64_t v)
{
    *(uint64_t *)ptr = v;
}

/* float access */

static inline float ldfl(void *ptr)
{
    return *(float *)ptr;
}

static inline double ldfq(void *ptr)
{
    return *(double *)ptr;
}

static inline void stfl(void *ptr, float v)
{
    *(float *)ptr = v;
}

static inline void stfq(void *ptr, double v)
{
    *(double *)ptr = v;
}
#endif

#ifndef IN_OP_I386
void cpu_x86_outb(CPUX86State *env, int addr, int val);
void cpu_x86_outw(CPUX86State *env, int addr, int val);
void cpu_x86_outl(CPUX86State *env, int addr, int val);
int cpu_x86_inb(CPUX86State *env, int addr);
int cpu_x86_inw(CPUX86State *env, int addr);
int cpu_x86_inl(CPUX86State *env, int addr);
#endif

CPUX86State *cpu_x86_init(void);
int cpu_x86_exec(CPUX86State *s);
void cpu_x86_interrupt(CPUX86State *s);
void cpu_x86_close(CPUX86State *s);

/* needed to load some predefinied segment registers */
void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector);

/* you can call this signal handler from your SIGBUS and SIGSEGV
   signal handlers to inform the virtual CPU of exceptions. non zero
   is returned if the signal was handled by the virtual CPU.  */
struct siginfo;
int cpu_x86_signal_handler(int host_signum, struct siginfo *info, 
                           void *puc);

/* used to debug */
#define X86_DUMP_FPU  0x0001 /* dump FPU state too */
#define X86_DUMP_CCOP 0x0002 /* dump qemu flag cache */
void cpu_x86_dump_state(CPUX86State *env, FILE *f, int flags);

/* page related stuff */
#define TARGET_PAGE_BITS 12
#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)

extern unsigned long real_host_page_size;
extern unsigned long host_page_bits;
extern unsigned long host_page_size;
extern unsigned long host_page_mask;

#define HOST_PAGE_ALIGN(addr) (((addr) + host_page_size - 1) & host_page_mask)

/* same as PROT_xxx */
#define PAGE_READ      0x0001
#define PAGE_WRITE     0x0002
#define PAGE_EXEC      0x0004
#define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
#define PAGE_VALID     0x0008
/* original state of the write flag (used when tracking self-modifying
   code */
#define PAGE_WRITE_ORG 0x0010 

void page_dump(FILE *f);
int page_get_flags(unsigned long address);
void page_set_flags(unsigned long start, unsigned long end, int flags);
void page_unprotect_range(uint8_t *data, unsigned long data_size);

/***************************************************/
/* internal functions */

#define GEN_FLAG_CODE32_SHIFT 0
#define GEN_FLAG_ADDSEG_SHIFT 1
#define GEN_FLAG_SS32_SHIFT   2
#define GEN_FLAG_VM_SHIFT     3
#define GEN_FLAG_ST_SHIFT     4
#define GEN_FLAG_CPL_SHIFT    7
#define GEN_FLAG_IOPL_SHIFT   9
#define GEN_FLAG_TF_SHIFT     11

int cpu_x86_gen_code(uint8_t *gen_code_buf, int max_code_size, 
                     int *gen_code_size_ptr,
                     uint8_t *pc_start,  uint8_t *cs_base, int flags,
                     int *code_size_ptr);
void cpu_x86_tblocks_init(void);
void page_init(void);
int page_unprotect(unsigned long address);

#define CODE_GEN_MAX_SIZE        65536
#define CODE_GEN_ALIGN           16 /* must be >= of the size of a icache line */

#define CODE_GEN_HASH_BITS     15
#define CODE_GEN_HASH_SIZE     (1 << CODE_GEN_HASH_BITS)

/* maximum total translate dcode allocated */
#define CODE_GEN_BUFFER_SIZE     (2048 * 1024)
//#define CODE_GEN_BUFFER_SIZE     (128 * 1024)

typedef struct TranslationBlock {
    unsigned long pc;   /* simulated PC corresponding to this block (EIP + CS base) */
    unsigned long cs_base; /* CS base for this block */
    unsigned int flags; /* flags defining in which context the code was generated */
    uint16_t size;      /* size of target code for this block (1 <=
                           size <= TARGET_PAGE_SIZE) */
    uint8_t *tc_ptr;    /* pointer to the translated code */
    struct TranslationBlock *hash_next; /* next matching block */
    struct TranslationBlock *page_next[2]; /* next blocks in even/odd page */
} TranslationBlock;

static inline unsigned int tb_hash_func(unsigned long pc)
{
    return pc & (CODE_GEN_HASH_SIZE - 1);
}

void tb_flush(void);
TranslationBlock *tb_alloc(unsigned long pc, 
                           unsigned long size);

extern TranslationBlock *tb_hash[CODE_GEN_HASH_SIZE];

extern uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE];
extern uint8_t *code_gen_ptr;

/* find a translation block in the translation cache. If not found,
   return NULL and the pointer to the last element of the list in pptb */
static inline TranslationBlock *tb_find(TranslationBlock ***pptb,
                                        unsigned long pc, 
                                        unsigned long cs_base,
                                        unsigned int flags)
{
    TranslationBlock **ptb, *tb;
    unsigned int h;
 
    h = tb_hash_func(pc);
    ptb = &tb_hash[h];
    for(;;) {
        tb = *ptb;
        if (!tb)
            break;
        if (tb->pc == pc && tb->cs_base == cs_base && tb->flags == flags)
            return tb;
        ptb = &tb->hash_next;
    }
    *pptb = ptb;
    return NULL;
}

#ifndef offsetof
#define offsetof(type, field) ((size_t) &((type *)0)->field)
#endif

#endif /* CPU_I386_H */